Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 808
Filter
1.
Anal Chem ; 96(21): 8282-8290, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717341

ABSTRACT

Hamburger wrapping paper, coated with water-based barrier coatings, used in the food packaging industry was studied by using the total organic fluorine (TOF) method based on combustion ion chromatography and fluorine-19 solid-state nuclear magnetic resonance (19F ss-NMR) spectroscopy. Although the TOF method is a fast and affordable method used to screen for per- and polyfluoroalkyl substances (PFAS), the amount of fluorine it measures is heavily dependent on the extraction step and, therefore could lead to inaccurate results. Fluorine-19 ss-NMR spectroscopy can differentiate between organic and inorganic fluorinated sources, eliminating the need for sample clean up. To illustrate this, the 19F ss-NMR spectra of clean coated paper samples that contained naturally occurring F- ions from the talc raw material and spiked samples containing perfluorooctanoic acid were compared. A range of experimental conditions was explored to improve sensitivity for low PFAS concentrations (in the order of 10-20 mg/kg). Despite the disadvantages of ss-NMR spectroscopy, such as the low limit of detection and resolution, the results demonstrate it can be a viable tool to directly detect PFAS moieties in consumer and food packaging. Therefore, 19F solid-state NMR spectroscopy challenges and complements current methods, which only provide indirect evidence of the presence of PFAS.


Subject(s)
Food Packaging , Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Fluorine/analysis , Fluorocarbons/analysis , Fluorocarbons/chemistry , Food Contamination/analysis , Caprylates/analysis , Caprylates/chemistry
2.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
3.
Bioresour Technol ; 402: 130790, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703964

ABSTRACT

An ultrasound (US)/biochar (BC)/ferrate (Fe (VI)) system was firstly proposed to enhance perfluorooctanoic acid (PFOA) defluorination. It achieved 93 % defluorination optimally, higher than the sum of 77 % (28 % and 49 % for US/BC and US/Fe (VI) respectively), implying synergistic effect. Besides, the mechanism study confirmed that, this system can not only increase the specific surface area of BC and the generation of reactive oxidant species (ROS), enriching the active sites and forming new oxygen-containing functional groups, but also promote the formation of intermediate iron species. The PFOA degradation in the US/BC/Fe (VI) was probably an adsorption-degradation process, both ROS and electron transfer promoted the defluorination. Additionally, its sustainability was also demonstrated with 14 % reduced defluorination percentage after five cycles of BC. Overall, the synergistic effect of the US/BC/Fe (VI) and its enhancing mechanism for PFOA defluorination were clarified firstly, which contributes to the development of biochar for assisting polyfluoroalkyl substances degradation.


Subject(s)
Caprylates , Charcoal , Fluorocarbons , Iron , Fluorocarbons/chemistry , Caprylates/chemistry , Charcoal/chemistry , Iron/chemistry , Halogenation , Ultrasonic Waves , Water Pollutants, Chemical , Adsorption , Reactive Oxygen Species/metabolism
4.
Food Res Int ; 187: 114373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763649

ABSTRACT

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Subject(s)
Digestion , Fatty Acids , Lauric Acids , Manihot , Starch , X-Ray Diffraction , Manihot/chemistry , Starch/chemistry , Lauric Acids/chemistry , Fatty Acids/chemistry , Decanoic Acids/chemistry , Rheology , Caprylates/chemistry , Magnetic Resonance Spectroscopy
5.
Chemosphere ; 358: 142227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704046

ABSTRACT

The widespread detection of perfluorooctanoic acid (PFOA) in the environment has raised significant concerns. The standard PFOA analytical method relies on expensive solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) instruments, making routine use prohibitive. We herein proposed a cost-effective yet novel enrichment method for determining PFOA at ng L-1 level. This method entailed a two-step sample preparation process: firstly, PFOA was extracted and enriched using a forward-extraction under acidic conditions, followed by a backward-extraction and enrichment step utilizing alkaline water. The enriched samples were subsequently subjected to a common ion chromatography (IC). Results reveal that maintaining a forward-extraction pH below its pKa value (2.8) is essential, as protonated PFOA proves effective in enhancing the enrichment factor (EF). The challenge lied in driving PFOA from forward-extractant to aqueous backward-extractant due to the decreased hydrophobicity of deprotonated PFOA (log Kow2 = 1.0). In addition, we found that evaporating forward-extractant with alkaline backward-extractant (containing 5% methanol) reduced potential analytical uncertainties associated with PFOA evaporation and sorption. Under optimal conditions, the method achieved a detection limit of 9.2 ng L-1 and an impressive EF value of 719. Comparison with SPE-LC-MS/MS confirmed the proposed method as a promising alternative for PFOA determination. Although initially targeted for PFOA, the novel methodology is likely applicable to preconcentration of other poly-fluoroalkyl substances.


