Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.181
Filter
1.
Eur Phys J E Soft Matter ; 47(6): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829453

ABSTRACT

In this study, we demonstrate the fabrication of polymersomes, protein-blended polymersomes, and polymeric microcapsules using droplet microfluidics. Polymersomes with uniform, single bilayers and controlled diameters are assembled from water-in-oil-in-water double-emulsion droplets. This technique relies on adjusting the interfacial energies of the droplet to completely separate the polymer-stabilized inner core from the oil shell. Protein-blended polymersomes are prepared by dissolving protein in the inner and outer phases of polymer-stabilized droplets. Cell-sized polymeric microcapsules are assembled by size reduction in the inner core through osmosis followed by evaporation of the middle phase. All methods are developed and validated using the same glass-capillary microfluidic apparatus. This integrative approach not only demonstrates the versatility of our setup, but also holds significant promise for standardizing and customizing the production of polymer-based artificial cells.


Subject(s)
Artificial Cells , Polymers , Artificial Cells/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Emulsions/chemistry , Capsules/chemistry , Microfluidics/methods , Water/chemistry , Microfluidic Analytical Techniques , Proteins/chemistry
2.
AAPS PharmSciTech ; 25(5): 99, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714608

ABSTRACT

Hypericum perforatum (HP) contains valuable and beneficial bioactive compounds that have been used to treat or prevent several illnesses. Encapsulation technology offers protection of the active compounds and facilitates to expose of the biologically active compounds in a controlled mechanism. Microcapsulation of the hydroalcoholic gum arabic and maltodextrin have hot been used as wall materials in the encapsulation of HP extract. Therefore, the optimum microencapsulation parameters of Hypericum perforatum (HP) hydroalcoholic extract were determined using response surface methodology (RSM) for the evaluation of HP extract. Three levels of three independent variables were screened using the one-way ANOVA. Five responses were monitored, including total phenolic content (TPC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), carr index (CI), hausner ratio (HR), and solubility. Optimum drying conditions for Hypericum perforatum microcapsules (HPMs) were determined: 180 °C for inlet air temperature, 1.04/1 for ratio of maltodextrin to gum arabic (w/w), and 1.98/1 for coating to core material ratio (w/w). TPC, antioxidant activity, CI, HR, and solubility values were specified as 316.531 (mg/g GAE), 81.912%, 6.074, 1.066, and 35.017%, respectively, under the optimized conditions. The major compounds of Hypericum perforatum (hypericin and pseudohypericin) extract were determined as 4.19 µg/g microcapsule and 15.09 µg/g microcapsule, respectively. Scanning electron microscope (SEM) analysis revealed that the mean particle diameter of the HPMs was 20.36 µm. Based on these results, microencapsulation of HPMs by spray drying is a viable technique which protects the bioactive compounds of HP leaves, facilitating its application in the pharmaceutical, cosmetic, and food industries.


Subject(s)
Antioxidants , Capsules , Drug Compounding , Gum Arabic , Hypericum , Plant Extracts , Polysaccharides , Solubility , Hypericum/chemistry , Plant Extracts/chemistry , Drug Compounding/methods , Gum Arabic/chemistry , Polysaccharides/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Capsules/chemistry , Spray Drying , Phenols/chemistry , Desiccation/methods
3.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731509

ABSTRACT

The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).


Subject(s)
Capsules , Drug Compounding , Oils, Volatile , Plant Proteins , Polysaccharides , Salvia , Seeds , Vicia faba , Polysaccharides/chemistry , Seeds/chemistry , Vicia faba/chemistry , Drug Compounding/methods , Oils, Volatile/chemistry , Plant Proteins/chemistry , Salvia/chemistry , Capsules/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry
4.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731538

