Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.794
Filter
1.
Arch Virol ; 169(7): 136, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847927

ABSTRACT

Here, we report the first detection of lymphocystis disease virus (LCDV) in Indian glass fish in the Andaman Islands, India. Microscopic examination revealed the presence of whitish clusters of nodules on the fish's skin, fins, and eyes. The histopathology of the nodules revealed typical hypertrophied fibroblasts. Molecular characterization of the major capsid protein (MCP) gene of the virus showed a significant resemblance to known LCDV sequences from Korea and Iran, with 98.92% and 97.85% sequence identity, respectively. Phylogenetic analysis confirmed that the MCP gene sequence of the virus belonged to genotype V. This study represents the first documented case of LCDV in finfish from the Andaman Islands, emphasizing the necessity for continued monitoring and research on the health of aquatic species in this fragile ecosystem.


Subject(s)
Capsid Proteins , DNA Virus Infections , Fish Diseases , Iridoviridae , Phylogeny , Animals , Fish Diseases/virology , India , Iridoviridae/genetics , Iridoviridae/isolation & purification , Iridoviridae/classification , DNA Virus Infections/virology , DNA Virus Infections/veterinary , Capsid Proteins/genetics , Fishes/virology , Genotype , Islands
2.
Medicine (Baltimore) ; 103(23): e38416, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847724

ABSTRACT

To investigate the expression of Inhibin B between various clinical stages, Chinese medicine dialectic typing, and in nasopharyngeal carcinoma (NPC) tissues and serum, and to evaluate the potential of Inhibin B as a new biomarker for NPC. Paraffin specimens of pathologically confirmed NPC tissues and paracancerous tissues were retrospectively collected, and the expression of Inhibin α (INHA) and Inhibin ßB (INHBB) was detected by SP method, and their relationship with clinicopathological indexes was analyzed; in addition, patients with NPC who had received radiotherapy were included as the study subjects, and Epstein-Barr virus DNA (EBV-DNA), INHA, and INHBB in patients were detected by using the fluorescence quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and chemiluminescent immuno-sandwiching method, respectively. EBV-DNA, EBV-viral capsid antigen-immunoglobulin A (VCA IgA), INHA, and INHBB were detected in the patients, respectively, and their relationships with traditional Chinese medicine (TCM) patterns were also analyzed. The expression of INHA and INHBB in NPC tissues was lower than that in paracancerous tissues, and the expression of INHA in NPC patients was correlated with lymphatic metastasis, clinical staging, and TCM staging; the levels of EBV-DNA and VCA IgA were higher than that of healthy populations in NPC patients and were higher than that of patients with stage III + IV than that of patients with stage I + II, and the levels of INHA and INHBB were lower than those of healthy populations and were lower than those of patients with stage III + IV than that of patients with stage I + II. The levels of INHA and INHBB in nasopharyngeal cancer patients were lower than those in healthy people, and the levels in stage III + IV patients were lower than those in stage I + II patients. The levels of EBV-DNA and VCA IgA in nasopharyngeal cancer patients were correlated with the Chinese medicine patterns, and had different patterns. The expression of Inhibin B may be related to the progression of NPC, and it has certain typing significance for different TCM syndromes of NPC, which is helpful for TCM typing diagnosis.


Subject(s)
Medicine, Chinese Traditional , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Male , Female , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/blood , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Medicine, Chinese Traditional/methods , Middle Aged , Retrospective Studies , Adult , DNA, Viral/analysis , DNA, Viral/blood , Inhibins/blood , Herpesvirus 4, Human/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Neoplasm Staging , Inhibin-beta Subunits/metabolism , Inhibin-beta Subunits/blood , Aged , Antigens, Viral/blood , Immunoglobulin A/blood , Capsid Proteins
3.
Arch Virol ; 169(7): 140, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850451

ABSTRACT

A novel totivirus, named "birch toti-like virus" (BTLV), was discovered in European white birch (Betula pendula) plants. The genome of BTLV is 4,967 nucleotides long and contains two overlapping open reading frames (ORFs) coding for the capsid protein (CP) and an RNA-dependent RNA-polymerase (RdRP). The encoded CP and RdRP proteins shared 46.9% and 60.2% amino acid sequence identity, respectively, with those of Panax notoginseng virus B. The presence of a putative slippery heptamer signal 82 nt upstream of the stop codon of ORF1 suggests that a -1 translational frameshifting strategy is involved in the expression of ORF2, like in other totiviruses. Phylogenetic analysis based on the CP and RdRP amino acid sequences placed this virus within a clade of plant-associated totiviruses, with taro-associated virus as its closest relative. Hence, based on its distinct host and the amino acid sequence similarity between BTLV and its relatives, we conclude that birch toti-like virus is a new member of the genus Totivirus.