Subject(s)
Caprylates , Fluorocarbons , Liquid-Liquid Extraction , Tandem Mass Spectrometry , Water Pollutants, Chemical , Caprylates/analysis , Caprylates/chemistry , Fluorocarbons/analysis , Fluorocarbons/isolation & purification , Fluorocarbons/chemistry , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry/methods , Liquid-Liquid Extraction/methods , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Water/chemistry , Environmental Monitoring/methods
6.
Food Chem ; 453: 139677, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788647

ABSTRACT

Perfluoroalkyl acids (PFAAs) are emerging pollutants that endangers food safety. Developing methods for the selective determination of trace PFAAs in complex samples remains challenging. Herein, an ionic liquid modified porous imprinted phenolic resin-dispersive filter extraction-liquid chromatography-tandem mass spectrometry (IL-PIPR-DFE-LC-MS/MS) method was developed for the determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in eggs. The new IL-PIPR adsorbent was prepared at room temperature, which avoids the disorder and instability of the template at high temperatures. The imprinting factor of IL-PIPR for PFOA and PFOS exceeded 7.3. DFE, combined with IL-PIPR (15 mg), was used to extract PFOA and PFOS from eggs within 15 min. The established method exhibits low limits of detection (0.01-0.02 ng/g) and high recoveries (84.7%-104.7%), which surpass those of previously reported methods. This work offers a new approach to explore advanced imprinted adsorbents for PFAAs, efficient sample pretreatment technique, and analytical method for pollutants in foods.


Subject(s)
Eggs , Fluorocarbons , Food Contamination , Ionic Liquids , Molecular Imprinting , Tandem Mass Spectrometry , Fluorocarbons/isolation & purification , Fluorocarbons/analysis , Fluorocarbons/chemistry , Eggs/analysis , Food Contamination/analysis , Ionic Liquids/chemistry , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/isolation & purification , Alkanesulfonic Acids/chemistry , Caprylates/chemistry , Caprylates/analysis , Caprylates/isolation & purification , Adsorption , Animals , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Chickens
7.
J Environ Manage ; 358: 120839, 2024 May.
Article in English | MEDLINE | ID: mdl-38599091

ABSTRACT

Perfluoroalkyl acids (PFAAs) are ubiquitous in nature and pose serious health risks to humans and animals. Limiting PFAA exposure requires novel technology for their effective removal from water. We investigated the efficacy of biosolid-based activated carbon (Bio-SBAC) in removing frequently detected PFAAs and their precursor fluorotelomer compounds at environmentally relevant concentrations (∼50 µg/L). Batch experiments were performed to investigate adsorption kinetics, isotherms, and leachability. Bio-SBAC achieved >95% removal of fluorotelomeric compounds, indicating that the need for PFAA removal from the environment could be minimised if the precursors were targeted. Kinetic data modelling suggested that chemisorption is the dominant PFAA adsorption mechanism. As evidenced by the isotherm modelling results, Freundlich adsorption intensity, n-1, values of <1 (0.707-0.938) indicate chemisorption. Bio-SBAC showed maximum capacities for the adsorption of perfluorooctanoic acid (1429 µg/g) and perfluorononanoic acid (1111 µg/g). Batch desorption tests with 100 mg/L humic acid and 10 g/L NaCl showed that Bio-SBAC effectively retained the adsorbed PFAA with little or no leaching, except perfluorobutanoic acid. Overall, this study revealed that Bio-SBAC is a value-added material with promising characteristics for PFAA adsorption and no leachability. Additionally, it can be incorporated into biofilters to remove PFAAs from stormwater, presenting a sustainable approach to minimise biosolid disposal and improve the quality of wastewater before discharge into receiving waters.


