Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Mol Cancer ; 23(1): 92, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715072

ABSTRACT

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Immunotherapy , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Female , Immunotherapy/methods , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Animals , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects
2.
Front Immunol ; 15: 1341079, 2024.
Article in English | MEDLINE | ID: mdl-38817612

ABSTRACT

Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Drug Resistance, Neoplasm/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Animals , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Immune Tolerance
3.
Arab J Gastroenterol ; 25(2): 194-204, 2024 May.
Article in English | MEDLINE | ID: mdl-38705811

ABSTRACT

BACKGROUND AND STUDY AIMS: Immunotherapy has emerged as a hot topic in cancer treatment in recent years and has also shown potential in the treatment of Helicobacter pylori-associated gastric cancer. However, there is still a need to identify potential immunotherapy targets. MATERIAL AND METHODS: We used the GSE116312 dataset of Helicobacter pylori-associated gastric cancer to identify differentially expressed genes, which were then overlapped with immune genes from the ImmPort database. The identified immune genes were used to classify gastric cancer samples and evaluate the relationship between classification and tumor mutations, as well as immune infiltration. An immune gene-based prognostic model was constructed, and the expression levels of the genes involved in constructing the model were explored in the tumor immune microenvironment. RESULTS: We successfully identified 60 immune genes and classified gastric cancer samples into two subtypes, which showed differences in prognosis, tumor mutations, immune checkpoint expression, and immune cell infiltration. Subsequently, we constructed an immune prognostic model consisting of THBS1 and PDGFD, which showed significant associations with macrophages and fibroblasts. CONCLUSION: We identified abnormal expression of THBS1 and PDGFD in cancer-associated fibroblasts (CAFs) within the tumor immune microenvironment, suggesting their potential as therapeutic targets.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Platelet-Derived Growth Factor , Stomach Neoplasms , Thrombospondin 1 , Tumor Microenvironment , Stomach Neoplasms/microbiology , Stomach Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Helicobacter pylori/immunology , Helicobacter pylori/genetics , Helicobacter Infections/immunology , Helicobacter Infections/complications , Thrombospondin 1/genetics , Prognosis , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Mutation , Lymphokines
4.
Oncoimmunology ; 13(1): 2352179, 2024.
Article in English | MEDLINE | ID: mdl-38746869

ABSTRACT

Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.


Subject(s)
Cancer-Associated Fibroblasts , Carnitine O-Palmitoyltransferase , Interleukin-6 , Macrophages , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Interleukin-6/metabolism , Interleukin-6/genetics , Macrophages/immunology , Macrophages/metabolism , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Phenotype , Animals , Mice , Male , Female , Cell Line, Tumor , Immune Tolerance
5.
Aging (Albany NY) ; 16(8): 7331-7356, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38656888

ABSTRACT

BACKGROUND: Patients with gastric cancer respond poorly to immunotherapy. There are still unknowns about the biomarkers associated with immunotherapy sensitivity and their underlying molecular mechanisms. METHODS: Gene expression data for gastric cancer were gathered from TCGA and GEO databases. DEGs associated with immunotherapy response came from ICBatlas. KEGG and GO analyses investigated pathways. Hub genes identification employed multiple machine algorithms. Associations between hub genes and signaling pathways, disease genes, immune cell infiltration, drug sensitivity, and prognostic predictions were explored via multi-omics analysis. Hub gene expression was validated through HPA and CCLE. Multiple algorithms pinpointed Cancer-Associated Fibroblasts genes (CAFs), with ten machine-learning methods generating CAFs scores for prognosis. Model gene expression was validated at the single-cell level using the TISCH database. RESULTS: We identified 201 upregulated and 935 downregulated DEGs. Three hub genes, namely CDH6, EGFLAM, and RASGRF2, were unveiled. These genes are implicated in diverse disease-related signaling pathways. Additionally, they exhibited significant correlations with disease-associated gene expression, immune cell infiltration, and drug sensitivity. Exploration of the HPA and CCLE databases exposed substantial expression variations across patients and cell lines for these genes. Subsequently, we identified CAFs-associated genes and established a robust prognostic model. The analysis in the TISCH database showed that the genes in this model were highly expressed in CAFs. CONCLUSIONS: The results unveil an association between CDH6, EGFLAM, and RASGRF2 and the immunotherapeutic response in gastric cancer. These genes hold potential as predictive biomarkers for gastric cancer immunotherapy resistance and prognostic assessment.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Immunotherapy , Machine Learning , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/therapy , Humans , Immunotherapy/methods , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics , Prognosis , Gene Expression Profiling , Databases, Genetic , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Multiomics
6.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38639057