Subject(s)
Betula , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Betula/virology , Genome, Viral/genetics , Plant Diseases/virology , Capsid Proteins/genetics , Totiviridae/genetics , Totiviridae/classification , Totiviridae/isolation & purification , Amino Acid Sequence , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , RNA, Viral/genetics
4.
Virulence ; 15(1): 2366874, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38869140

ABSTRACT

Recombinant Muscovy duck parvovirus (rMDPV) is a product of genetic recombination between classical Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV). The recombination event took place within a 1.1-kb DNA segment located in the middle of the VP3 gene, and a 187-bp sequence extending from the P9 promoter to the 5' initiation region of the Rep1 ORF. This resulted in the alteration of five amino acids within VP3. Despite these genetic changes, the precise influence of recombination and amino acid mutations on the pathogenicity of rMDPV remains ambiguous. In this study, based on the rMDPV strain ZW and the classical MDPV strain YY, three chimeric viruses (rZW-mP9, rZW-mPR187, and rYY-rVP3) and the five amino acid mutations-introduced mutants (rZW-g5aa and rYY-5aa(ZW)) were generated using reverse genetic technology. When compared to the parental virus rZW, rZW-g5aa exhibited a prolonged mean death time (MDT) and a decreased median lethal dose (ELD50) in embryonated duck eggs. In contrast, rYY-5aa(ZW) did not display significant differences in MDT and ELD50 compared to rYY. In 2-day-old Muscovy ducklings, infection with rZW-g5aa and rYY-5aa(ZW) resulted in mortality rates of only 20% and 10%, respectively, while infections with the three chimeric viruses (rZW-mP9, rZW-mPR187, rYY-rVP3) and rZW still led to 100% mortality. Notably, rYY-rVP3, containing the VP3 region from strain ZW, exhibited 50% mortality in 6-day-old Muscovy ducklings and demonstrated significant horizontal transmission. Collectively, our findings indicate that recombination and consequent amino acid changes in VP3 have a synergistic impact on the heightened virulence of rMDPV in Muscovy ducklings.


Subject(s)
Capsid Proteins , Ducks , Parvoviridae Infections , Point Mutation , Poultry Diseases , Recombination, Genetic , Animals , Virulence , Parvoviridae Infections/virology , Parvoviridae Infections/veterinary , Poultry Diseases/virology , Capsid Proteins/genetics , Parvovirinae/genetics , Parvovirinae/pathogenicity
5.
Arch Virol ; 169(7): 146, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864914

ABSTRACT

Adenoviruses are a diverse group of viruses that can cause a variety of diseases in poultry, including respiratory and gastrointestinal infections. In turkeys (Meleagris gallopavo), adenoviruses commonly cause hemorrhagic enteritis and, rarely, inclusion body hepatitis. In this study, we investigated fowl adenoviruses (FAdVs) circulating in turkeys in Egypt. Following clinical examination of 500 birds, a portion of the hexon gene was amplified from four out of 50 samples from diseased birds (8%), and one amplicon that produced a strong band was selected for sequencing. Molecular and phylogenetic analysis revealed that the virus in that sample belonged to serotype FAdV-8b. Histopathological and immunohistochemical examinations of prepared tissue sections were performed to confirm the pathological findings. Diseased birds exhibited ruffled feathers, low body weight, a crouching posture, and diarrhea. Gross examination revealed petechial hemorrhage on the spleen, swollen pale liver, and congested intestine. Microscopic examination revealed the presence of eosinophilic and basophilic intranuclear inclusion bodies, nuclear pyknosis, and apoptotic bodies in the liver, congestion, hemorrhage, and fibrosis in the lungs, and desquamation of enterocytes. The presence of viral antigens in the liver, lungs, and intestine was confirmed by immunohistochemistry. To our knowledge, this is the first report of the characterization of an outbreak of inclusion body hepatitis in turkeys (hybrid converter breeds) due to FAdV-8b in Egypt. This finding raises an epidemiological alarm, necessitating further studies, including full-genome sequencing, to trace the virus's origin and genetic diversity.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Phylogeny , Poultry Diseases , Turkeys , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/pathology , Poultry Diseases/virology , Poultry Diseases/pathology , Turkeys/virology , Aviadenovirus/genetics , Aviadenovirus/classification , Aviadenovirus/isolation & purification , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/pathology , Egypt , Liver/virology , Liver/pathology , Inclusion Bodies, Viral/virology , Capsid Proteins/genetics
6.
Structure ; 32(6): 652-653, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848682

