Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.333
Filter
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719750

ABSTRACT

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Subject(s)
Candida albicans , Celiac Disease , Homeostasis , Mast Cells , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/metabolism , Humans , Candida albicans/pathogenicity , Candida albicans/immunology , Mast Cells/immunology , Mast Cells/metabolism , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Candida/pathogenicity , Candida/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
2.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787374

ABSTRACT

Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and ß-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.


Subject(s)
Candida albicans , Candidiasis , Animals , Candida albicans/immunology , Mice , Candidiasis/immunology , Candidiasis/prevention & control , Fungal Vaccines/immunology , Disease Models, Animal , Virulence , Female , Cytokines/metabolism , Biofilms/drug effects , Biofilms/growth & development
3.
Open Biol ; 14(5): 230315, 2024 May.
Article in English | MEDLINE | ID: mdl-38806144

ABSTRACT

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Subject(s)
Candida glabrata , Dendritic Cells , Macrophage-1 Antigen , T-Lymphocytes, Regulatory , beta-Glucans , Candida glabrata/metabolism , Candida glabrata/pathogenicity , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , beta-Glucans/metabolism , beta-Glucans/pharmacology , Animals , Macrophage-1 Antigen/metabolism , Mice , Lectins, C-Type/metabolism , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Mice, Inbred C57BL
4.
J Immunol ; 212(12): 1932-1944, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38709167

ABSTRACT

IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.


Subject(s)
Autophagy , Candida albicans , Candidiasis , Interferon Regulatory Factor-7 , Lectins, C-Type , Macrophages , Mice, Knockout , Phagocytosis , Receptors, Cell Surface , TOR Serine-Threonine Kinases , Animals , Mice , Phagocytosis/immunology , Autophagy/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Candidiasis/immunology , Candida albicans/immunology , Candida albicans/physiology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/immunology , Macrophages/immunology , Humans , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice, Inbred C57BL , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Signal Transduction/immunology
5.
Infect Immun ; 92(6): e0010324, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38722168

ABSTRACT

Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased ß-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.


Subject(s)
Antifungal Agents , Candida auris , Virulence/genetics , Candida auris/genetics , Candida auris/drug effects , Antifungal Agents/pharmacology , Candidiasis/microbiology , Candidiasis/immunology , Drug Resistance, Fungal/genetics , Genome, Fungal , Humans , Macrophages/microbiology , Macrophages/immunology , Gene Expression Regulation, Fungal , Gene Expression Profiling , Animals
6.
Nat Commun ; 15(1): 3926, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724513

ABSTRACT

Patients with decreased levels of CD18 (ß2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMß2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the ß-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1ß release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.


Subject(s)
CD18 Antigens , Candidiasis , Fungal Proteins , Lectins, C-Type , Macrophages , Animals , Mice , beta-Glucans/metabolism , beta-Glucans/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , CD11b Antigen/metabolism , CD11b Antigen/immunology , CD18 Antigens/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Fungal Proteins/metabolism , Fungal Proteins/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Macrophages/immunology , Macrophages/metabolism , Signal Transduction
7.
J Proteome Res ; 23(5): 1634-1648, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38572994

ABSTRACT

The delay in making a correct diagnosis of Candida auris causes concern in the healthcare system setting, and immunoproteomics studies are important to identify immunoreactive proteins for new diagnostic strategies. In this study, immunocompetent murine systemic infections caused by non-aggregative and aggregative phenotypes of C. auris and by Candida albicans and Candida haemulonii were carried out, and the obtained sera were used to study their immunoreactivity against C. auris proteins. The results showed higher virulence, in terms of infection signs, weight loss, and histopathological damage, of the non-aggregative isolate. Moreover, C. auris was less virulent than C. albicans but more than C. haemulonii. Regarding the immunoproteomics study, 13 spots recognized by sera from mice infected with both C. auris phenotypes and analyzed by mass spectrometry corresponded to enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase. These four proteins were also recognized by sera obtained from human patients with disseminated C. auris infection but not by sera obtained from mice infected with C. albicans or Aspergillus fumigatus. Spot identification data are available via ProteomeXchange with the identifier PXD049077. In conclusion, this study showed that the identified proteins could be potential candidates to be studied as new diagnostic or even therapeutic targets for C. auris.