ABSTRACT

The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment, or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared with normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12, and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways, respectively, in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Receptors, Calcitriol , Thyroid Cancer, Papillary , Tumor Microenvironment , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Humans , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Databases, Genetic
7.
Toxicology ; 504: 153782, 2024 May.
Article in English | MEDLINE | ID: mdl-38493947

ABSTRACT

Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.


Subject(s)
Cancer-Associated Fibroblasts , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Urinary Bladder Neoplasms , Humans , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/drug effects , Carcinogens/toxicity , Gene Expression Regulation, Neoplastic , Immune Evasion , Multiomics , Prognosis , Single-Cell Analysis , Smoking/adverse effects , Tumor Microenvironment/immunology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology
8.
Br J Cancer ; 130(10): 1647-1658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555315

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a critical role in tumor immunosuppression. However, targeted depletion of CAFs is difficult due to their diverse cells of origin and the resulting lack of specific surface markers. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that leads to rapid cell membrane damage. METHODS: In this study, we used anti-mouse fibroblast activation protein (FAP) antibody to target FAP+ CAFs (FAP-targeted NIR-PIT) and investigated whether this therapy could suppress tumor progression and improve tumor immunity. RESULTS: FAP-targeted NIR-PIT induced specific cell death in CAFs without damaging adjacent normal cells. Furthermore, FAP-targeted NIR-PIT treated mice showed significant tumor regression in the CAF-rich tumor model accompanied by an increase in CD8+ tumor infiltrating lymphocytes (TILs). Moreover, treated tumors showed increased levels of IFN-γ, TNF-α, and IL-2 in CD8+ TILs compared with non-treated tumors, suggesting enhanced antitumor immunity. CONCLUSIONS: Cancers with FAP-positive CAFs in their TME grow rapidly and FAP-targeted NIR-PIT not only suppresses their growth but improves tumor immunosuppression. Thus, FAP-targeted NIR-PIT is a potential therapeutic strategy for selectively targeting the TME of CAF+ tumors.


Subject(s)
Cancer-Associated Fibroblasts , Immunotherapy , Tumor Microenvironment , Animals , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Mice , Immunotherapy/methods , Tumor Microenvironment/immunology , Endopeptidases , Serine Endopeptidases/metabolism , Gelatinases/metabolism , Membrane Proteins/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Female , Humans , Infrared Rays/therapeutic use , Phototherapy/methods , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Mice, Inbred C57BL
9.
Nanomedicine ; 58: 102743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484918

ABSTRACT

Cancer-associated fibroblasts (CAFs) play a crucial role in creating an immunosuppressive environment and remodeling the extracellular matrix within tumors, leading to chemotherapy resistance and limited immune cell infiltration. To address these challenges, integrating CAFs deactivation into immunogenic chemotherapy may represent a promising approach to the reversal of immune-excluded tumor. We developed a tumor-targeted nanomedicine called the glutathione-responsive nanocomplex (GNC). The GNC co-loaded dasatinib, a CAF inhibitor, and paclitaxel, a chemotherapeutic agent, to deactivate CAFs and enhance the effects of immunogenic chemotherapy. Due to the modification with hyaluronic acid, the GNC preferentially accumulated in the tumor periphery and responsively released cargos, mitigating the tumor stroma as well as overcoming chemoresistance. Moreover, GNC treatment exhibited remarkable immunostimulatory efficacy, including CD8+ T cell expansion and PD-L1 downregulation, facilitating immune checkpoint blockade therapy. In summary, the integration of CAF deactivation and immunogenic chemotherapy using the GNC nanoplatform holds promise for rebuilding immune-excluded tumors.