ABSTRACT

In a recent issue of Nature, Coshic et al. employ a computational multiscale approach to package the complete HK97 viral genome into its capsid. They find both good agreement with experimental observations and shed new light on the heterogeneity of genome structures and the mechanism by which they package.


Subject(s)
Capsid , Genome, Viral , Capsid/metabolism , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Virus Assembly , Molecular Dynamics Simulation , Models, Molecular
7.
Infect Genet Evol ; 122: 105617, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857640

ABSTRACT

Unlike pandemic GII.4 norovirus, GII.6 norovirus shows limited sequence variation in its major capsid protein VP1. In this study, we investigated the VP1 expression profiles, binding abilities, and cross-blocking effects of three GII.6 norovirus strains derived from three distinct variants. Norovirus VP1 was expressed using a recombinant baculovirus expression system and characterized by transmission electron microscopy, mass spectrometry, salivary histo-blood group antigen (HBGA)-virus like particles (VLPs) binding and binding blockade assays. Mass spectrometry revealed the expected molecular weight (MW) of full-length proteins and degraded or cleaved fragments of all three VP1 proteins. Peptide mapping showed loss of 2 and 3 amino acids from the N- and C-terminus, respectively. Further, the co-expression of VP1 and VP2 proteins did not lead to extra fragmentation during mass spectrometry. Salivary HBGA-VLP binding assay revealed similar binding patterns of the three GII.6 VP1 proteins. Salivary HBGA-VLP binding blockade assay induced cross-blocking effects. Our results demonstrate similar binding abilities against salivary HBGAs and specific cross-blocking effects for GII.6 norovirus strains derived from distinct variants, suggesting that fewer GII.6 strains from different evolutionary variants are needed for the development of norovirus vaccines.


Subject(s)
Capsid Proteins , Norovirus , Norovirus/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Humans , Blood Group Antigens/metabolism , Caliciviridae Infections/virology , Protein Binding
8.
Appl Microbiol Biotechnol ; 108(1): 350, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809284

