Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.418
Filter
1.
J Mass Spectrom ; 59(6): e5033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726726

ABSTRACT

A total of 43 compounds, including phenolic acids, flavonoids, lignans, and diterpene, were identified and characterized using UPLC-ESI-Q-TOF-MS coupled with UNIFI software. The identified flavonoids were mostly isomers of luteolin, apigenin, and quercetin, which were elucidated and distinguished for the first time in pepper cultivars. The use of multivariate data analytics for sample discrimination revealed that luteolin derivatives played the most important role in differentiating pepper cultivars. The content of phenolic acids and flavonoids in immature green peppers was generally higher than that of mature red peppers. The pepper extracts possessed significant antioxidant activities, and the antioxidant activities correlated well with phenolic contents and their molecular structure. In conclusion, the findings expand our understanding of the phytochemical components of the Chinese pepper genotype at two maturity stages. Moreover, a UPLC-ESI-Q-TOF-MS in negative ionization mode rapid methods for characterization and isomers differentiation was described.


Subject(s)
Antioxidants , Capsicum , Phenols , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Chromatography, High Pressure Liquid/methods , Capsicum/chemistry , Isomerism , Phenols/chemistry , Phenols/analysis , Flavonoids/chemistry , Flavonoids/analysis , Plant Extracts/chemistry , East Asian People
2.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717918

ABSTRACT

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Subject(s)
Plant Diseases , Thysanoptera , Tospovirus , Tospovirus/immunology , Tospovirus/physiology , Tospovirus/genetics , Animals , Thysanoptera/virology , Thysanoptera/immunology , Plant Diseases/virology , Plant Diseases/immunology , Capsicum/virology , Capsicum/immunology , Virus Replication , RNA Interference , Insect Vectors/virology , Insect Vectors/immunology , Gene Expression Profiling , Signal Transduction
3.
Food Res Int ; 186: 114394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729737

ABSTRACT

The ability of spices (bay leaf, star anise, and red pepper) and their characteristic phenolic compounds (quercetin, kaempferol, and capsaicin) to inhibit Heterocyclic aromatic amines (HAAs) in roasted beef patties were compared. Density functional theory (DFT) was used to reveal phenolic compounds interacting with HAAs-related intermediates and free radicals to explore possible inhibitory mechanisms for HAAs. 3 % red chili and 0.03 % capsaicin reduced the total HAAs content by 57.09 % and 68.79 %, respectively. DFT demonstrated that this was due to the stronger interaction between capsaicin and the ß-carboline HAAs intermediate (Ebind = -32.95 kcal/mol). The interaction between quercetin and phenylacetaldehyde was found to be the strongest (Ebind = -17.47 kcal/mol). Additionally, DFT indicated that capsaicin reduced the carbonyl content by transferring hydrogen atoms (HAT) to eliminate HO·, HOO·, and carbon-centered alkyl radicals. This study provided a reference for the development of DFT in the control of HAAs.


Subject(s)
Amines , Cooking , Density Functional Theory , Heterocyclic Compounds , Phenols , Amines/chemistry , Cattle , Heterocyclic Compounds/chemistry , Animals , Phenols/analysis , Capsaicin/chemistry , Capsaicin/pharmacology , Capsaicin/analogs & derivatives , Capsicum/chemistry , Skatole/analysis , Spices/analysis , Red Meat/analysis , Meat Products/analysis , Hot Temperature , Quercetin/analogs & derivatives , Quercetin/analysis , Quercetin/pharmacology
4.
BMC Plant Biol ; 24(1): 368, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711001

