Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34559199

ABSTRACT

The therian-specific gene paternally expressed 10 (Peg10) plays an essential role in placenta formation: Peg10 knockout mice exhibit early embryonic lethality as a result of severe placental defects. The PEG10 protein exhibits homology with long terminal repeat (LTR) retrotransposon GAG and POL proteins; therefore, we generated mice harboring a mutation in the highly conserved viral aspartic protease motif in the POL-like region of PEG10 because this motif is essential for the life cycle of LTR retrotransposons/retroviruses. Intriguingly, frequent perinatal lethality, not early embryonic lethality, was observed with fetal and placental growth retardation starting mid-gestation. In the mutant placentas, severe defects were observed in the fetal vasculature, where PEG10 is expressed in the three trophoblast cell layers that surround fetal capillary endothelial cells. Thus, Peg10 has essential roles, not only in early placenta formation, but also in placental vasculature maintenance from mid- to late-gestation. This implies that along the feto-maternal placenta interface an interaction occurs between two retrovirus-derived genes, Peg10 and retrotransposon Gag like 1 (Rtl1, also called Peg11), that is essential for the maintenance of fetal capillary endothelial cells.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Capillaries/metabolism , DNA-Binding Proteins/metabolism , Placenta/blood supply , RNA-Binding Proteins/metabolism , Amino Acid Motifs , Animals , Apoptosis Regulatory Proteins/chemistry , Capillaries/embryology , DNA-Binding Proteins/chemistry , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Female , Mice , Placenta/embryology , Pregnancy , Pregnancy Proteins/chemistry , Pregnancy Proteins/metabolism , RNA-Binding Proteins/chemistry
2.
Dev Dyn ; 250(12): 1704-1716, 2021 12.
Article in English | MEDLINE | ID: mdl-34101289

ABSTRACT

Intussusceptive angiogenesis (IA) is an important physiological form of angiogenesis in which an existing vessel splits in two by the formation of an intraluminal tissue pillar. The presence of these intraluminal pillars form the hallmark of ongoing IA in growing vascular beds. However, their visualization is technically challenging. The goal of this systematic review was to investigate which techniques are being used to identify intraluminal pillars and to formulate important points to keep in mind when studying IA. A systematic literature search resulted in 154 evaluated articles of which the majority (65%) provided sufficient data to unambiguously demonstrate the presence of intraluminal pillars. Scanning electron microscopy imaging of vascular corrosion casts and serial sectioning of ultrathin sections are the most used techniques. New methods such as serial block face scanning electron microscopy and micro computed tomography (µCT) are gaining importance. Moreover, our results indicate that IA was studied in a variety of animals and tissues. IA is a biologically very relevant form of angiogenesis. Techniques to visualize intraluminal pillars need to have a minimal resolution of 1 µm and should provide information on the 3D-nature of the pillars. Optimally, several techniques are combined to demonstrate ongoing IA.


Subject(s)
Capillaries/growth & development , Cytological Techniques , Neovascularization, Physiologic/physiology , Animals , Capillaries/cytology , Capillaries/embryology , Cytological Techniques/methods , Cytological Techniques/trends , Morphogenesis/physiology
3.
Biomed Pharmacother ; 136: 111218, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33450494