Subject(s)
Cancer-Associated Fibroblasts , Paclitaxel , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Animals , Humans , Mice , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Dasatinib/pharmacology , Dasatinib/therapeutic use , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Cell Line, Tumor , Nanoparticles/chemistry , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Glutathione/metabolism
10.
Curr Cancer Drug Targets ; 24(6): 642-653, 2024.
Article in English | MEDLINE | ID: mdl-38310462

ABSTRACT

BACKGROUND: Immune-checkpoint inhibitors (ICIs) against programmed death (PD)-1/PD-L1 pathway immunotherapy have been demonstrated to be effective in only a subset of patients with cancer, while the rest may exhibit low response or may develop drug resistance after initially responding. Previous studies have indicated that extensive collagen-rich stroma secreted by cancer-associated fibroblasts (CAFs) within the tumor microenvironment is one of the key obstructions of the immunotherapy for some tumors by decreasing the infiltrating cytotoxic T cells. However, there is still a lack of effective therapeutic strategies to control the extracellular matrix by targeting CAFs. METHODS: The enhanced uptake of IR-780 by CAFs was assessed by using in vivo or ex vivo nearinfrared fluorescence imaging, confocal NIR fluorescent imaging, and CAFs isolation testing. The fibrotic phenotype down-regulation effects and in vitro CAFs killing effect of IR-780 were tested by qPCR, western blot, and flow cytometry. The in vivo therapeutic enhancement of anti-PD-L1 by IR-780 was evaluated on EMT6 and MC38 subcutaneous xenograft mice models. RESULTS: IR-780 has been demonstrated to be preferentially taken up by CAFs and accumulate in the mitochondria. Further results identified low-dose IR-780 to downregulate the fibrotic phenotype, while high-dose IR-780 could directly kill both CAFs and EMT6 cells in vitro. Moreover, IR-780 significantly inhibited extracellular matrix (ECM) protein deposition in the peri-tumoral stroma on subcutaneous EMT6 and MC38 xenografts, which increased the proportion of tumor-infiltrating lymphocytes (TILs) in the deep tumor and further promoted anti-PD-L1 therapeutic efficacy. CONCLUSION: This work provides a unique strategy for the inhibition of ECM protein deposition in the tumor microenvironment by targeted regulating of CAFs, which destroys the T cell barrier and further promotes tumor response to PD-L1 monoclonal antibody. IR-780 has been proposed as a potential therapeutic small-molecule adjuvant to promote the effect of immunotherapy.


Subject(s)
Cancer-Associated Fibroblasts , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , Animals , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Mice , Humans , Immunotherapy/methods , Tumor Microenvironment/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Immune Checkpoint Inhibitors/pharmacology , Indoles/pharmacology , Female , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Cell Line, Tumor , Xenograft Model Antitumor Assays
11.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38393682

ABSTRACT

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Subject(s)
CD3 Complex , Endopeptidases , GPI-Linked Proteins , Immunotherapy, Adoptive , Mesothelin , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Membrane Proteins/immunology , Membrane Proteins/metabolism , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Adenocarcinoma/pathology
12.
Int Immunopharmacol ; 122: 110601, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37418988

ABSTRACT

The tumour microenvironment (TME) is critical for the initiation, progression, and metastasis of tumours, and cancer-associated fibroblasts (CAFs) are the most dominant cells and have attracted interest as targets for cancer therapy among the stromal components within the TME. Currently, most of the identified CAF subpopulations are believed to exhibit suppressive effects on antitumour immunity. However, accumulating evidence indicates the presence of immunostimulatory CAF subpopulations, which play an important role in the maintenance and amplification of antitumour immunity, in the TME. Undoubtedly, these findings provide novel insights into CAF heterogeneity. Herein, we focus on summarizing CAF subpopulations that promote antitumour immunity, the surface markers of these populations, and possible immunostimulatory mechanisms in the context of recent advances in research on CAF subpopulations. In addition, we discuss the possibility of new therapies targeting CAF subpopulations and conclude with a brief description of some prospective avenues for CAF research.