Subject(s)
Charcoal , Fluorocarbons , Water Pollutants, Chemical , Adsorption , Fluorocarbons/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Caprylates/chemistry , Kinetics
8.
Chemosphere ; 357: 141849, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599331

ABSTRACT

Electrocatalytic destruction of per- and polyfluoroalkyl substances (PFAS) is an emerging approach for treatment of PFAS-contaminated water. In this study, a systematic ab initio investigation of PFAS adsorption on Ni, a widely used electrocatalyst, was conducted by means of dispersion-corrected Density Functional Theory (DFT) calculations. The objective of this investigation was to elucidate the adsorption characteristics and charge transfer mechanisms of different PFAS molecules on Ni surfaces. PFAS adsorption on three of the most thermodynamically favorable Ni surface facets, namely (001), (110), and (111), was investigated. Additionally, the role of PFAS chain length and functional group was studied by comparing the adsorption characteristics of different PFAS compounds, namely perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS), and perfluorobutanoic acid (PFBA). For each PFAS molecule-Ni surface facet pair, different adsorption configurations were considered. Further calculations were carried out to reveal the effect of solvation, pre-adsorbed atomic hydrogen (H), and surface defects on the adsorption energy. Overall, the results revealed that the adsorption of PFAS on Ni surfaces is energetically favorable, and that the adsorption is primarily driven by the functional groups. The presence of preadsorbed H and the inclusion of solvation produced less exothermic adsorption energies, while surface vacancy defects showed mixed effects on PFAS adsorption. Taken together, the results of this study suggest that Ni is a promising electrocatalyst for PFAS adsorption and destruction, and that proper control for the exposed facets and surface defects could enhance the adsorption stability.


Subject(s)
Caprylates , Density Functional Theory , Fluorocarbons , Nickel , Adsorption , Fluorocarbons/chemistry , Nickel/chemistry , Caprylates/chemistry , Water Pollutants, Chemical/chemistry , Alkanesulfonic Acids/chemistry , Thermodynamics , Catalysis
9.
Chemosphere ; 357: 142025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614400

ABSTRACT

A new adsorbent based on commercial granular activated carbon (GAC) and loaded with Cu(II) (GAC-Cu) was prepared to enhance the adsorption capacity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). The surface area (SA) and pore volume of GAC-Cu decreased by ∼15% compared to those of pristine GAC. The scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and leaching test results indicated that, compared with GAC, the Cu atomic ratio and Cu amount in GAC-Cu increased by 2.91 and 2.43 times, respectively. The point of zero charge (PZC) measured using a salt addition method obtained a pH of 6.0 (GAC) and 5.0 (GAC-Cu). According to the isotherm models obtaining highest coefficient of determination (R2), GAC-Cu exhibited a 20.4% and 35.2% increase for PFOA and PFOS in maximum uptake (qm), respectively, compared to those of GAC. In addition, the adsorption affinity (b) for GAC-Cu increased by 1045% and 175% for PFOA and PFOS, respectively. The pH effect on the adsorption capacity of GAC-Cu was investigated. The uptake of PFOA and PFOS decreased with an increase in pH for both GAC and GAC-Cu. GAC-Cu exhibited higher uptake than GAC at pH 6 and 7, but no enhanced uptake was observed at pH 4.0, 5.0, and 8.5. Therefore, ligand interaction was effective at weak acid or neutral pH.


Subject(s)
Alkanesulfonic Acids , Caprylates , Charcoal , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/chemistry , Caprylates/chemistry , Alkanesulfonic Acids/chemistry , Adsorption , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Ligands , Water Purification/methods , Copper/chemistry , Hydrogen-Ion Concentration
10.
Chemosphere ; 356: 141942, 2024 May.
Article in English | MEDLINE | ID: mdl-38588893