ABSTRACT

Adenosine, as a water-soluble active substance, has various pharmacological effects. This study proposes a layer-by-layer assembly method of composite wall materials, using hydroxypropyl-ß-cyclodextrin as the inner wall and whey protein isolate as the outer wall, to encapsulate adenosine within the core material, aiming to enhance adenosine microcapsules' stability through intermolecular interactions. By combining isothermal titration calorimetry with molecular modeling analysis, it was determined that the core material and the inner wall and the inner wall and the outer wall interact through intermolecular forces. Adenosine and hydroxypropyl-ß-cyclodextrin form an optimal 1:1 complex through hydrophobic interactions, while hydroxypropyl-ß-cyclodextrin and whey protein isolate interact through hydrogen bonds. The embedding rate of AD/Hp-ß-CD/WPI microcapsules was 36.80%, and the 24 h retention rate under the release behavior test was 76.09%. The method of preparing adenosine microcapsules using composite wall materials is environmentally friendly and shows broad application prospects in storage and delivery systems with sustained release properties.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Adenosine , Capsules , Whey Proteins , Whey Proteins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Capsules/chemistry , Adenosine/chemistry , Drug Compounding/methods , Hydrophobic and Hydrophilic Interactions , Drug Liberation , Models, Molecular , Hydrogen Bonding , Layer-by-Layer Nanoparticles
5.
Luminescence ; 39(5): e4777, 2024 May.
Article in English | MEDLINE | ID: mdl-38785072

ABSTRACT

This study introduces a practical and cost-effective method for tracking diltiazem (DLZ) analytically. It utilizes a fluorimetric approach that relies on the modulation of fluorescence intensity of a dye called erythrosine B. Through a one-pot experiment performed in an acidic environment, a complex is rapidly formed between DLZ and erythrosine B. By observing the decrease in erythrosine B emission, a linear calibration plot is established, enabling the detection and quantification of DLZ concentrations ranging from 40 to 850 ng/ml. The estimated limits of detection and quantitation were 10.5 and 32.1 ng/ml, respectively. The variables affecting the DLZ-dye complex system were carefully adjusted. The validity of the approach was confirmed through a thorough evaluation based on the criteria set by ICH guidelines. The accuracy and precision of the methodology were evaluated, and the standard deviation and relative standard deviation were below 2. The strategy was successfully employed to analyze DLZ in tablets and capsules, and no significant variation between the proposed and reported methods as the values of the estimated t-test and F-test at five determinations were below 2.306 and 6.338, respectively. Notably, the method adheres to the principle of green chemistry by utilizing distilled water as the dispersing medium.


Subject(s)
Diltiazem , Erythrosine , Diltiazem/analysis , Diltiazem/chemistry , Erythrosine/chemistry , Erythrosine/analysis , Spectrometry, Fluorescence , Tablets/analysis , Hydrogen-Ion Concentration , Limit of Detection , Capsules/chemistry , Fluorescent Dyes/chemistry , Dosage Forms
6.
Food Chem ; 451: 139478, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692242

ABSTRACT

The market share of Sichuan pepper oleoresin (SPO) in the flavor industry is increasing steadily; however, its high volatility, low water solubility, and poor stability continue to pose significant challenges to application. The microencapsulation prepared by emulsion embedding and spray drying is considered as an effective technique to solve the above problems. Sodium octenyl succinate starch (OSA starch) and tea polyphenols (TPs) were used to develop OSA-TPs complex as encapsulants for SPO to prepare orally soluble microcapsules. And the optimum doping of TPs was determined. SPO microcapsules have good properties with high encapsulation efficiency up to 88.13 ± 1.48% and high payload up to 41.58 ± 1.86% with low water content and high heat resistance. The binding mechanism of OSA starch with TPs and its regulation mechanism and effect on SPOs were further analyzed and clarified. The binding mechanism between OSA starch and TPs was clarified in further analyses. The OSA-TPs complexes enhanced the rehydration, release in food matrix and storage stability of SPO, and exhibited good sensory immediacy. Flavor-improved mooncakes were successfully developed, achieving the combination of mooncake flavor and SPO flavor. This study provided a valuable way to prepare flavoring microcapsules suitable for the catering industry, opened up the combined application of SPO and bakery ingredients, and was of great practical value and significance for improving the processing quality of flavor foods, driving the development of the SPO industry, and enhancing the national dietary experience.