Subject(s)
Cancer-Associated Fibroblasts , Immune Tolerance , Neoplasms , Tumor Microenvironment , Humans , Antigen Presentation , Cancer-Associated Fibroblasts/immunology , Neoplasms/immunology
13.
J Transl Med ; 20(1): 559, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463188

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, contribute to an immunosuppressive tumor microenvironment (TME) through the induction and functional polarization of protumoral macrophages. We have herein investigated the contribution of CAFs to monocyte recruitment and macrophage polarization. We also sought to identify a possible paracrine mechanism by which CAF-educated monocytes affect breast cancer (BC) cell progression. METHODS: Monocytes were educated by primary CAFs and normal fibroblast (NF); the phenotypic alterations of CAF- or NF-educated monocytes were measured by flow cytometry. Exosomes isolated from the cultured conditioned media of the educated monocytes were characterized. An in vivo experiment using a subcutaneous transplantation tumor model in athymic nude mice was conducted to uncover the effect of exosomes derived from CAF- or NF-educated monocytes on breast tumor growth. Gain- and loss-of-function experiments were performed to explore the role of miR-181a in BC progression with the involvement of the AKT signaling pathway. Western blotting, enzyme-linked immunosorbent assay, RT-qPCR, flow cytometry staining, migration assay, immunohistochemical staining, and bioinformatics analysis were performed to reveal the underlying mechanisms. RESULTS: We illustrated that primary CAFs recruited monocytes and established pro-tumoral M2 macrophages. CAF may also differentiate human monocyte THP-1 cells into anti-inflammatory M2 macrophages. Besides, we revealed that CAFs increased reactive oxygen species (ROS) generation in THP-1 monocytes, as differentiating into M2 macrophages requires a level of ROS for proper polarization. Importantly, T-cell proliferation was suppressed by CAF-educated monocytes and their exosomes, resulting in an immunosuppressive TME. Interestingly, CAF-activated, polarized monocytes lost their tumoricidal abilities, and their derived exosomes promoted BC cell proliferation and migration. In turn, CAF-educated monocyte exosomes exhibited a significant promoting effect on BC tumorigenicity in vivo. Of clinical significance, we observed that up-regulation of circulating miR-181a in BC was positively correlated with tumor aggressiveness and found a high level of this miRNA in CAF-educated monocytes and their exosomes. We further clarified that the pro-oncogenic effect of CAF-educated monocytes may depend in part on the exosomal transfer of miR-181a through modulating the PTEN/Akt signaling axis in BC cells. CONCLUSIONS: Our findings established a connection between tumor stromal communication and tumor progression and demonstrated an inductive function for CAF-educated monocytes in BC cell progression. We also proposed a supporting model in which exosomal transfer of miR-181a from CAF-educated monocytes activates AKT signaling by regulating PTEN in BC cells.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , MicroRNAs , Monocytes , Tumor Microenvironment , Animals , Humans , Mice , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cancer-Associated Fibroblasts/immunology , Macrophages/immunology , Mice, Nude , MicroRNAs/genetics , MicroRNAs/immunology , Monocytes/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Reactive Oxygen Species , Signal Transduction , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
14.
Front Immunol ; 13: 974265, 2022.
Article in English | MEDLINE | ID: mdl-36439099

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) are critical for immune suppression by restricting immune cell infiltration in the tumor stromal zones from penetrating tumor islands and changing their function status, particularly for CD8+ T cells. However, assessing and quantifying the impact of CAFs on immune cells and investigating how this impact is related to clinical outcomes, especially the efficacy of immunotherapy, remain unclear. Materials and methods: The TME was characterized using immunohistochemical (IHC) analysis using a large-scale sample size of gene expression profiles. The CD8+ T cell/CAF ratio (CFR) association with survival was investigated in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) lung cancer cohorts. The correlation between CFR and immunotherapeutic efficacy was computed in five independent cohorts. The correlation between CFR and objective response rates (ORRs) following pembrolizumab monotherapy was investigated in 20 solid tumor types. To facilitate clinical translation, the IHC-detected CD8/α-SMA ratio was applied as an immunotherapeutic predictive biomarker in a real-world lung cancer cohort. Results: Compared with normal tissue, CAFs were enriched in cancer tissue, and the amount of CAFs was overwhelmingly higher than that in other immune cells. CAFs are positively correlated with the extent of immune infiltration. A higher CFR was strongly associated with improved survival in lung cancer, melanoma, and urothelial cancer immunotherapy cohorts. Within most cohorts, there was no clear evidence for an association between CFR and programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB). Compared with TMB and PD-L1, a higher correlation coefficient was observed between CFR and the ORR following pembrolizumab monotherapy in 20 solid tumor types (Spearman's r = 0.69 vs. 0.44 and 0.21). In a real-world cohort, patients with a high CFR detected by IHC benefited considerably from immunotherapy as compared with those with a low CFR (hazard ratio, 0.37; 95% confidence interval, 0.19-0.75; p < 0.001). Conclusions: CFR is a newly found and simple parameter that can be used for identifying patients unlikely to benefit from immunotherapy. Future studies are needed to confirm this finding.