ABSTRACT

Covalent organic frameworks (COFs) demonstrate remarkable potential for adsorbing per/polyfluoroalkyl substances (PFAS). Nevertheless, the challenge of recycling powdered COFs hampers their practical application in water treatment. In this research, a quaternary amine COF with inherent positive surface charge was synthesised to adsorb perfluorooctanoic acid (PFOA) via electrostatic interactions. The COF was then combined with chitosan (CS) through a simple dissolution-evaporation process, resulting in a composite gel material termed COF@CS. The findings indicated that the adsorption capacity of COF@CS significantly surpassed that of the original COF and CS. According to the Langmuir model, COF@CS achieved a maximum PFOA capacity of 2.8 mmol g-1 at pH 5. Furthermore, the adsorption rate increased significantly to 6.2 mmol g-1 h-1, compared to 5.9 mmol g-1 h-1 for COF and 3.4 mmol g-1 h-1 for CS. Notably, COF@CS exhibited excellent removal efficacy for ten other types of PFAS. Moreover, COF@CS could be successfully regenerated using a mixture of 70% ethanol and 1 wt% NaCl, and it exhibited stable reusability for up to five cycles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) characterisation, and theoretical calculations revealed that the quaternary amine functional group in COF served as the primary adsorption site in the composite gel material, while the protonated amino group on CS enhanced PFOA adsorption through electrostatic interaction. This study highlights the significant practical potential of COF@CS in the removal of PFAS from aqueous solution and environmental remediation.


Subject(s)
Caprylates , Chitosan , Fluorocarbons , Metal-Organic Frameworks , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Fluorocarbons/chemistry , Water Purification/methods , Caprylates/chemistry , Metal-Organic Frameworks/chemistry
11.
J Am Chem Soc ; 146(18): 12766-12777, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38656109

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) pose significant health risks due to their widespread presence in various environmental and biological matrices. However, the molecular-level mechanisms underlying the interactions between PFAS and biological constituents, including proteins, carbohydrates, lipids, and DNA, remain poorly understood. Here, we investigate the interactions between a legacy PFAS, viz. perfluorooctanoic acid (PFOA), and the milk protein ß-lactoglobulin (BLG) obtained using a combination of experimental and computational techniques. Circular dichroism studies reveal that PFOA perturbs the secondary structure of BLG, by driving a dose-dependent loss of α-helicity and alterations in its ß-sheet content. Furthermore, exposure of the protein to PFOA attenuates the on-rate constant for the binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANS), suggesting potential functional impairment of BLG by PFOA. Steered molecular dynamics and umbrella sampling calculations reveal that PFOA binding leads to the formation of an energetically favorable novel binding pocket within the protein, when residues 129-142 are steered to unfold from their initial α-helical structure, wherein a host of intermolecular interactions between PFOA and BLG's residues serve to insert the PFOA into the region between the unfolded helix and beta-sheets. Together, the data provide a novel understanding of the atomic and molecular mechanism(s) by which PFAS modulates structure and function in a globular protein, leading to a beginning of our understanding of altered biological outcomes.


Subject(s)
Caprylates , Fluorocarbons , Lactoglobulins , Fluorocarbons/chemistry , Caprylates/chemistry , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Binding Sites , Protein Binding , Molecular Dynamics Simulation , Protein Conformation, alpha-Helical , Models, Molecular , Circular Dichroism
12.
Chemosphere ; 357: 141951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626815

ABSTRACT

UV/Fe3+ and persulfate are two promising advanced oxidative degradation systems for in situ remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), yet a lack of comprehensive understanding of the degradation mechanisms. For the first time, we used density functional theory (DFT) to calculate the entire reaction pathways of the degradation of PFOA/PFOS in water by UV/Fe3+ and persulfate. In addition, we have deeply explored the different attack pathways driven by •OH and SO4-•, and found that SO4-• determines PFOA/PFOS to obtain PFOA/PFOS free radicals through single electron transfer to initiate the degradation reaction, while •OH determines the speed of PFOA/PFOS degradation reaction. Both degradation reactions were thermodynamically advantageous and kinetically feasible under calculated conditions. Based on the thermodynamic data, persulfate was found to be more favorable for the advanced oxidative degradation of Perfluorinated compounds (PFCs). Moreover, for SO4-• and •OH co-existing in the persulfate system, pH will affect the presence and concentration of these two types of free radicals, and low pH is not necessary for the degradation of PFOA/PFOS in the persulfate system. These results can considerably advance our understanding of the PFOA/PFOS degradation process in advanced oxidation processes (AOPs), which is driven by •OH and SO4-•. This study provides a DFT calculation process for the mechanism calculation of advanced oxidation degradation of other types of PFCs pollutants, hoping to elucidate the future development of PFCs removal. Further research should focus on determining the advanced oxidation degradation pathways of other types of PFCs, to support the development of computational studies on the advanced oxidation degradation of PFCs.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Oxidation-Reduction , Water Pollutants, Chemical , Fluorocarbons/chemistry , Caprylates/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Alkanesulfonic Acids/chemistry , Ultraviolet Rays , Sulfates/chemistry , Density Functional Theory , Thermodynamics , Environmental Restoration and Remediation/methods , Iron/chemistry
13.
Biosens Bioelectron ; 257: 116330, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677022