Subject(s)
Candida , Candidiasis , Immunoglobulin G , Animals , Mice , Candida/immunology , Candida/pathogenicity , Humans , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/blood , Immunoglobulin G/blood , Antigens, Fungal/immunology , Antigens, Fungal/blood , Proteomics/methods , Candida albicans/immunology , Candida albicans/pathogenicity , Fungal Proteins/immunology , Phosphoglycerate Mutase/immunology , Phosphoglycerate Kinase/immunology , Glyceraldehyde-3-Phosphate Dehydrogenases/immunology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Antibodies, Fungal/blood , Antibodies, Fungal/immunology , Female , Virulence
8.
Food Funct ; 15(10): 5364-5381, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38639049

ABSTRACT

Invasive candidiasis may be caused by Candida albicans (C. albicans) colonization of the intestinal tract. Preventing intestinal damage caused by Candida albicans infection and protecting intestinal barrier function have become a critical issue. Integrated analyses of the microbiome with metabolome revealed a remarkable shift of the gut microbiota and tryptophan metabolites, kynurenic acid (KynA), and indolacrylic acid (IA) in mice infected with C. albicans. The transcriptome sequencing indicated that differentially expressed genes were significantly associated with innate immune responses and inflammatory responses. The results of this study suggest that KynA and IA (KI) can alleviate intestinal damage caused by Candida albicans infection in mice by reducing intestinal permeability, increasing intestinal firmness, alleviating intestinal inflammation, and reducing the secretion of interleukin-22 (IL-22) in the 3 groups of colon innate lymphoid cells (ILC3). We performed a fecal microbiota transplantation (FMT) experiment and found that the intestinal barrier function, inflammation, and IL-22 secretion of ILC3 in the colon lamina propria of the recipient mice subjected to C. albicans infection and KI treatment were consistent with the trends of the donor mice. Our results suggest that tryptophan metabolites may directly regulate colon lamina ILC3 to promote intestinal resistance to C. albicans invasion, or indirectly regulate the ILC3 secretion of IL-22 to play a protective role in the intestinal barrier by affecting intestinal microorganisms, which may become a potential target for alleviating intestine borne C. albicans infection.


Subject(s)
Candida albicans , Candidiasis , Colon , Gastrointestinal Microbiome , Interleukin-22 , Interleukins , Intestinal Mucosa , Tryptophan , Animals , Gastrointestinal Microbiome/drug effects , Tryptophan/metabolism , Mice , Interleukins/metabolism , Candidiasis/immunology , Candidiasis/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Colon/microbiology , Colon/immunology , Colon/metabolism , Male , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Immunity, Innate , Fecal Microbiota Transplantation
9.
Cytokine ; 179: 156611, 2024 07.
Article in English | MEDLINE | ID: mdl-38640559

ABSTRACT

Candida species are a normal human flora in humans' digestive and reproductive systems, oral cavity, skin, and mucosal surfaces. This study aimed to detect the immunological role of Candida infection by using some immunological markers. The results of levels in serum showed high concentrations of IgA (56.20 ± 12 pg/ml,29.55 ± 4.5 pg/ml respectively) and IgG (12.05 ± 3.218 pg/ml, 3.836 ± 1.23 pg/ml respectively) in mice infected with C. albicans and mice treated with Cefoperazone and infected with Candida with significant differences (P value < 0.05). The results showed high serum levels of IL-17(191.5 ± 42.81 pg/ml) and TLR2(7.651 ± 1.5 pg/ml) in group mice infected with C. albicans compared with negative control and group mice treated with Cefoperazone. Also, high levels of IL-17 (91.33 ± 4.816 pg/ml) and TLR2 (2.630 ± 0.5 pg/ml) in group mice treated with Cefoperazone and infected with Candida compared with negative control and group mice treated with Cefoperazone (P value < 0.05). The results of antibodies and immunological markers in the intestine showed high levels of IgA and IgG in mice infected with C.albicans (55.7 ± 4.9 pg/ml, 18.19 ± 0.63 pg/ml respectively).Also,IgA and IgG in mice treated with Cefoperazone and infected with Candida were high level (43.04 ± 2.1 pg/ml, 2.927 ± 0.2 pg/ml respectively) in mice infected with C. albicans with significant differences (P value < 0.05). The results levels of IL-17 and TLR2 were increased in mice infected with C. albicans (191.5 ± 42.81 pg/ml, 7.651 ± 1.5 pg/ml respectively) and mice treated with Cefoperazone and infected with Candida (91.33 ± 4.816 pg/ml,2.630 ± 0.5 pg/ml respectively) with significant differences (P < 0.05). In conclusion, this study demonstrated that cefoperazone treatment and infection by Candida albicans changed the microbiome components in the gut and finally can change host immune responses. It was observed that elevated levels of the antibodies production (IgA and IgG) and immunological markers (IL-17, and TLR2) in serum and the gut.