Subject(s)
CD8-Positive T-Lymphocytes , Cancer-Associated Fibroblasts , Lung Neoplasms , Tumor Microenvironment , Humans , B7-H1 Antigen/immunology , Biomarkers, Tumor/immunology , Cancer-Associated Fibroblasts/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Factors/immunology , Immunologic Factors/therapeutic use , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Prognosis , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Predictive Value of Tests
15.
Front Immunol ; 13: 927474, 2022.
Article in English | MEDLINE | ID: mdl-36059511

ABSTRACT

Presenilin 1 (PSEN1), as a catalytical core of the γ-secretase complex, plays multiple actions through mediating transmembrane domain shedding of the substrates. Unlike extensive studies performed on investigating the functions of γ-secretase substrates or the effects of γ-secretase inhibitors, our findings uncover a potential action of PSEN1 on PD-L1 alternative truncation and nuclear translocation, broadening our understanding on how the γ-secretase contributes to colon cancer development as well as suggesting a potential strategy to improve the efficacy of PD-1/PD-L1 blockade. Immunohistochemical data showed loss of PD-L1 protein expression in all the primary colon adenocarcioma (COAD) cases in the HPA collection, while PSEN1 was scored to be highly expressed, indicating their converse expression patterns (p<0.001). Meanwhile a strongly positive gene correlation was explored by TIMER2 and GEPIA (p<0.001). Up-regulated PSEN1 expression in COAD might facilitate liberating a C-terminal PD-L1 truncation via proteolytic processing. Then following an established regulatory pathway of PD-L1 nuclear translocation, we found that PSEN1 showed significant correlations with multiple components in HDAC2-mediated deacetylation, clathrin-dependent endocytosis, vimentin-associated nucleocytoplasmic shuttling and importin family-mediated nuclear import. Moreover, connections of PSEN1 to the immune response genes transactivated by nuclear PD-L1 were tested. Additionally, contributions of PSEN1 to the tumor invasiveness (p<0.05) and the tumor infiltrating cell enrichments (p<0.001) were investigated by cBioportal and the ESTIMATE algorithm. Levels of PSEN1 were negatively correlated with infiltrating CD8+ T (p<0.05) and CD4+ T helper (Th) 1 cells (p<0.001), while positively correlated with regulatory T cells (Tregs) (p<0.001) and cancer associated fibroblasts (CAFs) (p<0.001). It also displayed significant associations with diverse immune metagenes characteristic of T cell exhaustion, Tregs and CAFs, indicating possible actions in immune escape. Despite still a preliminary stage of this study, we anticipate to deciphering a novel function of PSEN1, and supporting more researchers toward the elucidations of the mechanisms linking the γ-secretase to cancers, which has yet to be fully addressed.