ABSTRACT

Perfluorooctanoic acid (PFOA) poses a threat to the environment and human health due to its persistence, bioaccumulation, and reproductive toxicity. Herein, a lanthanide metal-organic framework (Ln-MOF)-based surface molecularly imprinted polymers (SMIPs) ratiometric fluorescence probe (Eu/Tb-MOF@MIPs) and a smartphone-assisted portable device were developed for the detection of PFOA with high selectivity in real water samples. The integration of Eu/Tb MOFs as carriers not only had highly stable multiple emission signals but also prevented deformation of the imprinting cavity of MIPs. Meanwhile, the MIPs layer preserved the fluorescence of Ln-MOF and provided selective cavities for improved specificity. Molecular dynamics (MD) was employed to simulate the polymerization process of MIPs, revealing that the formation of multiple recognition sites was attributed to the establishment of hydrogen bonds between functional monomers and templates. The probe showed a good linear relationship with PFOA concentration in the range of 0.02-2.8 µM, by giving the limit of detection (LOD) of 0.98 nM. Additionally, The red-green-blue (RGB) values analysis based on the smartphone-assisted portable device demonstrated a linear relationship of 0.1-2.8 µM PFOA with the LOD of 3.26 nM. The developed probe and portable device sensing platform exhibit substantial potential for on-site detecting PFOA in practical applications and provide a reliable strategy for the intelligent identification of important targets in water environmental samples.


Subject(s)
Biosensing Techniques , Caprylates , Fluorescent Dyes , Fluorocarbons , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Smartphone , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Caprylates/analysis , Caprylates/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/instrumentation , Fluorocarbons/chemistry , Fluorocarbons/analysis , Molecularly Imprinted Polymers/chemistry , Water Pollutants, Chemical/analysis , Limit of Detection , Lanthanoid Series Elements/chemistry , Spectrometry, Fluorescence/methods , Humans
14.
J Hazard Mater ; 470: 134143, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554507

ABSTRACT

To address time-consuming and efficiency-limited challenges in conventional zero-valent iron (ZVI, Fe0) reduction or biotransformation for perfluorooctanoic acid (PFOA) treatment, two calcium alginate-embedded amendments (biochar-immobilized PFOA-degrading bacteria (CB) and ZVI (CZ)) were developed to construct microbe-Fe0 high-rate interaction systems. Interaction mechanisms and key metabolic pathways were systematically explored using metagenomics and a multi-process coupling model for PFOA under microbe-Fe0 interaction. Compared to Fe0 (0.0076 day-1) or microbe (0.0172 day-1) systems, the PFOA removal rate (0.0426 day-1) increased by 1.5 to 4.6 folds in the batch microbe-Fe0 interaction system. Moreover, Pseudomonas accelerated the transformation of Fe0 into Fe3+, which profoundly impacted PFOA transport and fate. Model results demonstrated microbe-Fe0 interaction improved retardation effect for PFOA in columns, with decreased dispersivity a (0.48 to 0.20 cm), increased reaction rate λ (0.15 to 0.22 h-1), distribution coefficient Kd (0.22 to 0.46 cm3∙g-1), and fraction f´(52 % to 60 %) of first-order kinetic sorption of PFOA in microbe-Fe0 interaction column system. Moreover, intermediates analysis showed that microbe-Fe0 interaction diversified PFOA reaction pathways. Three key metabolic pathways (ko00362, ko00626, ko00361), eight functional genes, and corresponding enzymes for PFOA degradation were identified. These findings provide insights into microbe-Fe0 "neural network-type" interaction by unveiling biotransformation and mineral transformation mechanisms for efficient PFOA treatment.