Subject(s)
Drug Compounding , Flavoring Agents , Plant Extracts , Polyphenols , Starch , Taste , Polyphenols/chemistry , Starch/chemistry , Flavoring Agents/chemistry , Plant Extracts/chemistry , Humans , Tea/chemistry , Capsicum/chemistry , Solubility , Capsules/chemistry , Camellia sinensis/chemistry
7.
Food Chem ; 452: 139591, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761631

ABSTRACT

This work aimed to enhance hemp seed oil encapsulation within a hemp seed protein-alginate complex by optimizing parameters in the solution-enhanced dispersion process, employing supercritical carbon dioxide (SEDS) without reliance on organic solvents or elevated temperatures. By response surface methodology (RSM), the microencapsulation efficacy (MEE), particle size (PS) and peroxide value (PV) was determined with respect to three parameters; temperature (°C), pressure (bar) and feed flow rate (mL/min). The optimum conditions were predicted at temperature (40 °C), pressure (150 bar) and feed flow rate (2 mL/min) to offer an MEE of 89.47%, PS of 7.81 µm and PV of 2.91 (meq/kg oil). In addition, the SEDS method was compared with spray- and freeze-drying for encapsulating hemp seed oil. The findings demonstrated SEDS' superiority, exhibiting exceptional attributes such as the highest MEE, smallest PS and the production of spherical, smooth microcapsules. This highlights its effectiveness in comparison to spray- and freeze-drying methods.


Subject(s)
Cannabis , Capsules , Carbon Dioxide , Drug Compounding , Particle Size , Seeds , Capsules/chemistry , Carbon Dioxide/chemistry , Cannabis/chemistry , Drug Compounding/methods , Seeds/chemistry , Biopolymers/chemistry , Plant Oils/chemistry
8.
Sci Rep ; 14(1): 10679, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724534

ABSTRACT

The supercritical antisolvent (SAS) process was a green alternative to improve the low bioavailability of insoluble drugs. However, it is difficult for SAS process to industrialize with limited production capacity. A coaxial annular nozzle was used to prepare the microcapsules of aprepitant (APR) and polyvinylpyrrolidone (PVP) by SAS with N, N-Dimethylformamide (DMF) as solvent. Meanwhile, the effects of polymer/drug ratio, operating pressure, operating temperature and overall concentration on particles morphology, mean particle diameter and size distribution were analyzed. Microcapsules with mean diameters ranging from 2.04 µm and 9.84 µm were successfully produced. The morphology, particle size, thermal behavior, crystallinity, drug content, drug dissolution and residual amount of DMF of samples were analyzed. The results revealed that the APR drug dissolution of the microcapsules by SAS process was faster than the unprocessed APR. Furthermore, the drug powder collected every hour is in the kilogram level, verifying the possibility to scale up the production of pharmaceuticals employing the SAS process from an industrial point of view.


Subject(s)
Aprepitant , Capsules , Particle Size , Povidone , Solvents , Capsules/chemistry , Povidone/chemistry , Solvents/chemistry , Aprepitant/chemistry , Solubility , Dimethylformamide/chemistry , Drug Liberation , Drug Compounding/methods , Temperature
9.
ACS Appl Mater Interfaces ; 16(20): 25652-25664, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739871

ABSTRACT

Aqueous core-shell structures can serve as an efficient approach that allows cells to generate 3D spheroids with in vivo-like cell-to-cell contacts. Here, a novel strategy for fabricating liquid-core-shell capsules is proposed by inverse gelation of alginate (ALG) and layer-by-layer (LbL) coating. We hypothesized that the unique properties of polyethylenimine (PEI) could be utilized to overcome the low structural stability and the limited cell recognition motifs of ALG. In the next step, alginate dialdehyde (ADA) enabled the Schiff-base reaction with free amine groups of PEI to reduce its possible toxic effects. Scanning electron microscopy and light microscopy images proved the formation of spherical hollow capsules with outer diameters of 3.0 ± 0.1 mm for ALG, 3.2 ± 0.1 mm for ALG/PEI, and 4.0 ± 0.2 mm for ALG/PEI/ADA capsules. The effective modulus increased by 3-fold and 5-fold when comparing ALG/PEI/ADA and ALG/PEI to ALG capsules, respectively. Moreover, PEI-coated capsules showed potential antibacterial properties against both Staphylococcus aureus and Escherichia coli, with an apparent inhibition zone. The cell viability results showed that all capsules were cytocompatible (above 75.5%). Cells could proliferate and form spheroids when encapsulated within the ALG/PEI/ADA capsules. Monitoring the spheroid thickness over 5 days of incubation indicated an increasing trend from 39.50 µm after 1 day to 66.86 µm after 5 days. The proposed encapsulation protocol represents a new in vitro platform for developing 3D cell cultivation and can be adapted to fulfill the requirements of various biomedical applications.