Subject(s)
B7-H1 Antigen , Cancer-Associated Fibroblasts , Colonic Neoplasms , Presenilin-1 , T-Lymphocytes , Amyloid Precursor Protein Secretases/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cancer-Associated Fibroblasts/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Humans , Presenilin-1/genetics , Presenilin-1/immunology , T-Lymphocytes/immunology
16.
Gynecol Oncol ; 167(2): 342-353, 2022 11.
Article in English | MEDLINE | ID: mdl-36114029

ABSTRACT

OBJECTIVE: Recent molecular profiling revealed that cancer-associated fibroblasts (CAFs) are essential for matrix remodeling and tumor progression. Our study aimed to investigate the role of flavin-containing monooxygenase 2 (FMO2) in epithelial ovarian cancer (EOC) as a novel CAF-derived prognostic biomarker. METHODS: Primary fibroblasts were isolated from EOC samples. Microdissection and single-cell RNA sequencing (scRNA-seq) datasets (including TCGA, GSE9891, GSE63885, GSE118828 and GSE178913) were retrieved to determine the expression profiles. Gene set enrichment analysis (GSEA) was used to explore the correlation between FMO2 and stromal activation as well as immune infiltration. The predictive value of FMO2 and combined macrophage infiltration level was verified in an independent EOC cohort (n = 113). RESULTS: We demonstrated that FMO2 was upregulated in tumor stroma and correlated with fibroblast activation. Besides, FMO2 had the predictive power for worse clinical outcome of EOC patients. In the mesenchymal subtype of EOC, the FMO2-defined signature revealed that FMO2 contributed to infiltration of tumor-infiltrating lymphocytes. Moreover, we confirmed the positive correlation between FMO2 and CD163+ cell infiltration level in EOC tissues, and showed that combination of FMO2 expression with CD163+ cell infiltration level in the tumor stroma could predict poor overall survival (HR = 3.63, 95% CI = 1.93-6.84, p = 0.0008). Additionally, FMO2 also predicted the prognosis of patients with ovarian cancer based on the expression of immune checkpoints (such as PD-L1 and PD1). CONCLUSION: Our results address the tumor-supporting role of FMO2 in EOC and its association with immune components, and it might be a prospective target for stroma-oriented therapies against EOC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Ovarian Epithelial , Macrophages , Ovarian Neoplasms , Oxygenases , Female , Humans , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Oxygenases/genetics , Oxygenases/immunology , Prognosis , Macrophages/immunology , Macrophages/pathology
17.
Front Immunol ; 13: 975847, 2022.
Article in English | MEDLINE | ID: mdl-36091055

ABSTRACT

Despite tremendous progress made in the diagnosis and managements, head and neck squamous cell carcinoma (HNSC) remains a global medical dilemma with dismal clinical prognosis and high mortality. Gene NT5E encodes the ecto-5'-nucleotidase (CD73), which facilitates the formation of immunosuppressive tumor microenvironment (TME) permissive for tumor progression in various malignancies. Nevertheless, the cell subsets NT5E expressed on and the potential function of NT5E in the TME of HNSC remain virgin lands in HNSC. In this study, we comprehensively performed integrated prognostic analysis and elucidated that NT5E was an independent prognostic indicator for HNSC, for which a high NT5E level predicted poor overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI) in HNSC patients (p<0.05). Enrichment analyses revealed the close correlation between NT5E and ECM remodeling, and the latent function of NT5E may involve in epithelial-to-mesenchymal transition (EMT) and metastasis during HNSC progression. HNSC-related immune infiltration analysis and single-cell type analysis demonstrated that NT5E expression was significantly positively associated with cancer-associated fibroblasts (CAFs) in HNSC (p<0.01). NT5E-related TME analysis revealed that NT5E-high group are characterized by low neoantigen loads (NAL, p<0.001) and tumor mutation burden (TMB, p<0.01), indicating high-NT5E-expression HNSC patients may be recalcitrant to immunotherapy. In-situ multicolor immunofluorescence staining was later conducted and the results further verified our findings. Taken together, NT5E could be a novel biomarker in HNSC. Predominantly expressed on CAFs, the upregulation of NT5E might predict an immunosuppressive TME for HNSC patients who may benefit little from immunotherapy. Targeting CAFs with high NT5E expression might be a novel therapeutic strategy for HNSC patients.