ABSTRACT

Chilli peppers are widely consumed for their pungency, as used in flavoring the food and has many pharmaceutical and medicinal properties. Based on these properties an experiment was held using 83 varieties of chilli (Hot pepper and sweet pepper) were grown in suitable environment using Augment Block design and evaluated for fruit pungency and phytochemical contents using high proficiency liquid chromatography. Analysis of variance (ANOVA) of traits showed highly significant for all traits except for fruit length and capsaicin contents. The value of Least significant increase (LSI)was ranged 0.27-1289.9 for all traits showed high variation among varieties. Highly significant correlation was found among fruit diameter to fruit weight 0.98, while moderate to high correlation was present among all traits. The most pungent genotype 24,634 was 4.8 g in weight, while the least pungent genotypes i.e. PPE-311 (32.8 g), green wonder (40.67) had higher in weight. The genotypes 24,627, 32,344, 32,368 and 1108 marked as higher number of seeds in their placental region. It was observed that chilli genotype 24,621 had maximum length with considerable high amount of pungency act as novel cultivar. Principal component analysis (PCA) showed the high variability of 46.97 for two PCs with the eigen value 2.6 and 1.63 was recorded. Biplot analysis showed a considerable variability for fruit pungency, while huge variability was found for all traits among given varieties. PPE-311, T5 and T3 are found as highly divergent for all traits. The findings of this study are instrumental for selecting parents to improve desirable traits in future chilli pepper breeding programs. It will help plant/vegetable breeders for development of highly nutrient and pungent varieties and attractive for the consumer of food sector.


Subject(s)
Capsicum , Fruit , Genetic Variation , Phytochemicals , Fruit/genetics , Fruit/chemistry , Chromatography, High Pressure Liquid , Capsicum/genetics , Capsicum/chemistry , Genotype , Seeds/genetics , Seeds/chemistry
5.
BMC Plant Biol ; 24(1): 416, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760676

ABSTRACT

BACKGROUND: Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS: Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS: Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.


Subject(s)
Capsicum , Disease Resistance , Genome-Wide Association Study , Phytophthora , Plant Diseases , Plant Roots , Polymorphism, Single Nucleotide , Phytophthora/physiology , Phytophthora/pathogenicity , Capsicum/genetics , Capsicum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Roots/microbiology , Plant Roots/genetics , Genotype
6.
Food Res Int ; 187: 114315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763628

ABSTRACT

Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.


Subject(s)
Bacteria , Capsicum , Fermentation , Odorants , Taste , Volatile Organic Compounds , Capsicum/microbiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Odorants/analysis , Bacteria/metabolism , Bacteria/classification , Food Microbiology , Fungi/metabolism , Fungi/classification , Amino Acids/analysis , Amino Acids/metabolism , Fermented Foods/microbiology , Fermented Foods/analysis , Metabolic Networks and Pathways , Flavoring Agents/metabolism , Flavoring Agents/analysis
7.
PLoS One ; 19(5): e0304220, 2024.
Article in English | MEDLINE | ID: mdl-38771894

ABSTRACT

There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.


Subject(s)
Beauveria , Capsicum , Oviposition , Wasps , Animals , Beauveria/physiology , Capsicum/parasitology , Capsicum/microbiology , Wasps/physiology , Volatile Organic Compounds/metabolism , Female , Trichoderma/physiology , Host-Parasite Interactions , Ovum , Herbivory
8.
Sci Rep ; 14(1): 11248, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755228

ABSTRACT

An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions.


Subject(s)
Capsicum , Fruit , Silicates , Capsicum/growth & development , Capsicum/drug effects , Capsicum/metabolism , Fruit/growth & development , Fruit/drug effects , Fruit/metabolism , Biomass , Potassium/metabolism , Potassium/analysis , Seasons , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Biometry , Potassium Compounds/pharmacology
9.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734773

ABSTRACT

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Subject(s)
Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
10.
J Agric Food Chem ; 72(20): 11682-11693, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739764