Subject(s)
Biodegradation, Environmental , Caprylates , Fluorocarbons , Iron , Fluorocarbons/metabolism , Fluorocarbons/chemistry , Caprylates/metabolism , Caprylates/chemistry , Iron/metabolism , Iron/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Biotransformation , Neural Networks, Computer , Bacteria/metabolism , Bacteria/genetics , Pseudomonas/metabolism , Pseudomonas/genetics
15.
Analyst ; 149(9): 2647-2654, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38546701

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are durable synthetic pollutants that persist in the environment and resist biodegradation. Ion-transfer electrochemistry at aqueous-organic interfaces is a simple strategy for the detection of ionised PFAS. Herein, we investigate the modulation of the ion transfer voltammetry of perfluorooctanoate (PFOA) at liquid-liquid micro-interface arrays by aqueous phase bovine serum albumin (BSA) or ß-cyclodextrin (ß-CD) and examine the determination of association constants for these binding interactions. By tracking the ion transfer current due to ionised, uncomplexed PFOA as a function of BSA or ß-CD concentration, titration curves are produced. Fitting of a binding isotherm to these data provides the association constants. The association constant of PFOA with the BSA determined in this way was ca. 105 M-1 assuming a 1 : 1 binding. Likewise, the association constant for PFOA with ß-CD was ca. 104 M-1 for a 1 : 1 ß-CD-PFOA complex. Finally, the simultaneous effect of both BSA and ß-CD on the ion transfer voltammetry of PFOA was studied, showing clearly that PFOA bound to BSA is released (de-complexed) upon addition of ß-CD. The results presented here show ion transfer voltammetry as a simple strategy for the study of molecular and biomolecular binding of ionised PFAS and is potentially useful in understanding the affinity of different PFAS with aqueous phase binding agents such as proteins and carbohydrates.


Subject(s)
Caprylates , Fluorocarbons , Serum Albumin, Bovine , beta-Cyclodextrins , Fluorocarbons/chemistry , beta-Cyclodextrins/chemistry , Caprylates/chemistry , Serum Albumin, Bovine/chemistry , Cattle , Animals , Electrochemical Techniques/methods , Electrochemistry
16.
Environ Sci Technol ; 58(12): 5567-5577, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38488517

ABSTRACT

The development of efficient defluorination technology is an important issue because the kind of emerging pollutant of hexafluoropropylene oxide dimer acid (GenX) as an alternative to perfluorooctanoic acid (PFOA) has the higher environmental risks. In the UV/bisulfite system, we first developed a hydrophobic confined α-Fe2O3 nanoparticle layer rich in oxygen vacancies, which accelerated the enrichment of HSO3- and GenX on the surface and pores through electrostatic attraction and hydrophobic interaction, retaining more hydrated electrons (eaq-) and rapidly destroying GenX under UV excitation. Especially, under anaerobic and aerobic conditions, the degradation percentage of GenX obtain nearly 100%, defluorination of GenX to 88 and 57% respectively. It was amazed to find that the three parallel H/F exchange pathways triggered by the rapid reactions of eaq- and GenX, which were unique to anaerobic conditions, improved the efficiency of fluoride removal and weaken the interference of dissolved oxygen and H+. Therefore, this study provided an available material and mechanism for sustainable fluoride removal from wastewater in aerobic and anaerobic conditions.


Subject(s)
Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Electrons , Fluorides , Caprylates/chemistry
17.
Environ Sci Pollut Res Int ; 31(13): 19946-19960, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367112

ABSTRACT

Perfluorooctanoic acid (PFOA) is a bioaccumulative synthetic chemical containing strong C-F bonds and is one of the most common per- and polyfluoroalkyl substances (PFAS) detected in the environment. Graphite intercalated compound (GIC) flakes were used to adsorb and degrade PFOA through electrochemical oxidation. The adsorption followed the Langmuir model with a loading capacity of 2.6 µg PFOA g-1 GIC and a second-order kinetics (3.354 g µg-1 min-1). 99.4% of PFOA was removed by the process with a half-life of 15 min. When PFOA molecules broke down, they released various by-products, such as short-chain perfluoro carboxylic acids like PFHpA, PFHxA, and PFBA. This breakdown indicates the cleavage of the perfluorocarbon chain and the release of CF2 units, suggesting a transformation or degradation of the original compound into these smaller acids. Shorter-chain perfluorinated compounds had slower degradation rates compared to longer-chain ones. Combining these two methods (adsorption and in situ electrochemical oxidation) was found to be advantageous because adsorption can initially concentrate the PFOA molecules, making it easier for the electrochemical process to target and degrade them. The electrochemical process can potentially break down or transform the PFAS compounds into less harmful substances through oxidation or other reactions.