Subject(s)
5'-Nucleotidase , Cancer-Associated Fibroblasts , GPI-Linked Proteins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , 5'-Nucleotidase/genetics , 5'-Nucleotidase/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cancer-Associated Fibroblasts/immunology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Up-Regulation
18.
Theranostics ; 12(10): 4564-4580, 2022.
Article in English | MEDLINE | ID: mdl-35832090

ABSTRACT

Background: Since T cell exclusion contributes to tumor immune evasion and immunotherapy resistance, how to improve T cell infiltration into solid tumors becomes an urgent challenge. Methods: We employed deep learning to profile the tumor immune microenvironment (TIME) in triple negative breast cancer (TNBC) samples from TCGA datasets and noticed that fibroblast growth factor receptor (FGFR) signaling pathways were enriched in the immune-excluded phenotype of TNBC. Erdafitinib, a selective FGFR inhibitor, was then used to investigate the effect of FGFR blockade on TIME landscape of TNBC syngeneic mouse models by flow cytometry, mass cytometry (CyTOF) and RNA sequencing. Cell Counting Kit-8 (CCK-8) assay and transwell migration assay were carried out to detect the effect of FGFR blockade on cell proliferation and migration, respectively. Cytokine array, western blot, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence (IF) were employed to investigate the potential mechanism by which FGFR inhibition enhanced T cell infiltration. Results: Blocking FGFR pathway by Erdafitinib markedly suppressed tumor growth with increased T cell infiltration in immunocompetent mouse models of TNBC. Mechanistically, FGFR blockade inhibited cancer-associated fibroblasts (CAFs) proliferation, migration and secretion of vascular cell adhesion molecule 1 (VCAM-1) by down-regulating MAPK/ERK pathway in CAFs, thus promoting T cell infiltration by breaking physical and chemical barriers built by CAFs in TIME. Furthermore, we observed that FGFR inhibition combined with immune checkpoint blockade therapy (ICT) greatly improved the therapeutic response of TNBC tumor models. Conclusions: FGFR blockade enhanced ICT response by turning immune "cold" tumor into "hot" tumor, providing remarkable implications of FGFR inhibitors as adjuvant agents for combinatorial immunotherapy.


Subject(s)
Cancer-Associated Fibroblasts , Receptors, Fibroblast Growth Factor , T-Lymphocytes , Triple Negative Breast Neoplasms , Animals , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/immunology , Cell Line, Tumor , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Quinoxalines/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
19.
Cell Mol Life Sci ; 79(3): 191, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35292881

ABSTRACT

Immune checkpoint blockade (ICB) therapies have achieved remarkable clinical responses in patients with many different types of cancer; however, most patients who receive ICB monotherapy fail to achieve long-term responses, and some tumors become immunotherapy-resistant and even hyperprogressive. Type I interferons (IFNs) have been demonstrated to inhibit tumor growth directly and indirectly by acting upon tumor and immune cells, respectively. Furthermore, accumulating evidence indicates that endo- and exogenously enhancing type I IFNs have a synergistic effect on anti-tumor immunity. Therefore, clinical trials studying new treatment strategies that combine type I IFN inducers with ICB are currently in progress. Here, we review the cellular sources of type I IFNs and their roles in the immune regulation of the tumor microenvironment. In addition, we highlight immunotherapies based on type I IFNs and combination therapy between type I IFN inducers and ICBs.


Subject(s)
Immunotherapy/methods , Interferon Type I/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , Cancer-Associated Fibroblasts/immunology , Combined Modality Therapy , Dendritic Cells/immunology , Endothelial Cells/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/biosynthesis , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/immunology , Mice , Models, Immunological , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , Oncolytic Virotherapy , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Toll-Like Receptors/agonists , Tumor Microenvironment/immunology
20.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35029648

ABSTRACT

A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced C1q, which acted on T cell C1qbp to rescue them from apoptosis. Fibroblast-specific MHCII or C1q deletion impaired CD4 T cell immunity and accelerated tumor growth, while inducing C1qbp in adoptively transferred CD4 T cells expanded their numbers and reduced tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation.


Subject(s)
Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Cancer-Associated Fibroblasts/immunology , Histocompatibility Antigens Class II/immunology , Lung Neoplasms/immunology , Animals , Apoptosis , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carrier Proteins/metabolism , Disease Models, Animal , Humans , Interferon-gamma/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lymphocyte Activation , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mitochondrial Proteins/metabolism , Single-Cell Analysis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcriptome , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...