Subject(s)
Candida albicans , Candidiasis , Cefoperazone , Interleukin-17 , Toll-Like Receptor 2 , Animals , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/drug therapy , Mice , Toll-Like Receptor 2/metabolism , Interleukin-17/metabolism , Interleukin-17/blood , Immunoglobulin G/blood , Immunoglobulin A/blood , Male , Female , Mice, Inbred BALB C
10.
Microbiol Spectr ; 12(6): e0351623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687064

ABSTRACT

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.


Subject(s)
COVID-19 , Coinfection , Epithelial Cells , Interferon Type I , Interleukin-17 , SARS-CoV-2 , Humans , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , COVID-19/immunology , Coinfection/immunology , Coinfection/microbiology , Coinfection/virology , Interferon Type I/metabolism , Interferon Type I/immunology , Male , SARS-CoV-2/immunology , Middle Aged , Female , Epithelial Cells/immunology , Epithelial Cells/microbiology , Adult , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , Aged , Nasopharynx/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Mycoses/immunology
11.
mBio ; 15(6): e0044524, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38682948

ABSTRACT

Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and ß-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE: Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.


Subject(s)
Candida albicans , Candidiasis , Cell Wall , Immune Evasion , Sirtuin 2 , Candida albicans/genetics , Candida albicans/pathogenicity , Candida albicans/immunology , Cell Wall/metabolism , Animals , Candidiasis/microbiology , Candidiasis/immunology , Mice , Sirtuin 2/metabolism , Sirtuin 2/genetics , Virulence Factors/metabolism , Virulence Factors/genetics , Virulence , Disease Models, Animal , Gene Deletion , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mice, Inbred BALB C , Female
12.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-38499444

ABSTRACT

Candida albicans (C. albicans) is a prevalent opportunistic pathogen that causes mucocutaneous and systemic infections, particularly in immunocompromised individuals. Macrophages play a crucial role in eliminating C. albicans in local and bloodstream contexts, while also regulating antifungal immune responses. However, C. albicans can induce macrophage lysis through pyroptosis, a type of regulated cell death. This process can enable C. albicans to escape from immune cells and trigger the release of IL-1ß and IL-18, which can impact both the host and the pathogen. Nevertheless, the mechanisms by which C. albicans triggers pyroptosis in macrophages and the key factors involved in this process remain unclear. In this review, we will explore various factors that may influence or trigger pyroptosis in macrophages induced by C. albicans, such as hypha, ergosterol, cell wall remodeling, and other virulence factors. We will also examine the possible immune response following macrophage pyroptosis.


Subject(s)
Candida albicans , Candidiasis , Macrophages , Pyroptosis , Candida albicans/immunology , Candida albicans/pathogenicity , Candida albicans/physiology , Humans , Macrophages/immunology , Macrophages/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Host-Pathogen Interactions/immunology , Virulence Factors/immunology , Interleukin-1beta/metabolism , Interleukin-1beta/immunology
13.
Microbes Infect ; 26(4): 105305, 2024.
Article in English | MEDLINE | ID: mdl-38296157