ABSTRACT

Phytophthora blight of pepper, which is caused by the notorious oomycete pathogen Phytophthora capsici, is a serious disease in global pepper production regions. Our previous study had identified two WRKY transcription factors (TFs), CaWRKY01-10 and CaWRKY08-4, which are prominent modulators in the resistant pepper line CM334 against P. capsici infection. However, their functional mechanisms and underlying signaling networks remain unknown. Herein, we determined that CaWRKY01-10 and CaWRKY08-4 are localized in plant nuclei. Transient overexpression assays indicated that both CaWRKY01-10 and CaWRKY08-4 act as positive regulators in pepper resistance to P. capsici. Besides, the stable overexpression of CaWRKY01-10 and CaWRKY08-4 in transgenic Nicotiana benthamiana plants also significantly enhanced the resistance to P. capsici. Using comprehensive approaches including RNA-seq, CUT&RUN-qPCR, and dual-luciferase reporter assays, we revealed that overexpression of CaWRKY01-10 and CaWRKY08-4 can activate the expressions of the same four Capsicum annuum defense-related genes (one PR1, two PR4, and one pathogen-related gene) by directly binding to their promoters. However, we did not observe protein-protein interactions and transcriptional amplification/inhibition effects of their shared target genes when coexpressing these two WRKY TFs. In conclusion, these data suggest that both of the resistant line specific upregulated WRKY TFs (CaWRKY01-10 and CaWRKY08-4) can confer pepper's resistance to P. capsici infection by directly activating a cluster of defense-related genes and are potentially useful for genetic improvement against Phytophthora blight of pepper and other crops.


Subject(s)
Capsicum , Disease Resistance , Gene Expression Regulation, Plant , Phytophthora , Plant Diseases , Plant Proteins , Transcription Factors , Phytophthora/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Capsicum/genetics , Capsicum/microbiology , Capsicum/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/immunology
11.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786049

ABSTRACT

Plant structure-related agronomic traits like plant height and leaf size are critical for growth, development, and crop yield. Defining the types of genes involved in regulating plant structure size is essential for the molecular-assisted breeding of peppers. This research conducted comparative transcriptome analyses using Capsicum baccatum germplasm HNUCB0112 and HNUCB0222 and their F2 generation as materials. A total of 6574 differentially expressed genes (DEGs) were detected, which contain 379 differentially expressed transcription factors, mainly including transcription factor families such as TCP, WRKY, AUX/IAA, and MYB. Seven classes of DEGs were annotated in the plant hormone signal transduction pathway, including indole acetic acid (IAA), gibberellin (GA), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). The 26 modules were obtained by WGCNA analysis, and the MEpink module was positively correlated with plant height and leaf size, and hub genes associated with plant height and leaf size were anticipated. Differential genes were verified by qRT-PCR, which was consistent with the RNA-Seq results, demonstrating the accuracy of the sequencing results. These results enhance our understanding of the developmental regulatory networks governing pepper key traits like plant height and leaf size and offer new information for future research on the pepper plant architecture system.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Leaves , Signal Transduction , Transcriptome , Capsicum/genetics , Capsicum/growth & development , Capsicum/anatomy & histology , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Transcriptome/genetics , Signal Transduction/genetics , Metabolome/genetics , Gene Expression Profiling , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Int J Food Microbiol ; 418: 110729, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38696986

ABSTRACT

Ethylene produced by plants generally induces ripening and promotes decay, whereas the effect of ethylene produced by pathogens on plant diseases remains unclear. In this study, four ethylene-producing fungi including Alternaria alternata (A. alternata, Aa), Fusarium verticilliodes (F. verticillioides, Fv), Fusarium fujikuroi 1 (F. fujikuroi 1, Ff-1) and Fusarium fujikuroi 2 (F. fujikuroi 2, Ff-2) were severally inoculated in potato dextrose broth (PDB) media and postharvest green peppers, the ethylene production rates, disease indexes and chlorophyll fluorescence parameters were determined. The results showed that Ff-2 and Fv in the PDB media had the highest and almost the same ethylene production rates. After inoculation with green peppers, Ff-2 treated group still exhibited the highest ethylene production rate, whereas Aa treated group had a weak promotion effect on ethylene production. Moreover, the ethylene production rate of green peppers with mechanical injury was twice that without mechanical injury, and the ethylene production rates of green peppers treated with Aa, Ff-1, Ff-2 and Fv were 1.2, 2.6, 3.8 and 2.8 folds than those of green peppers without treatment, respectively. These results indicated that pathogen infection stimulated the synthesis of ethylene in green peppers. Correlation analysis indicated that the degreening of Fusarium-infected green pepper was significantly positively correlated with the ethylene production rate of green pepper, whereas the disease spot of Aa-infected green pepper had a significant positive correlations with the ethylene production rate of green peppers. Chlorophyll fluorescence results showed that the green peppers already suffered from severe disease after being infected with fungi for 4 days, and Fusarium infection caused early and serious stress, while the harm caused by A. alternata was relatively mild at the early stage. Our results clearly showed that α-keto-γ-methylthiobutyric acid (KMBA)-mediated ethylene synthesis was the major ethylene synthesis pathway in the four postharvest pathogenic fungi. All the results obtained suggested that ethylene might be the main infection factor of Fusarium spp. in green peppers. For pathogenic fungi, stimulating green peppers to produce high level of ethylene played a key role in the degreening of green peppers.