ABSTRACT

The African swine fever virus (ASFV) has the ability to infect pigs and cause a highly contagious acute fever that can result in a mortality rate as high as 100%. Due to the viral epidemic, the pig industry worldwide has suffered significant financial setbacks. The absence of a proven vaccine for ASFV necessitates the development of a sensitive and reliable serological diagnostic method, enabling laboratories to effectively and expeditiously detect ASFV infection. In this study, four strains of monoclonal antibodies (mAbs) against p72, namely, 5A1, 4C4, 8A9, and 5E10, were generated through recombinant expression of p72, the main capsid protein of ASFV, and immunized mice with it. Epitope localization was performed by truncated overlapping polypeptides. The results indicate that 5A1 and 4C4 recognized the amino acid 20-39 aa, 8A9 and 5E10 are recognized at 263-282 aa, which is consistent with the reported 265-280 aa epitopes. Conserved analysis revealed 20-39 aa is a high conservation of the epitopes in the ASFV genotypes. Moreover, a blocking ELISA assay for detection ASFV antibody based on 4C4 monoclonal antibody was developed and assessed. The receiver-operating characteristic (ROC) was performed to identify the best threshold value using 87 negative and 67 positive samples. The established test exhibited an area under the curve (AUC) of 0.9997, with a 95% confidence interval ranging from 99.87 to 100%. Furthermore, the test achieved a diagnostic sensitivity of 100% (with a 95% confidence interval of 95.72 to 100%) and a specificity of 98.51% (with a 95% confidence interval of 92.02 to 99.92%) when the threshold was set at 41.97%. The inter- and intra-batch coefficient of variation were below 10%, demonstrating the exceptional repeatability of the method. This method can detect the positive standard serum at a dilution as high as 1:512. Subsequently, an exceptional blocking ELISA assay was established with high diagnostic sensitivity and specificity, providing a novel tool for detecting ASFV antibodies. KEY POINTS: • Four strains of ASFV monoclonal antibodies against p72 were prepared and their epitopes were identified. • Blocking ELISA method was established based on monoclonal antibody 4C4 with an identified conservative epitope. • The established blocking ELISA method has a good effect on the detection of ASFV antibody.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Animals , Antibodies, Monoclonal/immunology , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine , African Swine Fever/diagnosis , African Swine Fever/immunology , African Swine Fever/virology , Mice , Capsid Proteins/immunology , Capsid Proteins/genetics , Mice, Inbred BALB C , Sensitivity and Specificity , Epitopes/immunology
9.
Plant Signal Behav ; 19(1): 2358270, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38796845

ABSTRACT

Trans-acting small interfering RNAs (tasiRNAs) are 21-nt phased (phased siRNAs) resulting from successive DCL-catalyzed processing from the end of a double-stranded RNA substrate originating from the RDR of an AGO-catalyzed cleaved RNA at a micro RNA target site. Plant tasiRNAs have been synthesized to produce synthetic tasiRNAs (syn-tasiRNAs) targeting viral RNAs that confer viral resistance. In this study, we engineered syn-tasiRNAs to target potato virus Y (PVY) infection by replacing five native siRNAs of TAS1c with 210-bp fragments from the coat protein (CP) region of the PVY genome. The results showed that the transient expression of syn-tasiR-CPpvy2 in Nicotiana benthamiana (N. benthamiana) plants conferred antiviral resistance, supported by the absence of PVY infection symptoms and viral accumulation. This indicated that syn-tasiR-CPpvy2 successfully targeted and silenced the PVY CP gene, effectively inhibiting viral infection. syn-tasiR-CPpvy1 displayed attenuated symptoms and decreased viral accumulation in these plants However, severe symptoms of PVY infection and a similar amount of viral accumulation as the control were observed in plants expressing syn-tasiR-CPpvy3. syn-tasiR-CPpvy/pvx, which targets both PVY and potato virus X (PVX), was engineered using a single precursor. After the transient expression of syn-tasiR-CPpvy/pvx3 and syn-tasiR-CPpvy/pvx5 in N. benthamiana, the plants were resistant to both PVY and PVX. These results suggested that engineered syn-tasiRNAs could not only specifically induce antiviral resistance against one target virus but could also be designed for multi-targeted silencing of different viruses, thereby preventing complex virus infection in plants.


Subject(s)
Capsid Proteins , Disease Resistance , Nicotiana , Plant Diseases , Potyvirus , RNA, Small Interfering , Nicotiana/virology , Nicotiana/genetics , Nicotiana/immunology , Capsid Proteins/metabolism , Capsid Proteins/genetics , Potyvirus/physiology , Plant Diseases/virology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Plants, Genetically Modified/virology
10.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38709860

ABSTRACT

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Subject(s)
Capsid Proteins , RNA, Messenger , Tobacco Mosaic Virus , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice , Tobacco Mosaic Virus/genetics , Capsid Proteins/genetics , Bromovirus/genetics , Nanoparticles/chemistry , Humans , Female , COVID-19 Vaccines/administration & dosage , Virion/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Vaccines, Virus-Like Particle/administration & dosage , Liposomes
11.
Vaccine ; 42(17): 3733-3743, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38705805