ABSTRACT

The liver, and more specifically, the liver sinusoidal endothelial cells, constitute the beginning of one of the most important responses for the elimination of hematogenously disseminated Candida albicans. Therefore, we aimed to study the mechanisms involved in the interaction between these cells and C. albicans. Transcriptomics-based analysis showed an increase in the expression of genes related to the immune response (including receptors, cytokines, and adhesion molecules), as well as to aerobic glycolysis. Further in vitro analyses showed that IL-6 production in response to C. albicans is controlled by MyD88- and SYK-pathways, suggesting an involvement of Toll-like and C-type lectin receptors and the subsequent activation of the MAP-kinases and c-Fos/AP-1 transcription factor. In addition, liver sinusoidal endothelial cells undergo metabolic reprogramming towards aerobic glycolysis induced by C. albicans, as confirmed by the increased Extracellular Acidification Rate and the overexpression of enolase (Eno2), hexonikase (Hk2) and glucose transporter 1 (Slc2a1). In conclusion, these results indicate that the hepatic endothelium responds to C. albicans by increasing aerobic glycolysis and promoting an inflammatory environment.


Subject(s)
Candida albicans , Endothelial Cells , Glycolysis , Liver , Candida albicans/immunology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Animals , Liver/metabolism , Liver/microbiology , Syk Kinase/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Mice , Myeloid Differentiation Factor 88/metabolism , Inflammation/metabolism , Gene Expression Profiling , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism
14.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36717248

ABSTRACT

FAM21 (family with sequence similarity 21) is a component of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) protein complex that mediates actin polymerization at endosomal membranes to facilitate sorting of cargo-containing vesicles out of endosomes. To study the function of FAM21 in vivo, we generated conditional knockout (cKO) mice in the C57BL/6 background in which FAM21 was specifically knocked out of CD11c-positive dendritic cells. BMDCs from those mice displayed enlarged early endosomes, and altered cell migration and morphology relative to WT cells. FAM21-cKO cells were less competent in phagocytosis and protein antigen presentation in vitro, though peptide antigen presentation was not affected. More importantly, we identified the TLR2/CLEC4E signaling pathway as being down-regulated in FAM21-cKO BMDCs when challenged with its specific ligand Candida albicans Moreover, FAM21-cKO mice were more susceptible to C. albicans infection than WT mice. Reconstitution of WT BMDCs in FAM21-cKO mice rescued them from lethal C. albicans infection. Thus, our study highlights the importance of FAM21 in a host immune response against a significant pathogen.


Subject(s)
Candidiasis , Dendritic Cells , Microfilament Proteins , Phosphate-Binding Proteins , Toll-Like Receptor 2 , Animals , Mice , Candida albicans/metabolism , Dendritic Cells/immunology , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Toll-Like Receptor 2/metabolism , Phosphate-Binding Proteins/metabolism , Candidiasis/immunology
15.
Immunobiology ; 228(1): 152303, 2023 01.
Article in English | MEDLINE | ID: mdl-36495597

ABSTRACT

Candida, as a part of the human microbiota, can cause opportunistic infections that are either localised or systemic candidiasis. Emerging resistance to the standard antifungal drugs is associated with increased mortality rate due to invasive Candida infections, particularly in immunocompromised patients. While there are several species of Candida, an increasing number of Candida tropicalis isolates have been recently reported from patients with invasive candidiasis or inflammatory bowel diseases. In order to establish infections, C. tropicalis has to adopt several strategies to escape the host immune attack. Understanding the immune evasion strategies is of great importance as these can be exploited as novel therapeutic targets. C. albicans pH-related antigen 1 (CaPra1), a surface bound and secretory protein, has been found to interact strongly with the immune system and help in complement evasion. However, the role of C. tropicalis Pra1 (CtPra1) and its interaction with the complement is not studied yet. Thus, we characterised how pH-related antigen 1 of C. tropicalis (CtPra1) interacts with some of the key complement proteins of the innate immune system. CtPra1 was recombinantly produced using a Kluyveromyces lactis yeast expression system. Recombinant CtPra1, was found to bind human C3 and C3b, central molecules of the complement pathways that are important components of the innate immune system. It was also found to bind human complement regulatory proteins factor-H and C4b-binding protein (C4BP). CtPra1-factor-H and CtPra1-C4BP interactions were found to be ionic in nature as the binding intensity affected by high sodium chloride concentrations. CtPra1 inhibited functional complement activation with different effects on classical (∼20 %), lectin (∼25 %) and alternative (∼30 %) pathways. qPCR experiments using C. tropicalis clinical isolates (oral, blood and peritoneal fluid) revealed relatively higher levels of expression of CtPra1 gene when compared to the reference strain. Native CtPra1 was found to be expressed both as membrane-bound and secretory forms in the clinical isolates. Thus, C. tropicalis appears to be a master of immune evasion by using Pra1 protein. Further investigation using in-vivo models will help ascertain if these proteins can be novel therapeutic targets.