ABSTRACT

OBJECTIVE: The objective of the current study was to evaluate the embryo-toxicity of omega-3 fatty acids. METHODS: Firstly, the embryo-toxicity of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA), as well as their interaction with Bcl-2 family members, were predicted using an in silico assay. In the next step, the embryonic pathological lesions and amniotic fluid biochemical changes following omega-3 treatment were investigated using a chick embryo model. Finally, the drug's vascular apoptotic effect on the chick's yolk sac membrane (YSM) was assessed. RESULTS: In silico simulations revealed the embryo-toxicity, tissue-toxicity (respiratory and cardiovascular), and vascular-toxicity (apoptotic activity) of DHA and EPA. There was also an accurate interaction between DHA and EPA with Bax (Binding affinity: -7.6 and -10.6 kcal/mol) and Bcl-2 (Binding affinity: -8.0 and -12.2 kcal/mol), respectively. Moreover, DHA and EPA administrations were related to various adverse consequences, including weight loss and lesions in the respiratory and cardiovascular systems. Histopathological findings consisted of pulmonary edema, airway dilatation, increased interstitial tissue, and hyperemia in the lungs, heart, liver, kidney, and brain. Morphometric evaluation of the YSM vasculature revealed that the vascular apoptotic effect of omega-3was associated with a significant reduction in mean capillary area. In immunohistochemistry assay, increased expression of BAX and low expression of Bcl-2 affirmed apoptosis in YSM vessels. CONCLUSION: According to the results of this study, one could confirm that the possible embryo-toxicity of omega-3 was approved by data presented in this research. The obtained results also support the suspicion that alteration of the apoptotic-related proteins in vessels is an essential pathway in embryo-toxicity of omega-3.


Subject(s)
Apoptosis/drug effects , Capillaries/drug effects , Docosahexaenoic Acids/toxicity , Eicosapentaenoic Acid/toxicity , Molecular Docking Simulation , Neovascularization, Physiologic/drug effects , Toxicity Tests , Yolk Sac/blood supply , Animals , Capillaries/embryology , Capillaries/metabolism , Chick Embryo , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , bcl-2-Associated X Protein/metabolism
4.
Gene Expr Patterns ; 35: 119096, 2020 01.
Article in English | MEDLINE | ID: mdl-32027977

ABSTRACT

Glomerular capillary formation is one of the fundamental mysteries in renal developmental biology. However, there are still debates on this issue, and its detailed formation process has not been clarified. To resolve this problem, we performed antibody staining with ultra-thick section on embryonic and postnatal mouse kidneys. We obtained the expression patterns of several genes that play an important role in the development of glomerular capillaries. We found that blood vessel of the fetal kidneys expanded through proliferation and sprouting. During the comma-stage and S-shaped stage, 3-4 capillaries began to bud and migrate into the glomerular cleft, forming a capillary bed in the Bowman's capsule. Then, the capillary bed expanded into mature glomerular capillary by intussusceptive angiogenesis. The afferent and efferent arterioles were formed through pruning. The distribution of VEGFA in the nephron epithelial cells but not only in podocytes, induced multiple capillaries sprouted into the glomerular cleft. And CXCR4 played an important role in the differentiation and expansion of capillary bed into glomerular capillary. Immunofluorescence performed with ultra-thick section allowed us to investigate the development of complex structure tissues systematically and comprehensively.


Subject(s)
Capillaries/embryology , Kidney Glomerulus/embryology , Neovascularization, Physiologic , Animals , Bowman Capsule/embryology , Bowman Capsule/metabolism , Capillaries/metabolism , Kidney Glomerulus/cytology , Kidney Glomerulus/metabolism , Mice , Mice, Inbred C57BL , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
5.
Cells ; 9(2)2020 01 24.
Article in English | MEDLINE | ID: mdl-31991580

ABSTRACT

During embryonic development, the heart undergoes complex morphogenesis from a liner tube into the four chambers consisting of ventricles, atria and valves. At the same time, the cardiomyocytes compact into a dense, aligned, and highly vascularized myocardium. The extracellular matrix (ECM) is known to play an important role in this process but understanding of the expression and organization remains incomplete. Here, we performed 3D confocal imaging of ECM in the left ventricle and whole heart of embryonic chick from stages Hamburger-Hamilton 28-35 (days 5-9) as an accessible model of heart formation. First, we observed the formation of a fibronectin-rich, capillary-like networks in the myocardium between day 5 and day 9 of development. Then, we focused on day 5 prior to vascularization to determine the relative expression of fibronectin, laminin, and collagen type IV. Cardiomyocytes were found to uniaxially align prior to vascularization and, while the epicardium contained all ECM components, laminin was reduced, and collagen type IV was largely absent. Quantification of fibronectin revealed highly aligned fibers with a mean diameter of ~500 nm and interfiber spacing of ~3 µm. These structural parameters (volume, spacing, fiber diameter, length, and orientation) provide a quantitative framework to describe the organization of the embryonic ECM.