ABSTRACT

Hand, foot, and mouth disease (HFMD) poses a significant public health threat primarily caused by four major enteroviruses: enterovirus 71 (EV71), coxsackieviruses A16, A10, and A6. Broadly protective immune responses are essential for complete protection against these major enteroviruses. In this study, we designed a new tetravalent immunogen for HFMD, validated it in silico, in vivo evaluated the immunogenicity of the DNA-based tetravalent vaccine in mice, and identified immunogenic B-cell and T-cell epitopes. A new tetravalent immunogen, VP1me, was designed based on the chimeric protein and epitope-based vaccine principles. It contains a complete EV71 VP1 protein and six reported neutralizing B-cell epitopes derived from the four major enteroviruses causing HFMD. In silico validation using multiple immunoinformatic tools indicated good attributes of the VP1me immunogen suitable for vaccine development. The VP1me-based DNA vaccine efficiently induced both humoral and cellular immune responses in BALB/cAJcl mice. A combination of in silico prediction and immunoassays enabled the identification of immunogenic linear B-cell and CD8 T-cell epitopes within the VP1me immunogen. Immunodominant linear B-cell epitopes were identified in six regions of VP1me, with one epitope located at the N-terminus of the VP1 protein (aa 9-23) regarded as a novel epitope. Interestingly, some B-cell epitopes could also induce the CD8 T-cell response, suggesting their dual functions in immune stimulation. These results lay the groundwork for further development of VP1me as a new vaccine candidate.


Subject(s)
Antibodies, Viral , Epitopes, B-Lymphocyte , Hand, Foot and Mouth Disease , Immunodominant Epitopes , Mice, Inbred BALB C , Vaccines, DNA , Viral Vaccines , Animals , Vaccines, DNA/immunology , Epitopes, B-Lymphocyte/immunology , Hand, Foot and Mouth Disease/prevention & control , Hand, Foot and Mouth Disease/immunology , Mice , Viral Vaccines/immunology , Immunodominant Epitopes/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Epitopes, T-Lymphocyte/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Enterovirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Enterovirus A, Human/immunology , Enterovirus A, Human/genetics , Immunogenicity, Vaccine , Immunity, Cellular , Immunity, Humoral
12.
J Agric Food Chem ; 72(23): 12925-12934, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809684

ABSTRACT

Potato virus Y (PVY) relies on aphids and tubers to spread in the field and causes serious economic losses in the potato industry. Here, we found that pyrido[1,2-α] pyrimidinone mesoionic compounds with insecticidal activity against aphids possessed a good inhibitory effect on PVY. Among them, compound 35 had the best inhibitory activity against PVY (EC50 = 104 µg/mL), even superior to that of ningnanmycin (125 µg/mL). The fluorescence and qPCR results confirmed that compound 35 could inhibit the proliferation of PVY in Nicotiana benthamiana. Preliminary experiments on the mechanism of action indicated that compound 35 had good binding affinity with the coat protein (CP), which plays an essential role in aphid-PVY interactions. Molecular docking revealed that compound 35 could bind to the pocket of CP formed by Ser52, Glu204, and Arg208. Compound 35 had substantially lower binding affinity (Kd) values with CPS52A (219 µM), CPE204A (231 µM), and CPR208A (189 µM) than those with CPWT (5.80 µM). A luciferase assay confirmed that mutating Ser52, Glu204, and Arg208 significantly affected the expression level of CP and further reduced virus proliferation. Therefore, the broad-spectrum activity of compound 35 provides a unique strategy for the prevention and treatment of PVY.


Subject(s)
Antiviral Agents , Aphids , Molecular Docking Simulation , Nicotiana , Plant Diseases , Potyvirus , Aphids/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Animals , Plant Diseases/virology , Plant Diseases/prevention & control , Potyvirus/drug effects , Potyvirus/genetics , Potyvirus/chemistry , Nicotiana/virology , Pyrimidinones/pharmacology , Pyrimidinones/chemistry , Insecticides/chemistry , Insecticides/pharmacology , Solanum tuberosum/chemistry , Solanum tuberosum/virology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Structure-Activity Relationship
13.
Arch Virol ; 169(6): 131, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819530