Subject(s)
Candida tropicalis , Candidiasis , Complement C4b-Binding Protein , Fungal Proteins , Humans , Candida tropicalis/immunology , Complement C3/metabolism , Complement C3b/metabolism , Complement C4b-Binding Protein/metabolism , Hydrogen-Ion Concentration , Protein Binding , Fungal Proteins/immunology , Candidiasis/immunology , Candidiasis/microbiology
16.
Methods Mol Biol ; 2542: 301-306, 2022.
Article in English | MEDLINE | ID: mdl-36008674

ABSTRACT

Microbiota and their metabolites in the human gut regulate a variety of immune cells including regulatory T cells (Treg cells) and cytokine production. The T helper 17 (Th17)/Treg ratio biomarker (Th17/Treg), for example, has been linked to the development and progression of certain inflammatory diseases, insulin resistance, and systemic lupus erythematosus (SLE). Candida albicans is an opportunistic fungal pathogen that also colonizes the gut. T cell reactivity through T helper cells play critical roles in fungal clearance by the host through the secretion of proinflammatory cytokines. While these cytokines are mainly produced by the Th1 and Th17 subsets of T cells, another subset of T cells, the Treg cells, are also induced by antigenic ligands from pathogens that inhibit the responses of other effector T cells during the inflammation. The antigenic ligands for Treg induction have been found to include microbial cell wall polysaccharides (PSA), metabolites like short chain fatty acids (SCFA), or even microbial DNA.


Subject(s)
Candida albicans/physiology , Candidiasis/immunology , T-Lymphocytes, Regulatory , Cytokines/metabolism , DNA/metabolism , Flow Cytometry , Humans , Ligands , Lupus Erythematosus, Systemic , Th17 Cells
17.
J Immunol ; 208(7): 1664-1674, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35277418

ABSTRACT

An impaired neutrophil response to pathogenic fungi puts patients at risk for fungal infections with a high risk of morbidity and mortality. Acquired neutrophil dysfunction in the setting of iatrogenic immune modulators can include the inhibition of critical kinases such as spleen tyrosine kinase (Syk). In this study, we used an established system of conditionally immortalized mouse neutrophil progenitors to investigate the ability to augment Syk-deficient neutrophil function against Candida albicans with TLR agonist signaling. LPS, a known immunomodulatory molecule derived from Gram-negative bacteria, was capable of rescuing effector functions of Syk-deficient neutrophils, which are known to have poor fungicidal activity against Candida species. LPS priming of Syk-deficient mouse neutrophils demonstrates partial rescue of fungicidal activity, including phagocytosis, degranulation, and neutrophil swarming, but not reactive oxygen species production against C. albicans, in part due to c-Fos activation. Similarly, LPS priming of human neutrophils rescues fungicidal activity in the presence of pharmacologic inhibition of Syk and Bruton's tyrosine kinase (Btk), both critical kinases in the innate immune response to fungi. In vivo, neutropenic mice were reconstituted with wild-type or Syk-deficient neutrophils and challenged i.p. with C. albicans. In this model, LPS improved wild-type neutrophil homing to the fungal challenge, although Syk-deficient neutrophils did not persist in vivo, speaking to its crucial role on in vivo persistence. Taken together, we identify TLR signaling as an alternate activation pathway capable of partially restoring neutrophil effector function against Candida in a Syk-independent manner.