Subject(s)
Extracellular Matrix/metabolism , Heart Ventricles/embryology , Heart/embryology , Animals , Capillaries/embryology , Chick Embryo , Collagen Type IV/metabolism , Fibronectins/analysis , Fibronectins/metabolism , Heart Ventricles/metabolism , Laminin/analysis , Laminin/metabolism , Microscopy, Confocal , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism
6.
Prenat Diagn ; 39(1): 38-44, 2019 01.
Article in English | MEDLINE | ID: mdl-30548283

ABSTRACT

OBJECTIVE: To assess the cerebral and vascular development in fetuses with hypoplastic left heart syndrome (HLHS). METHODS: Pregnant women carrying fetuses diagnosed with HLHS who decided to interrupt their pregnancies were included in our study. Aortic size and blood flow were assessed based from fetal echocardiography. Immunohistochemical staining was performed in brain sections obtained from pathology in fetuses with HLHS and control fetuses without heart disease. RESULTS: Twenty-seven midgestation fetal HLHS were included (gestational age, 23.3 ± 3.4 weeks). Head circumference z scores were lower in HLHS fetuses. Middle cerebral artery pulsatility index, a measure of cerebrovascular resistance, was inversely correlated with the ascending aortic z score (P < 0.05). Fetuses with HLHS had lower capillary density in the germinal matrix and their capillaries were larger compared with control fetuses with (P < 0.05). The expression of neuronal differentiation marker, FGFR1, and oligodendrocyte precursor, O4, were lower in HLHS brains compared with controls (P < 0.05). CONCLUSION: Our study identified abnormalities of vascular flow and structural brain abnormalities in fetal HLHS associated with impaired neuronal and oligodendrocyte differentiation, as well as cerebral growth impairment, early in gestation. These findings may be related in part to early vascular abnormalities.


Subject(s)
Blood Vessels/embryology , Brain/embryology , Hypoplastic Left Heart Syndrome/embryology , Hypoplastic Left Heart Syndrome/physiopathology , Brain/abnormalities , Brain/pathology , Capillaries/embryology , Echocardiography , Female , Fetal Diseases , Fetal Heart , Gestational Age , Humans , Immunohistochemistry , Middle Cerebral Artery/embryology , Pregnancy , Pulsatile Flow , Ultrasonography, Prenatal
7.
J Vasc Res ; 55(5): 278-286, 2018.
Article in English | MEDLINE | ID: mdl-30212835

ABSTRACT

BACKGROUND/AIMS: Intussusceptive angiogenesis (IA) is a dynamic process which contributes to vascular expansion and remodeling. Intraluminal pillars have long been the distinctive structural indicator of IA. However, the mechanism of their formation has not been fully elucidated. METHODS: Using light and electron microscopy, we studied intussusceptive vascular growth in the developing porcine metanephric kidney. RESULTS: We observed intraluminal pillars formed by endothelial cells in the vasculature of developing glomeruli. Their diameter was < 2.5 µm, consistent with the diameter of nascent pillars. TEM revealed that the majority of these pillars consisted only of endothelium. However, a central core of extracellular matrix (ECM) covered by endothelium, reminiscent of a more mature intussusceptive pillar, was also found in the lumen of a glomerular capillary. Perivascular cells or pericytes were not involved in the pillar structure during these stages of formation. CONCLUSION: This study shows ECM presence in a mature intussusceptive pillar without any perivascular cell involvement in the structure. This leads to the hypothesis that ECM deposition precedes the participation of these cells in the formation of intraluminal pillars during IA in porcine metanephric glomerular capillaries.