Subject(s)
Alginates , Anti-Bacterial Agents , Capsules , Escherichia coli , Polyethyleneimine , Staphylococcus aureus , Alginates/chemistry , Polyethyleneimine/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Capsules/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Cell Survival/drug effects , Animals
10.
Biosens Bioelectron ; 259: 116403, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38776802

ABSTRACT

Robust encapsulation and controllable release of biomolecules have wide biomedical applications ranging from biosensing, drug delivery to information storage. However, conventional biomolecule encapsulation strategies have limitations in complicated operations, optical instability, and difficulty in decapsulation. Here, we report a simple, robust, and solvent-free biomolecule encapsulation strategy based on gallium liquid metal featuring low-temperature phase transition, self-healing, high hermetic sealing, and intrinsic resistance to optical damage. We sandwiched the biomolecules with the solid gallium films followed by low-temperature welding of the films for direct sealing. The gallium can not only protect DNA and enzymes from various physical and chemical damages but also allow the on-demand release of biomolecules by applying vibration to break the liquid gallium. We demonstrated that a DNA-coded image file can be recovered with up to 99.9% sequence retention after an accelerated aging test. We also showed the practical applications of the controllable release of bioreagents in a one-pot RPA-CRISPR/Cas12a reaction for SARS-COV-2 screening with a low detection limit of 10 copies within 40 min. This work may facilitate the development of robust and stimuli-responsive biomolecule capsules by using low-melting metals for biotechnology.


Subject(s)
Biosensing Techniques , Phase Transition , SARS-CoV-2 , Biosensing Techniques/methods , SARS-CoV-2/isolation & purification , COVID-19/virology , Gallium/chemistry , Humans , DNA/chemistry , CRISPR-Cas Systems , Capsules/chemistry
11.
Talanta ; 275: 126182, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38701706

ABSTRACT

Exosomes, extracellular vesicles secreted by cells, play a crucial role in intercellular communication by transferring information from source cells to recipient cells. These vesicles carry important biomarkers, including nucleic acids and proteins, which provide valuable insights into the parent cells' status. As a result, exosomes have emerged as noninvasive indicators for the early diagnosis of cancer. Colorimetric biosensors have garnered significant attention due to their cost-effectiveness, simplicity, rapid response, and reproducibility. In this study, we employ sporopollenin microcapsules (SP), a natural biopolymer material derived from pollen, as a substrate for gold nanoparticles (AuNPs). By modifying the SP-Au complex with CD63 aptamers, we develop a label-free colorimetric biosensor for exosome detection. In the absence of exosomes, the SP-Au complex catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), resulting in a color change from colorless to blue. However, the addition of exosomes inhibits the catalytic activity of the SP-Au complex due to coverage of exosomes on AuNPs. This colorimetric biosensor exhibits high sensitivity and selectivity for exosome detection, with a detection limit of 10 particles/µL and a wide linear range of 10 - 108 particles/µL. Additionally, the SP-Au biosensor demonstrates remarkable resistance to serum protein adsorption and excellent catalytic stability even in harsh environments, making it highly suitable for clinical diagnostics.


Subject(s)
Biosensing Techniques , Colorimetry , Exosomes , Gold , Metal Nanoparticles , Colorimetry/methods , Exosomes/chemistry , Biosensing Techniques/methods , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Tetraspanin 30/metabolism , Tetraspanin 30/analysis , Biopolymers/chemistry , Biopolymers/analysis , Limit of Detection , Benzidines/chemistry , Aptamers, Nucleotide/chemistry , Capsules/chemistry , Carotenoids
12.
Food Chem ; 451: 139505, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703732

ABSTRACT

Constructing carrier materials with polysaccharides to enhance the solubility of insoluble active ingredients is a crucial strategy for improving bioavailability. This research constructed pectin-based hesperidin microcapsules (PHM) through self-assembly processes in the deep eutectic solvent, improving the solubility, storage stability, and bioavailability of hesperidin (HES). PHM exhibited high encapsulation efficiency (91.7%) and loading capacity (11.5%), with a small particle size (1.73 µm). The interaction mechanism was clarified through physical characterization and density functional theory (DFT) calculations. The vitro release demonstrated that the release ratio of PHM was only 6.4% in simulated gastric fluid (SGF), but reached 80.9% in simulated intestinal fluid (SIF). The release mechanism of PHM in SGF followed Fickian diffusion, while in SIF followed skeleton dissolution diffusion with a stable rate. Furthermore, the cell cytotoxicity experiments confirmed the remarkable biocompatibility of PHM toward human colon cells, which suggested its potential application in food and pharmaceutical fields.