Subject(s)
Alternaria , Capsicum , Ethylenes , Fusarium , Plant Diseases , Ethylenes/metabolism , Ethylenes/biosynthesis , Capsicum/microbiology , Fusarium/metabolism , Plant Diseases/microbiology , Alternaria/metabolism , Chlorophyll/metabolism , Chlorophyll/biosynthesis
13.
Food Chem ; 451: 139478, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692242

ABSTRACT

The market share of Sichuan pepper oleoresin (SPO) in the flavor industry is increasing steadily; however, its high volatility, low water solubility, and poor stability continue to pose significant challenges to application. The microencapsulation prepared by emulsion embedding and spray drying is considered as an effective technique to solve the above problems. Sodium octenyl succinate starch (OSA starch) and tea polyphenols (TPs) were used to develop OSA-TPs complex as encapsulants for SPO to prepare orally soluble microcapsules. And the optimum doping of TPs was determined. SPO microcapsules have good properties with high encapsulation efficiency up to 88.13 ± 1.48% and high payload up to 41.58 ± 1.86% with low water content and high heat resistance. The binding mechanism of OSA starch with TPs and its regulation mechanism and effect on SPOs were further analyzed and clarified. The binding mechanism between OSA starch and TPs was clarified in further analyses. The OSA-TPs complexes enhanced the rehydration, release in food matrix and storage stability of SPO, and exhibited good sensory immediacy. Flavor-improved mooncakes were successfully developed, achieving the combination of mooncake flavor and SPO flavor. This study provided a valuable way to prepare flavoring microcapsules suitable for the catering industry, opened up the combined application of SPO and bakery ingredients, and was of great practical value and significance for improving the processing quality of flavor foods, driving the development of the SPO industry, and enhancing the national dietary experience.


Subject(s)
Drug Compounding , Flavoring Agents , Plant Extracts , Polyphenols , Starch , Taste , Polyphenols/chemistry , Starch/chemistry , Flavoring Agents/chemistry , Plant Extracts/chemistry , Humans , Tea/chemistry , Capsicum/chemistry , Solubility , Capsules/chemistry , Camellia sinensis/chemistry
14.
Article in English | MEDLINE | ID: mdl-38752999