Subject(s)
Capillaries/embryology , Kidney Glomerulus/blood supply , Kidney Glomerulus/embryology , Neovascularization, Physiologic , Animals , Capillaries/ultrastructure , Endothelial Cells/ultrastructure , Extracellular Matrix/ultrastructure , Gestational Age , Kidney Glomerulus/ultrastructure , Microscopy, Electron, Transmission , Organogenesis , Sus scrofa
8.
J Theor Biol ; 455: 293-302, 2018 10 14.
Article in English | MEDLINE | ID: mdl-30063926

ABSTRACT

The alveolar microvascular network is significant for the lung development of vertebrates, which is consisted of tree-like main veins and interconnected capillaries between the main veins. However, it is still unclear how the meshwork pattern is formed by the multigenerational branches. Based on the reaction-diffusion model, we find that the meshwork pattern is transformed from the branching pattern in a spherical shell domain. Furthermore, we find that it is the branch tip fusion that facilitates the meshwork pattern formation, which is guided by the activator peak fusion, and it is the insufficient space for branch tip growth that promotes the branch tip fusion. In addition, we notice that the consumption rate of substrate regulates the meshwork pattern formation and an asymmetric shell domain composed of prolate and oblate hemi-ellipsoidal shell facilitates the dense meshwork pattern formation. Our model provides a qualitative understanding of how the vascular system remodels from the branching pattern to the meshwork pattern and how to make a dense meshwork pattern. Both researches associated with branching and network morphogenesis can benefit from our work.


Subject(s)
Capillaries/embryology , Lung/blood supply , Lung/embryology , Models, Biological , Organogenesis/physiology , Animals , Humans
9.
Development ; 145(13)2018 07 02.
Article in English | MEDLINE | ID: mdl-29853619

ABSTRACT

Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.


Subject(s)
Capillaries/abnormalities , Cell Movement , Endothelial Cells/metabolism , Retinal Vein/abnormalities , Vascular Malformations/embryology , cdc42 GTP-Binding Protein/deficiency , Animals , Capillaries/embryology , Cell Polarity/genetics , Endothelial Cells/pathology , Mice , Mice, Knockout , Pseudopodia/genetics , Pseudopodia/metabolism , Retinal Vein/embryology , Vascular Malformations/genetics , Vascular Malformations/pathology
10.
Adv Anat Embryol Cell Biol ; 228: 1-20, 2018.
Article in English | MEDLINE | ID: mdl-29288383

ABSTRACT

Lung morphogenesis is a highly orchestrated process beginning with the appearance of lung buds on approximately embryonic day 9.5 in the mouse. Endodermally derived epithelial cells of the primitive lung buds undergo branching morphogenesis to generate the tree-like network of epithelial-lined tubules. The pulmonary vasculature develops in close proximity to epithelial progenitor cells in a process that is regulated by interactions between the developing epithelium and underlying mesenchyme. Studies in transgenic and knockout mouse models demonstrate that normal lung morphogenesis requires coordinated interactions between cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive network of capillaries. Multiple growth factors, microRNAs, transcription factors, and their associated signaling cascades regulate cellular proliferation, migration, survival, and differentiation during formation of the peripheral lung. Dysregulation of signaling events caused by gene mutations, teratogens, or premature birth causes severe congenital and acquired lung diseases in which normal alveolar architecture and the pulmonary capillary network are disrupted. Herein, we review scientific progress regarding signaling and transcriptional mechanisms regulating the development of pulmonary vasculature during lung morphogenesis.