Subject(s)
Capsules , Hesperidin , Pectins , Solubility , Pectins/chemistry , Hesperidin/chemistry , Humans , Capsules/chemistry , Drug Carriers/chemistry , Particle Size , Drug Compounding , Biological Availability , Drug Liberation , Drug Stability , Cell Survival/drug effects , Caco-2 Cells
13.
Mol Pharm ; 21(6): 2828-2837, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38723178

ABSTRACT

Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.


Subject(s)
Budesonide , Capsules , Drug Delivery Systems , Ileum , Humans , Ileum/metabolism , Ileum/drug effects , Adult , Drug Delivery Systems/methods , Male , Budesonide/administration & dosage , Budesonide/pharmacokinetics , Budesonide/chemistry , Female , Capsules/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Magnetic Resonance Imaging/methods , Administration, Oral , Middle Aged , Caffeine/chemistry , Caffeine/administration & dosage , Peyer's Patches/metabolism , Peyer's Patches/drug effects , Young Adult
14.
Food Chem ; 448: 139135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569405

ABSTRACT

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Subject(s)
Capsules , Emulsions , Fatty Acids, Omega-3 , Fish Oils , Gelatin , Emulsions/chemistry , Capsules/chemistry , Gelatin/chemistry , Fatty Acids, Omega-3/chemistry , Fish Oils/chemistry , Animals , Particle Size , Glycerol/chemistry , Tuna , Glycerides/chemistry , Hydrophobic and Hydrophilic Interactions , Biocatalysis
15.
Nanoscale ; 16(17): 8378-8389, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38602041

ABSTRACT

Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy. Sulfuric acid-treated HSECs show a greatly enhanced photothermal performance and a strong bacteria-capturing ability against Gram-positive bacteria. This is attributed to the hierarchical micro/nanostructure and surface chemistry alteration of HSECs. To test the potential for clinical application, an in situ bacteria-capturing, near-infrared (NIR) light-triggered hydrogel made of HSECs and curdlan is applied in photothermal therapy for infected skin wounds. HSECs and curdlan suspension that spread on bacteria-infected skin wounds of mice first capture the local bacteria and then form hydrogels on the wound upon NIR light stimulation. The combination shows a superior antibacterial efficiency of 98.4% compared to NIR therapy alone and achieved a wound healing ratio of 89.4%. The current study suggests that the bacteria-capturing ability and photothermal properties make HSECs an excellent platform for the phototherapy of bacteria-infected diseases. Future work that can fully take advantage of the hierarchical micro/nanostructure of HSECs for multiple biomedical applications is highly promising and desirable.


Subject(s)
Biopolymers , Capsules , Carotenoids , Helianthus , Photothermal Therapy , Pollen , Animals , Mice , Helianthus/chemistry , Pollen/chemistry , Capsules/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Wound Healing/drug effects , Infrared Rays
16.
Phys Chem Chem Phys ; 26(17): 13078-13086, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38628110

ABSTRACT

Fluorescence labeling of cells is a versatile tool used to study cell behavior, which is of significant importance in biomedical sciences. Fluorescent photoconvertible markers based on polymer microcapsules have been recently considered as efficient and perspective ones for long-term tracking of individual cells. However, the dependence of photoconversion conditions on the polymeric capsule structure is still not sufficiently clear. Here, we have studied the structural and spectral properties of fluorescent photoconvertible polymeric microcapsules doped with Rhodamine B and irradiated using a pulsed laser in various regimes, and shown the dependence between the photoconversion degree and laser irradiation intensity. The effect of microcapsule composition on the photoconversion process was studied by monitoring structural changes in the initial and photoconverted microcapsules using X-ray diffraction analysis with synchrotron radiation source, and Fourier transform infrared, Raman and fluorescence spectroscopy. We demonstrated good biocompatibility of free-administered initial and photoconverted microcapsules through long-term monitoring of the RAW 264.7 monocyte/macrophage cells with unchanged viability. These data open new perspectives for using the developed markers as safe and precise cell labels with switchable fluorescent properties.