ABSTRACT

Noroviruses (NoVs) are the chief cause of acute viral gastroenteritis worldwide. By employing the major capsid protein VP1 of a GII.6 NoV strain as an immunogen, we generated two monoclonal antibodies (mAbs) with wide-spectrum binding activities against NoV genogroup II (GII) VP1 proteins. One mAb (10G7) could bind to native and denatured GII-specific VP1 proteins. The other mAb (10F2) could bind to all tested native GII VP1 proteins, but not to denatured GII.3, GII.4, GII.7, or GII.17 VP1 proteins. Using GII.6/GII.4 fusion proteins, the mAb 10F2 binding region was confirmed to be located in the C-terminal P1 domain. An enzyme-linked immunosorbent assay based on peptides covering the P domain did not detect any binding. Using a panel of VP1 proteins with swapped regions, deletions, and mutations, the mAb 10F2 binding region was determined to be located between residues 496 and 513. However, the residue(s) responsible for its varied binding affinity for different denatured GII VP1 proteins remain to be identified. In summary, two NoV GII-specific cross-reactive mAbs were generated, and their binding regions were determined. Our results might facilitate the detection and immunogenic study of NoVs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins , Epitopes , Norovirus , Norovirus/genetics , Norovirus/immunology , Antibodies, Monoclonal/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Epitopes/immunology , Epitopes/genetics , Antibodies, Viral/immunology , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice , Humans , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Mice, Inbred BALB C , Epitope Mapping , Cross Reactions
14.
Bioorg Chem ; 147: 107415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701597

ABSTRACT

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Subject(s)
Antiviral Agents , Capsid Proteins , Phosphates , Tobacco Mosaic Virus , Tobacco Mosaic Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Phosphates/chemistry , Phosphates/pharmacology , Structure-Activity Relationship , Molecular Structure , Capsid Proteins/antagonists & inhibitors , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Drug Design , Microbial Sensitivity Tests , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Dose-Response Relationship, Drug , Drug Discovery , Molecular Docking Simulation
15.
Vet Res ; 55(1): 63, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760810

ABSTRACT

The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.


Subject(s)
HSP70 Heat-Shock Proteins , Hepatitis Virus, Duck , Internal Ribosome Entry Sites , Virus Replication , Hepatitis Virus, Duck/physiology , Hepatitis Virus, Duck/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Animals , Viral Structural Proteins/metabolism , Viral Structural Proteins/genetics , Ducks , Poultry Diseases/virology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/metabolism , Protein Biosynthesis
16.
PLoS Pathog ; 20(5): e1012034, 2024 May.
Article in English | MEDLINE | ID: mdl-38814986

ABSTRACT

Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.


Subject(s)
Ilarvirus , Plant Diseases , RNA Interference , Capsid Proteins/genetics , Capsid Proteins/metabolism , Codon, Terminator/genetics , Ilarvirus/genetics , Nicotiana/virology , Nicotiana/genetics , Nicotiana/metabolism , Plant Diseases/virology , Plant Diseases/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
17.
Virology ; 595: 110093, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692134

ABSTRACT

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.


Subject(s)
Apoptosis , Herpesvirus 2, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , A549 Cells , Oncolytic Virotherapy/methods , Animals , Herpesvirus 2, Human/physiology , Herpesvirus 2, Human/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Mice , Xenograft Model Antitumor Assays
18.
Cell Host Microbe ; 32(6): 980-995.e9, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38729153

ABSTRACT

Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.


Subject(s)
Capsid Proteins , Neuropilin-1 , Orthoreovirus, Mammalian , Receptors, Virus , Reoviridae Infections , Virus Internalization , Animals , Mice , Capsid Proteins/metabolism , Capsid Proteins/genetics , Neuropilin-1/metabolism , Neuropilin-1/genetics , Orthoreovirus, Mammalian/genetics , Orthoreovirus, Mammalian/physiology , Orthoreovirus, Mammalian/metabolism , Reoviridae Infections/virology , Reoviridae Infections/metabolism , Receptors, Virus/metabolism , Humans , Capsid/metabolism , Cell Line , HEK293 Cells , Protein Binding , Mice, Inbred C57BL
19.
J Virol Methods ; 328: 114954, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763359