Subject(s)
Capillaries/embryology , Gene Expression Regulation, Developmental , Lung/embryology , Pulmonary Artery/embryology , Pulmonary Veins/embryology , Transcription Factors/metabolism , Animals , Embryonic Development/genetics , Epithelial Cells/physiology , Humans , Lung/blood supply , Mice , Models, Animal , Respiratory Mucosa/cytology , Respiratory Mucosa/embryology
11.
Microvasc Res ; 117: 16-21, 2018 05.
Article in English | MEDLINE | ID: mdl-29247719

ABSTRACT

l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain.


Subject(s)
Arginine/metabolism , Blood-Brain Barrier/metabolism , Capillaries/metabolism , Cationic Amino Acid Transporter 1/metabolism , Endothelial Cells/metabolism , Age Factors , Animals , Arginine/administration & dosage , Arginine/blood , Biological Transport , Blood-Brain Barrier/embryology , Capillaries/embryology , Cationic Amino Acid Transporter 1/genetics , Gene Expression Regulation, Developmental , Gestational Age , Injections, Intravenous , Male , Rats, Wistar , Up-Regulation
12.
J Biomed Opt ; 22(10): 1-7, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29030941

ABSTRACT

Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 µm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.


Subject(s)
Blood Vessels/embryology , Animals , Blood Vessels/diagnostic imaging , Capillaries/diagnostic imaging , Capillaries/embryology , Computer Simulation , Disease Progression , Hemodynamics , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Microcirculation/physiology , Microscopy , Models, Statistical , Morphogenesis , Oxygen/chemistry , Spatio-Temporal Analysis , Spectrophotometry , Zebrafish
13.
Arterioscler Thromb Vasc Biol ; 37(9): 1674-1682, 2017 09.
Article in English | MEDLINE | ID: mdl-28729363

ABSTRACT

OBJECTIVE: The chromatin remodeling enzyme BRG1 (brahma-related gene 1) transcriptionally regulates target genes important for early blood vessel development and primitive hematopoiesis. However, because Brg1 deletion in vascular progenitor cells results in lethal anemia by embryonic day 10.5 (E10.5), roles for BRG1 in embryonic vascular development after midgestation are unknown. In this study, we sought to determine whether endothelial cell BRG1 regulates genes important for vascular development or maintenance later in embryonic development. APPROACH AND RESULTS: Using mice with temporally inducible deletion of endothelial BRG1 (Brg1fl/fl;Cdh5(PAC)-CreERT2 ), we found that Brg1 excision between E9.5 and 11.5 results in capillary dilation and lethal hemorrhage by E14.5. This phenotype strongly resembles that seen when the SRF (serum response factor) transcription factor is deleted from embryonic endothelial cells. Although expression of Srf and several of its known endothelial cell target genes are downregulated in BRG1-depleted endothelial cells, we did not detect binding of BRG1 at these gene promoters, indicating that they are not direct BRG1 target genes. Instead, we found that BRG1 binds to the promoters of the SRF cofactors Mrtfa and Mrtfb (myocardin-related transcription factors A and B) in endothelial cells, and these genes are downregulated in Brg1-deficient endothelial cells. CONCLUSIONS: BRG1 promotes transcription of endothelial Mrtfa and Mrtfb, which elevates expression of SRF and SRF target genes that establish embryonic capillary integrity. These data highlight a new and temporally specific role for BRG1 in embryonic vasculature and provide novel information about epigenetic regulation of Mrtf expression and SRF signaling in developing blood vessels.


Subject(s)
Capillaries/metabolism , DNA Helicases/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Neovascularization, Physiologic , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Animals , Antigens, CD/genetics , Binding Sites , Cadherins/genetics , Capillaries/embryology , Cell Line , DNA Helicases/deficiency , DNA Helicases/genetics , Epigenesis, Genetic , Genotype , Gestational Age , Integrases/genetics , Mice, Knockout , Morphogenesis , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Phenotype , Promoter Regions, Genetic , RNA Interference , Serum Response Factor/genetics , Serum Response Factor/metabolism , Signal Transduction , Trans-Activators/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Transfection
14.
Sci Rep ; 7(1): 3855, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634350