ABSTRACT

A bacterial strain designated MMS21-TAE1-1T, capable of degrading paraoxon, was isolated from red pepper soil (36° 25' 26.0″ N, 126° 25' 47.0″ E) and subjected to polyphasic taxonomic characterisation. MMS21-TAE1-1T was an aerobic, non-motile and Gram-stain-positive bacterium. MMS21-TAE1-1T showed growth at 10-37 °C (optimum, 30 °C), at pH 4-10 (optimum, pH 7) and in the presence of 0-6 % NaCl (optimum, 0 %). On the basis of the results of 16S rRNA gene sequence analysis, MMS21-TAE1-1T could be assigned to the genus Paenarthrobacter and shared the highest sequence similarities with Paenarthrobacter aurescens NBRC 12136T (99.72 %), then with Paenarthrobacter nitroguajacolicus G2-1T (99.65 %) and Paenarthrobacter ilicis DSM 20138T (99.17 %). However, the results of genome-based comparison using orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridisation indicated that MMS21-TAE1-1T could be readily distinguished from all species of the genus with validly published names. The predominant menaquinone of MMS21-TAE1-1T was MK-9(H2). The diagnostic polar lipids were diphosphatidylglycerol and phosphatidylinositol, and unidentified glycolipids were also present. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0. The chemotaxonomic properties of MMS21-TAE1-1T were generally consistent with those of members of the genus Paenarthrobacter. The genome of MMS21-TAE1-1T contained genes related to degradation of aromatic compounds. It is evident from the results of this study that strain MMS21-TAE1-1T merits recognition as representing a novel species of the genus Paenarthrobacter, for which the name Paenarthrobacter aromaticivorans sp. nov. is proposed. The type strain is MMS21-TAE1-1T (=KCTC 49652T = LMG 32368T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Capsicum/microbiology
15.
BMC Plant Biol ; 24(1): 367, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711041

ABSTRACT

BACKGROUND: The formation of shoots plays a pivotal role in plant organogenesis and productivity. Despite its significance, the underlying molecular mechanism of de novo regeneration has not been extensively elucidated in Capsicum annuum 'Dempsey', a bell pepper cultivar. To address this, we performed a comparative transcriptome analysis focusing on the differential expression in C. annuum 'Dempsey' shoot, callus, and leaf tissue. We further investigated phytohormone-related biological processes and their interacting genes in the C. annuum 'Dempsey' transcriptome based on comparative transcriptomic analysis across five species. RESULTS: We provided a comprehensive view of the gene networks regulating shoot formation on the callus, revealing a strong involvement of hypoxia responses and oxidative stress. Our comparative transcriptome analysis revealed a significant conservation in the increase of gene expression patterns related to auxin and defense mechanisms in both callus and shoot tissues. Consequently, hypoxia response and defense mechanism emerged as critical regulators in callus and shoot formation in C. annuum 'Dempsey'. Current transcriptome data also indicated a substantial decline in gene expression linked to photosynthesis within regenerative tissues, implying a deactivation of the regulatory system governing photosynthesis in C. annuum 'Dempsey'. CONCLUSION: Coupled with defense mechanisms, we thus considered spatial redistribution of auxin to play a critical role in the shoot morphogenesis via primordia outgrowth. Our findings shed light on shoot formation mechanisms in C. annuum 'Dempsey' explants, important information for regeneration programs, and have broader implications for precise molecular breeding in recalcitrant crops.


Subject(s)
Capsicum , Gene Expression Profiling , Plant Shoots , Transcriptome , Capsicum/genetics , Capsicum/growth & development , Capsicum/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism
16.
Nat Commun ; 15(1): 4295, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769327

ABSTRACT

Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.


Subject(s)
Capsaicin , Capsicum , Evolution, Molecular , Genome, Plant , Phylogeny , Telomere , Capsicum/genetics , Capsicum/metabolism , Capsaicin/metabolism , Telomere/genetics , Telomere/metabolism , Fruit/genetics , Fruit/metabolism , Retroelements/genetics , Gene Expression Regulation, Plant
17.
Theor Appl Genet ; 137(6): 130, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744692