Subject(s)
Fluorescent Dyes , Polymers , Rhodamines , Mice , Animals , Polymers/chemistry , Rhodamines/chemistry , Fluorescent Dyes/chemistry , RAW 264.7 Cells , Cell Survival/drug effects , Capsules/chemistry , Spectrometry, Fluorescence , Photochemical Processes , Spectroscopy, Fourier Transform Infrared
17.
Mol Pharm ; 21(5): 2456-2472, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38568423

ABSTRACT

Variability of the gastrointestinal tract is rarely reflected in in vitro test protocols but often turns out to be crucial for the oral dosage form performance. In this study, we present a generation method of dissolution profiles accounting for the variability of fasted gastric conditions. The workflow featured 20 biopredictive tests within the physiological variability. The experimental array was constructed with the use of the design of experiments, based on three parameters: gastric pH and timings of the intragastric stress event and gastric emptying. Then, the resulting dissolution profiles served as a training data set for the dissolution process modeling with the machine learning algorithms. This allowed us to generate individual dissolution profiles under a customizable gastric pH and motility patterns. For the first time ever, we used the method to successfully elucidate dissolution properties of two dosage forms: pellet-filled capsules and bare pellets of the marketed dabigatran etexilate product Pradaxa. We showed that the dissolution of capsules was triggered by mechanical stresses and thus was characterized by higher variability and a longer dissolution onset than observed for pellets. Hence, we proved the applicability of the method for the in vitro and in silico characterization of immediate-release dosage forms and, potentially, for the improvement of in vitro-in vivo extrapolation.


Subject(s)
Capsules , Dabigatran , Fasting , Gastric Emptying , Dabigatran/chemistry , Dabigatran/administration & dosage , Dabigatran/pharmacology , Capsules/chemistry , Gastric Emptying/physiology , Gastric Emptying/drug effects , Humans , Hydrogen-Ion Concentration , Solubility , Drug Liberation , Administration, Oral , Computer Simulation , Stomach/physiology , Stomach/drug effects
18.
Int J Biol Macromol ; 266(Pt 2): 131312, 2024 May.
Article in English | MEDLINE | ID: mdl-38582471

ABSTRACT

Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.


Subject(s)
Alginates , Metal-Organic Frameworks , Sewage , Water Pollutants, Chemical , Water Purification , Alginates/chemistry , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Water Purification/methods , Biopolymers/chemistry , Sewage/chemistry , Copper/chemistry , Membranes, Artificial , Capsules/chemistry , Nanoparticles/chemistry , Cations/chemistry , Hydrogen-Ion Concentration , Cadmium/chemistry , Cadmium/isolation & purification , Water/chemistry
19.
Food Chem ; 451: 139465, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38677132

ABSTRACT

This work aimed to synthesize oregano essential oil/ß-cyclodextrin microcapsules (OEO/ß-CDs) and then prepare gelatin-based controlled-release antibacterial films with different OEO/ß-CDs contents (0%-2%) for chilling preservation of grass carp fillets. The results of FTIR, XRD, DSC and accelerated release ratio showed that OEO was successfully encapsulated in OEO/ß-CDs and its thermal stability was effectively improved. Moreover, at 2% of addition amount of OEO/ß-CDs, the tensile strength of the films increased from 14.43 MPa to 18.72 MPa. In addition, the films showed significant antibacterial activity against Pseudomonas (61.52%), Aeromonas (62.87%), and Shewanella putrefaciens (66.67%). Preservation experiments showed that the films effectively prevented the increase of TVB-N, and TBA value of the refrigerated fillets and significantly suppressed the growth of spoilage organisms, thus extending the shelf life by 2-3 days. Therefore, the synthesized film has promising potential as an active packaging material for the preservation of grass carp.


Subject(s)
Anti-Bacterial Agents , Capsules , Carps , Delayed-Action Preparations , Food Preservation , Gelatin , Oils, Volatile , Origanum , beta-Cyclodextrins , Animals , Carps/microbiology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Gelatin/chemistry , Food Preservation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Origanum/chemistry , Capsules/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , beta-Cyclodextrins/chemistry , Food Packaging/instrumentation , Bacteria/drug effects , Bacteria/growth & development , Cold Temperature
20.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38547360

ABSTRACT

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Subject(s)
Lignin , Pesticides , Strobilurins , Animals , Lignin/chemistry , Pesticides/pharmacology , Capsules/chemistry , Emulsions/chemistry , Zebrafish , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...