ABSTRACT

Pericytes are believed to originate from either mesenchymal or neural crest cells. It has recently been reported that pericytes play important roles in the central nervous system (CNS) by regulating blood-brain barrier homeostasis and blood flow at the capillary level. However, the origin of CNS microvascular pericytes and the mechanism of their recruitment remain unknown. Here, we show a new source of cerebrovascular pericytes during neurogenesis. In the CNS of embryonic day 10.5 mouse embryos, CD31+F4/80+ hematopoietic lineage cells were observed in the avascular region around the dorsal midline of the developing midbrain. These cells expressed additional macrophage markers such as CD206 and CD11b. Moreover, the CD31+F4/80+ cells phagocytosed apoptotic cells as functionally matured macrophages, adhered to the newly formed subventricular vascular plexus, and then divided into daughter cells. Eventually, these CD31+F4/80+ cells transdifferentiated into NG2/PDGFRß/desmin-expressing cerebrovascular pericytes, enwrapping and associating with vascular endothelial cells. These data indicate that a subset of cerebrovascular pericytes derive from mature macrophages in the very early phase of CNS vascular development, which in turn are recruited from sites of embryonic hematopoiesis such as the yolk sac by way of blood flow.


Subject(s)
Central Nervous System/blood supply , Macrophages/cytology , Macrophages/metabolism , Pericytes/cytology , Pericytes/metabolism , Animals , Biomarkers , Capillaries/embryology , Cell Tracking , Cell Transdifferentiation , Mice , Mice, Knockout , Phenotype
15.
J Clin Invest ; 127(3): 790-792, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28218626

ABSTRACT

Blood vessels have a unified mission to circulate blood throughout the body; however, they have additional diverse and specialized roles in various organs. For example, in the liver, discontinuous sinusoids, which are fenestrated capillaries with intercellular gaps and a fragmented basement membrane, facilitate delivery of macromolecules to highly metabolic hepatocytes. During embryonic development, discontinuous sinusoids also allow circulating hematopoietic progenitor and stem cells to populate the liver and promote blood cell differentiation. In this issue of the JCI, Géraud et al. describe an essential role for the transcription factor GATA4 in promoting the development of discontinuous sinusoids. In the absence of liver sinusoidal GATA4, mouse embryos developed hepatic capillaries with upregulated endothelial cell junction proteins and a continuous basement membrane. These features prevented hematopoietic progenitor cells from transmigrating into the developing liver, and Gata4-mutant embryos died from subsequent liver hypoplasia and anemia. This study highlights the surprising and extensive transcriptional control GATA4 exercises over specialized liver vascular development and function.


Subject(s)
Capillaries/embryology , Embryo, Mammalian/embryology , GATA4 Transcription Factor/metabolism , Hematopoietic Stem Cells/metabolism , Liver , Neovascularization, Physiologic/physiology , Animals , GATA4 Transcription Factor/genetics , Humans , Intercellular Junctions/genetics , Intercellular Junctions/metabolism , Liver/blood supply , Liver/embryology , Mice
16.
J Clin Invest ; 127(3): 1099-1114, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28218627

ABSTRACT

Microvascular endothelial cells (ECs) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular ECs instruct neighboring cells in their organ-specific vascular niches through angiocrine factors, which include secreted growth factors (angiokines), extracellular matrix molecules, and transmembrane proteins. However, the molecular regulators that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity are largely elusive. In contrast to other ECs, which form a continuous cell layer, liver sinusoidal ECs (LSECs) constitute discontinuous, permeable microvessels. Here, we have shown that the transcription factor GATA4 controls murine LSEC specification and function. LSEC-restricted deletion of Gata4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition, formation of a continuous EC layer, and increased expression of VE-cadherin. Correspondingly, ectopic expression of GATA4 in cultured continuous ECs mediated the downregulation of continuous EC-associated transcripts and upregulation of LSEC-associated genes. The switch from discontinuous LSECs to continuous ECs during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells, resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence, which are indispensable for liver development. The data also establish an essential role of the hepatic microvasculature in embryonic hematopoiesis.