ABSTRACT

KEY MESSAGE: Genome-wide association study of color spaces across the four cultivated Capsicum spp. revealed a shared set of genes influencing fruit color, suggesting mechanisms and pathways across Capsicum species are conserved during the speciation. Notably, Cytochrome P450 of the carotenoid pathway, MYB transcription factor, and pentatricopeptide repeat-containing protein are the major genes responsible for fruit color variation across the Capsicum species. Peppers (Capsicum spp.) rank among the most widely consumed spices globally. Fruit color, serving as a determinant for use in food colorants and cosmeceuticals and an indicator of nutritional contents, significantly influences market quality and price. Cultivated Capsicum species display extensive phenotypic diversity, especially in fruit coloration. Our study leveraged the genetic variance within four Capsicum species (Capsicum baccatum, Capsicum chinense, Capsicum frutescens, and Capsicum annuum) to elucidate the genetic mechanisms driving color variation in peppers and related Solanaceae species. We analyzed color metrics and chromatic attributes (Red, Green, Blue, L*, a*, b*, Luminosity, Hue, and Chroma) on samples cultivated over six years (2015-2021). We resolved genomic regions associated with fruit color diversity through the sets of SNPs obtained from Genotyping by Sequencing (GBS) and genome-wide association study (GWAS) with a Multi-Locus Mixed Linear Model (MLMM). Significant SNPs with FDR correction were identified, within the Cytochrome P450, MYB-related genes, Pentatricopeptide repeat proteins, and ABC transporter family were the most common among the four species, indicating comparative evolution of fruit colors. We further validated the role of a pentatricopeptide repeat-containing protein (Chr01:31,205,460) and a cytochrome P450 enzyme (Chr08:45,351,919) via competitive allele-specific PCR (KASP) genotyping. Our findings advance the understanding of the genetic underpinnings of Capsicum fruit coloration, with developed KASP assays holding potential for applications in crop breeding and aligning with consumer preferences. This study provides a cornerstone for future research into exploiting Capsicum's diverse fruit color variation.


Subject(s)
Capsicum , Fruit , Phenotype , Pigmentation , Polymorphism, Single Nucleotide , Capsicum/genetics , Capsicum/growth & development , Fruit/genetics , Fruit/growth & development , Pigmentation/genetics , Color , Genotype , Genome-Wide Association Study , Quantitative Trait Loci , Cytochrome P-450 Enzyme System/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genetic Variation
18.
J Food Sci ; 89(5): 2943-2955, 2024 May.
Article in English | MEDLINE | ID: mdl-38557930

ABSTRACT

Bell pepper presents rapid weight loss and is highly susceptible to gray mold caused by the fungus Botrytis cinerea. The most employed method to control this disease is the application of synthetic fungicides such as thiabendazole (TBZ); however, its continued use causes resistance in fungi as well as environmental problems. For these reasons, natural alternatives arise as a more striking option. Currently, bell pepper fruits are coated with carnauba wax (CW) to prevent weight loss and improve appearance. Moreover, CW can be used as a carrier to incorporate essential oils, and previous studies have shown that thyme essential oil (TEO) is highly effective against B. cinerea. Therefore, this study aimed to evaluate the effect of CW combined with TEO on the development of gray mold and maintenance of microestructural and postharvest quality in bell pepper stored at 13°C. The minimal inhibitory concentration of TEO was 0.5%. TEO and TBZ provoked the leakage of intracellular components. TEO and CW + TEO treatments were equally effective to inhibit the development of gray mold. On the quality parameters, firmness and weight loss were ameliorated with CW and CW + TEO treatments; whereas lightness increased in these treatments. The structural analysis showed that CW + TEO treatment maintained the cell structure reducing the apparition of deformities. The results suggest that CW + TEO treatment could be used as a natural and effective antifungal retarding the appearance of gray mold and maintaining the postharvest quality of bell pepper. PRACTICAL APPLICATION: CW and TEO are classified as generally recognized as safe (GRAS) by the US Food and Drug Administration (FDA). This combination can be employed on the bell pepper packaging system to extend shelf life and oppose gray mold developments. Bell pepper fruits are normally coated with lipid-base coatings such as CW before commercialization; therefore, TEO addition would represent a small investment without any changes on the packaging system infrastructure.