Subject(s)
Candidiasis , Neutrophils , Signal Transduction , Syk Kinase , Toll-Like Receptors , Animals , Candida albicans , Candidiasis/immunology , Cell Degranulation , Humans , Immunity, Innate , Mice , Neutrophils/immunology , Neutrophils/microbiology , Phagocytosis , Syk Kinase/metabolism , Toll-Like Receptors/metabolism
18.
Cell Host Microbe ; 30(4): 530-544.e6, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35316647

ABSTRACT

Combating fungal pathogens poses metabolic challenges for neutrophils, key innate cells in anti-Candida albicans immunity, yet how host-pathogen interactions cause remodeling of the neutrophil metabolism is unclear. We show that neutrophils mediate renal immunity to disseminated candidiasis by upregulating glucose uptake via selective expression of glucose transporter 1 (Glut1). Mechanistically, dectin-1-mediated recognition of ß-glucan leads to activation of PKCδ, which triggers phosphorylation, localization, and early glucose transport by a pool of pre-formed Glut1 in neutrophils. These events are followed by increased Glut1 gene transcription, leading to more sustained Glut1 accumulation, which is also dependent on the ß-glucan/dectin-1/CARD9 axis. Card9-deficient neutrophils show diminished glucose incorporation in candidiasis. Neutrophil-specific Glut1-ablated mice exhibit increased mortality in candidiasis caused by compromised neutrophil phagocytosis, reactive oxygen species (ROS), and neutrophil extracellular trap (NET) formation. In human neutrophils, ß-glucan triggers metabolic remodeling and enhances candidacidal function. Our data show that the host-pathogen interface increases glycolytic activity in neutrophils by regulating Glut1 expression, localization, and function.


Subject(s)
Candidiasis , Glucose Transporter Type 1 , Neutrophils , beta-Glucans , Animals , CARD Signaling Adaptor Proteins/metabolism , Candida albicans , Candidiasis/immunology , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Mice , Neutrophils/immunology , beta-Glucans/metabolism
19.
PLoS Pathog ; 18(1): e1010192, 2022 01.
Article in English | MEDLINE | ID: mdl-34995333

ABSTRACT

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes ß-glucan in the fungal cell wall. C. albicans ß-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how ß-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates ß-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated ß-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated ß-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.


Subject(s)
Candida albicans/pathogenicity , Candidiasis/immunology , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , Virulence/physiology , beta-Glucans/immunology , Animals , Candida albicans/immunology , Candida albicans/metabolism , Candidiasis/metabolism , Female , Male , Mice , Mice, Inbred C57BL , beta-Glucans/metabolism
20.
J Immunol ; 208(3): 660-671, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35022276

ABSTRACT

Invasive candidiasis has high mortality rates in immunocompromised patients, causing serious health problems. In mouse models, innate immunity protects the host by rapidly mobilizing a variety of resistance and tolerance mechanisms to systemic Candida albicans infection. We have previously demonstrated that exogenous IL-33 regulates multiple steps of innate immunity involving resistance and tolerance processes. In this study, we systematically analyzed the in vivo functions of endogenous IL-33 using Il33 -/- mice and in vitro immune cell culture. Tubular epithelial cells mainly secreted IL-33 in response to systemic C. albicans infection. Il33 -/- mice showed increased mortality and morbidity, which were due to impaired fungal clearance. IL-33 initiated an innate defense mechanism by costimulating dendritic cells to produce IL-23 after systemic C. albicans infection, which in turn promoted the phagocytosis of neutrophils through secretion of GM-CSF by NK cells. The susceptibility of Il33 -/- mice was also associated with increased levels of IL-10, and neutralization of IL-10 resulted in enhanced fungal clearance in Il33 -/- mice. However, depletion of IL-10 overrode the effect of IL-33 on fungal clearance. In Il10 -/- mouse kidneys, MHC class II+F4/80+ macrophages were massively differentiated after C. albicans infection, and these cells were superior to MHC class II-F4/80+ macrophages that were preferentially differentiated in wild-type mouse kidneys in killing of extracellular hyphal C. albicans Taken together, our results identify IL-33 as critical early regulator controlling a serial downstream signaling events of innate defense to C. albicans infection.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Immunity, Innate/immunology , Interleukin-10/metabolism , Interleukin-23 Subunit p19/metabolism , Interleukin-33/immunology , Animals , Candidiasis/microbiology , Dendritic Cells/immunology , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Histocompatibility Antigens Class II/immunology , Immunocompromised Host/immunology , Interleukin-10/genetics , Interleukin-33/genetics , Killer Cells, Natural/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Phagocytosis/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...