Subject(s)
Cell Differentiation/physiology , Embryo, Mammalian/enzymology , Endothelial Cells/metabolism , Endothelium/embryology , GATA4 Transcription Factor/metabolism , Hematopoiesis/physiology , Liver/embryology , Animals , Capillaries/embryology , GATA4 Transcription Factor/genetics , Liver/blood supply , Mice , Mice, Transgenic , Organ Specificity/physiology
17.
J Am Soc Nephrol ; 28(1): 250-259, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27432740

ABSTRACT

The renal vasculature is integral to the physiologic function of the kidneys in regulating hemodynamics of the body and maintaining organ health. The close inter-relationship of capillaries and the renal epithelium is key to renal physiology, but how renal tubules regulate capillary development remains unclear. Our previous work showed that Wnt7b is expressed in the ureteric trunk epithelium and activates canonical Wnt signaling in the surrounding medullary interstitium, where the capillaries reside. In this study, we showed by immunofluorescence that the target interstitial cells of Wnt7b/canonical Wnt signaling are mural cells of periureteric bud capillaries in the nascent renal medulla of embryonic mice. Genetic ablation of Wnt7b enhanced the proliferation of Wnt7b target mural cells, an effect that associated with decreased expression of PDGFRß and p57kip2, a cyclin-dependent kinase inhibitor, in these cells. Furthermore, Wnt7b regulated lumen formation of the capillary endothelium in the renal medulla. In the absence of Wnt7b signaling, the periureteric bud medullary capillaries displayed narrower lumens lined with less flattened endothelial cells and a significantly increased presence of luminal endothelial cell-cell junctions, a transient configuration in the forming blood vessels in the controls. Moreover, the absence of Wnt7b led to greatly diminished levels of vascular endothelial (VE)-cadherin at the cell surface in these blood vessels. VE-cadherin is essential for blood vessel lumen formation; thus, Wnt7b may regulate lumen formation through modulation of VE-cadherin localization. Overall, these results indicate a novel role of Wnt7b signaling and the ureteric bud epithelium in renal medullary capillary development.


Subject(s)
Capillaries/embryology , Kidney Medulla/blood supply , Organogenesis , Proto-Oncogene Proteins/physiology , Signal Transduction , Ureter/embryology , Wnt Proteins/physiology , Animals , Epithelium/embryology , Mice
18.
Dev Biol ; 420(1): 67-78, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27789228

ABSTRACT

The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time in-depth cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium.


Subject(s)
Blood Vessels/embryology , Neovascularization, Physiologic , Pancreas/blood supply , Pancreas/embryology , Vertebrates/embryology , Animals , Arteries/embryology , Body Patterning , Capillaries/embryology , Epithelium/blood supply , Female , Gene Expression Regulation, Developmental , Imaging, Three-Dimensional , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Remodeling , Veins/embryology
19.
Kidney Int ; 87(6): 1125-40, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25651362

ABSTRACT

MicroRNAs, activated by the enzyme Dicer1, control post-transcriptional gene expression. Dicer1 has important roles in the epithelium during nephrogenesis, but its function in stromal cells during kidney development is unknown. To study this, we inactivated Dicer1 in renal stromal cells. This resulted in hypoplastic kidneys, abnormal differentiation of the nephron tubule and vasculature, and perinatal mortality. In mutant kidneys, genes involved in stromal cell migration and activation were suppressed as were those involved in epithelial and endothelial differentiation and maturation. Consistently, polarity of the proximal tubule was incorrect, distal tubule differentiation was diminished, and elongation of Henle's loop attenuated resulting in lack of inner medulla and papilla in stroma-specific Dicer1 mutants. Glomerular maturation and capillary loop formation were abnormal, whereas peritubular capillaries, with enhanced branching and increased diameter, formed later. In Dicer1-null renal stromal cells, expression of factors associated with migration, proliferation, and morphogenic functions including α-smooth muscle actin, integrin-α8, -ß1, and the WNT pathway transcriptional regulator LEF1 were reduced. Dicer1 mutation in stroma led to loss of expression of distinct microRNAs. Of these, miR-214, -199a-5p, and -199a-3p regulate stromal cell functions ex vivo, including WNT pathway activation, migration, and proliferation. Thus, Dicer1 activity in the renal stromal compartment regulates critical stromal cell functions that, in turn, regulate differentiation of the nephron and vasculature during nephrogenesis.