Subject(s)
Botrytis , Capsicum , Food Preservation , Fruit , Oils, Volatile , Thymus Plant , Waxes , Botrytis/drug effects , Capsicum/microbiology , Capsicum/chemistry , Thymus Plant/chemistry , Oils, Volatile/pharmacology , Waxes/chemistry , Waxes/pharmacology , Food Preservation/methods , Fruit/microbiology , Fruit/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungicides, Industrial/pharmacology
19.
Int J Biol Macromol ; 267(Pt 2): 131229, 2024 May.
Article in English | MEDLINE | ID: mdl-38599438

ABSTRACT

Biomass-derived oligo- and polysaccharides may act as elicitors, i.e., bioactive molecules that trigger plant immune responses. This is particularly important to increase the resistance of plants to abiotic and biotic stresses. In this study, cellulose nanofibrils (CNF) gels were obtained by TEMPO-mediated oxidation of unbleached and bleached kraft pulps. The molecular structures were characterized with ESI and MALDI MS. Analysis of the fine sequences was achieved by MS and MS/MS of the water-soluble oligosaccharides obtained by acid hydrolysis of the CNF gels. The analysis revealed the presence of two families: one corresponding to homoglucuronic acid sequences and the other composed by alternating glucose and glucuronic acid units. The CNF gels, alone or with the addition of the water-soluble oligosaccharides, were tested on Chili pepper (Capsicum annuum). Based on the characterization of the gene expression with Next Generation Sequencing (NGS) of the C. annuum's total messenger RNA, the differences in growth of the C. annuum seeds correlated well with the downregulation of the pathways regulating photosynthesis. A downregulation of the response to abiotic factors was detected, suggesting that these gels would improve the resistance of the C. annuum plants to abiotic stress due to, e.g., water deprivation and cold temperatures.


Subject(s)
Capsicum , Cellulose , Gene Expression Regulation, Plant , Nanofibers , Oligosaccharides , Cellulose/chemistry , Oligosaccharides/chemistry , Nanofibers/chemistry , Capsicum/chemistry , Capsicum/genetics , Gene Expression Regulation, Plant/drug effects
20.
Theor Appl Genet ; 137(5): 97, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589740

ABSTRACT

KEY MESSAGE: Bulked segregant RNA seq of pools of pepper accessions that are susceptible or resistant to Broad bean wilt virus 2 identifies a gene that might confer resistance to this devastating pathogen. The single-stranded positive-sense RNA virus Broad bean wilt virus 2 (BBWV2) causes substantial damage to pepper (Capsicum annuum) cultivation. Here, we describe mapping the BBWV2 resistance locus bwvr using a F7:8 recombinant inbred line (RIL) population constructed by crossing the BBWV2-resistant pepper accession 'SNU-C' with the susceptible pepper accession 'ECW30R.' All F1 plants infected with the BBWV2 strain PAP1 were susceptible to the virus, and the RIL population showed a 1:1 ratio of resistance to susceptibility, indicating that this trait is controlled by a single recessive gene. To map bwvr, we performed bulked segregant RNA-seq (BSR-seq). We sequenced pools of resistant and susceptible lines from the RILs and aligned the reads to the high-quality 'Dempsey' reference genome to identify variants between the pools. This analysis identified 519,887 variants and selected the region from 245.9-250.8 Mb of the Dempsey reference genome as the quantitative trait locus region for bwvr. To finely map bwvr, we used newly designed high-resolution melting (HRM) and Kompetitive allele specific PCR (KASP) markers based on variants obtained from the BSR-seq reads and the PepperSNP16K array. Comparative analysis identified 11 SNU-C-specific SNPs within the bwvr locus. Using markers derived from these variants, we mapped the candidate bwvr locus to the region from 246.833-246.949 kb. SNU-C-specific variants clustered near DEM.v1.00035533 within the bwvr locus. DEM.v1.00035533 encodes the nitrate transporter NPF1.2 and contains a SNP within its 5' untranslated region. The bwvr locus, which contains four genes including DEM.v1.00035533, could represent a valuable resource for global pepper breeding programs.


Subject(s)
Capsicum , Fabavirus , Chromosome Mapping , RNA-Seq , Capsicum/genetics , Plant Breeding , Polymorphism, Single Nucleotide , Disease Resistance/genetics , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...