ABSTRACT

Porcine circovirus type 2 (PCV2) is intensely prevalent in global pig farms. The PCV2 vaccine is an important means of preventing and controlling PCV2. The quality control of PCV2 vaccines is predominantly based on detection techniques such as animal testing and neutralizing antibody titration. Measuring the content of effective proteins in vaccines to measure vaccine efficacy is an excellent alternative to traditional methods, which can greatly accelerate the development speed and testing time of vaccines. In this study, we screened a monoclonal antibody (mAb) that can effectively recognize not only the exogenous expression of PCV2 Cap protein but also PCV2 virus. The double antibody sandwich ELISA (DAS-ELISA) was developed using this mAb that specifically recognize PCV2 Cap. The minimum protein content detected by this method is 3.5 ng/mL. This method can be used for the quality control of PCV2 inactivated vaccine and subunit vaccine, and the detection results are consistent with the results of mice animal experiments. This method has the advantages of simple operation, good sensitivity, high specificity and wide application. It can detect the effective antigen Cap protein content of various types of PCV2 vaccines, which not only shorten the vaccine inspection time but also save costs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Antigens, Viral , Circoviridae Infections , Circovirus , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Swine Diseases , Viral Vaccines , Circovirus/immunology , Animals , Enzyme-Linked Immunosorbent Assay/methods , Swine , Viral Vaccines/immunology , Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Antigens, Viral/analysis , Mice , Antibodies, Viral/blood , Circoviridae Infections/veterinary , Circoviridae Infections/diagnosis , Circoviridae Infections/prevention & control , Swine Diseases/diagnosis , Swine Diseases/prevention & control , Swine Diseases/virology , Capsid Proteins/immunology
20.
J Virol ; 98(6): e0030524, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38771042

ABSTRACT

Many functions of viral attachment proteins are established, but less is known about the biological importance of viral attachment protein encapsidation efficiency. The mammalian orthoreovirus (reovirus) σ1 attachment protein forms filamentous trimers that incorporate into pentamers of the λ2 capsid protein. Reovirus strains vary in the efficiency of σ1 encapsidation onto progeny virions, which influences viral stability during entry into cells and the efficacy of tumor cell lysis. While the role of σ1 encapsidation has been evaluated in studies using cultured cells, the contribution of attachment protein encapsidation efficiency to viral infection in animals is less clear. Polymorphisms in reovirus σ1 at residues 22 and 249 have been implicated in viral dissemination in mice and susceptibility to proteolysis in the murine intestine, respectively. To determine whether these residues contribute to σ1 encapsidation efficiency, we engineered σ1 mutant viruses with single- and double-residue substitutions at sites 22 and 249. We found that substitutions at these sites alter the encapsidation of σ1 and that reoviruses encapsidating higher amounts of σ1 bind cells more avidly and have a modest replication advantage in a cell-type-specific manner relative to low σ1-encapsidating reoviruses. Furthermore, we found that a high σ1-encapsidating reovirus replicates and disseminates more efficiently in mice relative to a low σ1-encapsidating reovirus. These findings provide evidence of a relationship between viral attachment protein encapsidation efficiency and viral replication in cell culture and animal hosts. IMPORTANCE: Viral attachment proteins can serve multiple functions during viral replication, including attachment to host cells, cell entry and disassembly, and modulation of host immune responses. The relationship between viral attachment protein encapsidation efficiency and viral replication in cells and animals is poorly understood. We engineered and characterized a panel of reoviruses that differ in the capacity to encapsidate the σ1 attachment protein. We found that strains encapsidating σ1 with higher efficiency bind cells more avidly and replicate and spread more efficiently in mice relative to those encapsidating σ1 with lower efficiency. These results highlight a function for σ1 attachment protein capsid abundance in viral replication in cells and animals, which may inform future use of reovirus as an oncolytic therapeutic.


Subject(s)
Capsid Proteins , Reoviridae Infections , Virus Replication , Animals , Mice , Capsid Proteins/metabolism , Capsid Proteins/genetics , Reoviridae Infections/virology , Reoviridae Infections/metabolism , Virus Attachment , Polymorphism, Genetic , Orthoreovirus, Mammalian/genetics , Orthoreovirus, Mammalian/physiology , Orthoreovirus, Mammalian/metabolism , Virus Assembly , Cell Line , Capsid/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...