Subject(s)
Fluorocarbons , Graphite , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Fluorocarbons/chemistry , Caprylates/chemistry
18.
J Hazard Mater ; 465: 133217, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38101019

ABSTRACT

In this study, the biodegradability of trifluoroacetate (TFA), perfluorooctanoic acid (PFOA), and perfluoro-2-methyl-3-oxahexanoic acid (HFPO-DA) by a native microbial community was evaluated over a 10-month incubation period. The observed microbial defluorination ratios and removal efficiency were 3.46 ( ± 2.73) % and 8.03 ( ± 3.03) %, 8.44 ( ± 1.88) % and 13.52 ( ± 4.96) %, 3.02 ( ± 0.62) % and 5.45 ( ± 2.99) % for TFA, PFOA and HFPO-DA, respectively. The biodegradation intermediate products, TFA and pentafluoropropionic acid (PFA), of PFOA and HFPO-DA were detected in their biodegradation treatment groups. Furthermore, the concentrations of the PFOA metabolites, perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA), in the aqueous solutions after incubation were quantified to be 0.21 and 4.14 µg/L. TFA, PFOA and HFPO-DA significantly reduced the microbial diversity and changed the structure of the community. The co-occurrence network analysis showed that low abundance species, such as Flexilinea flocculi, Bacteriovorax stolpii, and g_Sphingomonas, are positively correlated with the generation of fluoride ion, implying their potential collaborative functions contributing to the observed biodefluorination. The findings in this study can provide insights for the biodegradation of perfluoroalkyl carboxylic acids and their emerging alternatives by indigenous microorganisms in the environment.


Subject(s)
Fluorocarbons , Microbial Consortia , Propionates , Trifluoroacetic Acid , Fluorocarbons/chemistry , Caprylates/chemistry
19.
Environ Sci Technol ; 57(50): 21448-21458, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38047763

ABSTRACT

The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 µg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water , Caprylates/chemistry , Water Pollutants, Chemical/chemistry
20.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3757-3771, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37805852

ABSTRACT

In response to the market demand for therapeutic antibodies, the upstream cell culture scale and expression titer of antibodies have been significantly improved, while the production efficiency of downstream purification process is relatively fall behind, and the downstream processing capacity has become a bottleneck limiting antibody production throughput. Using monoclonal antibody mab-X as experimental material, we optimized the caprylic acid (CA) precipitation process conditions of cell culture fluid and low pH virus inactivation pool, and studied two applications of using CA treatment to remove aggregates and to inactivate virus. Based on the lab scale study, we carried out a 500 L scale-up study, where CA was added to the low pH virus inactivation pool for precipitation, and the product quality and yield before and after precipitation were detected and compared. We found that CA precipitation significantly reduced HCP residuals and aggregates both before and after protein A affinity chromatography. In the aggregate spike study, CA precipitation removed about 15% of the aggregates. A virus reduction study showed complete clearance of a model retrovirus during CA precipitation of protein A purified antibody. In the scale-up study, the depth filtration harvesting, affinity chromatography, low pH virus inactivation, CA precipitation and depth filtration, and cation exchange chromatography successively carried out. The mixing time and stirring speed in the CA precipitation process significantly affected the CA precipitation effect. After CA precipitation, the HCP residue in the low pH virus inactivation solution decreased 895 times. After precipitation, the product purity and HCP residual meet the quality criteria of monoclonal antibodies. CA precipitation can reduce the chromatography step in the conventional purification process. In conclusion, CA precipitation in the downstream process can simplify the conventional purification process, fully meet the purification quality criterion of mab-X, and improve production efficiency and reduce production costs. The results of this study may promote the application of CA precipitation in the purification of monoclonal antibodies, and provide a reference for solving the bottleneck of the current purification process.


Subject(s)
Antibodies, Monoclonal , Caprylates , Cricetinae , Animals , Antibodies, Monoclonal/metabolism , Caprylates/chemistry , Cell Culture Techniques , Chromatography, Affinity , CHO Cells , Cricetulus , Chemical Precipitation
SELECTION OF CITATIONS
SEARCH DETAIL
...