Subject(s)
Cell Differentiation/genetics , DEAD-box RNA Helicases/physiology , Neovascularization, Physiologic/genetics , Nephrons/embryology , Ribonuclease III/physiology , Actins/metabolism , Animals , Capillaries/embryology , Cell Movement/genetics , Cell Proliferation/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Female , Gene Expression , Integrin alpha Chains/metabolism , Kidney Glomerulus/blood supply , Kidney Glomerulus/cytology , Kidney Glomerulus/embryology , Kidney Tubules/blood supply , Kidney Tubules/cytology , Kidney Tubules/embryology , Kidney Tubules, Distal/blood supply , Kidney Tubules, Distal/cytology , Kidney Tubules, Distal/embryology , Kidney Tubules, Proximal/blood supply , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/embryology , Loop of Henle/blood supply , Loop of Henle/cytology , Loop of Henle/embryology , Mice , MicroRNAs/genetics , Nephrons/abnormalities , Nephrons/cytology , Organogenesis/genetics , Podocytes/physiology , Ribonuclease III/genetics , Ribonuclease III/metabolism , Stromal Cells/physiology , Transcriptome , Ureter/abnormalities , Wnt Signaling Pathway/genetics
20.
Dev Biol ; 392(1): 62-79, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24803182

ABSTRACT

CITED2 is a transcriptional co-factor with important roles in many organs of the developing mammalian embryo. Complete deletion of this gene causes severe malformation of the placenta, and results in significantly reduced embryonic growth and death from E14.5. The placenta is a complex organ originating from cells derived from three lineages: the maternal decidua, the trophectoderm, and the extra-embryonic mesoderm. Cited2 is expressed in many of these cell types, but its exact role in the formation of the placenta is unknown. Here we use a conditional deletion approach to remove Cited2 from overlapping subsets of trophectoderm and extra-embryonic mesoderm. We find that Cited2 in sinusoidal trophoblast giant cells and syncytiotrophoblasts is likely to have a non-cell autonomous role in patterning of the pericytes associated with the embryonic capillaries. This function is likely to be mediated by PDGF signaling. Furthermore, we also identify that loss of Cited2 in syncytiotrophoblasts results in the subcellular mislocalization of one of the major lactate transporters in the placenta, SLC16A3 (MCT4). We hypothesize that the embryonic growth retardation observed in Cited2 null embryos is due in part to a disorganized embryonic capillary network, and in part due to abnormalities of the nutrient transport functions of the feto-maternal interface.


Subject(s)
Body Patterning , Capillaries/embryology , Placenta/blood supply , Placenta/embryology , Placental Circulation/genetics , Repressor Proteins/genetics , Trans-Activators/genetics , Trophoblasts/enzymology , Actins/biosynthesis , Animals , Carrier Proteins/metabolism , Embryonic Development , Female , Gene Deletion , Mice , Mice, Inbred C57BL , Monocarboxylic Acid Transporters/biosynthesis , Muscle Proteins/biosynthesis , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Pericytes/cytology , Pericytes/physiology , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Pregnancy , Proto-Oncogene Proteins c-sis/biosynthesis , Receptor, Platelet-Derived Growth Factor beta/biosynthesis , Symporters/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...