Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.043
Filter
1.
Org Lett ; 26(20): 4212-4217, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38743309

ABSTRACT

An unusual rhodium-catalyzed C-H activation/Lossen rearrangement/oxa-Michael addition tandem cyclization has been achieved along with a tunable well-known C-H activation/[4 + 2] annulation, leading to regio-, chemo-, and diastereoselective access to diverse pentacyclic α-carbolines and ß-carboline-1-one derivatives in moderate to good yields with significant anticancer activity.


Subject(s)
Antineoplastic Agents , Carbolines , Rhodium , Rhodium/chemistry , Carbolines/chemistry , Carbolines/chemical synthesis , Carbolines/pharmacology , Catalysis , Cyclization , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Stereoisomerism , Humans , Drug Screening Assays, Antitumor
2.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732185

ABSTRACT

Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the ß-carboline (ßC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Humans , Vero Cells , Animals , Simplexvirus/drug effects , Simplexvirus/physiology , Herpes Simplex/drug therapy , Herpes Simplex/virology , Carbolines/pharmacology , Carbolines/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Harmine/pharmacology , Harmine/chemistry , Harmine/analogs & derivatives
3.
J Med Chem ; 67(10): 7973-7994, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38728549

ABSTRACT

Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of ß-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.


Subject(s)
Antineoplastic Agents , Carbolines , Neutrophils , Protein-Arginine Deiminase Type 4 , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Carbolines/pharmacology , Carbolines/chemistry , Carbolines/therapeutic use , Carbolines/chemical synthesis , Animals , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Female , Humans , Tumor Microenvironment/drug effects , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, Inbred BALB C , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Phenotype , Structure-Activity Relationship
4.
Chem Biol Drug Des ; 103(4): e14521, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653576

ABSTRACT

ß-Carboline nucleus is therapeutically valuable in medicinal chemistry for the treatment of varied number of diseases, most importantly cancer. The potent and wide-ranging activity of ß-carboline has established them as imperative pharmacological scaffolds especially in the cancer treatment. Numerous derivatives such as Tetrahydro ß-carbolines, metal complexed ß-carbolines, mono, di and tri substituted ß-carbolines have been reported to possess dynamic anticancer activity. These different substituted ß-carboline derivatives had shown different mechanism of action and plays important role in anticancer drug discovery and development. The review is an update of the chemistry of ß-carbolines, both synthetic and natural origin acting through various targets against cancerous cells. In addition to this, studies of multitarget molecules designed by coupling ß-carbolines along with other mechanisms for treatment of neoplasm are also summarized.


Subject(s)
Antineoplastic Agents , Carbolines , Neoplasms , Carbolines/chemistry , Carbolines/pharmacology , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Animals
5.
Bioorg Chem ; 145: 107216, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387396

ABSTRACT

ß-Carboline alkaloids are natural and synthetic products with outstanding antitumor activity. C3 substituted and dimerized ß-carbolines exert excellent antitumor activity. In the present research, 37 ß-carboline derivatives were synthesized and characterized. Their cytotoxicity, cell cycle, apoptosis, and CDK2- and DNA-binding affinity were evaluated. ß-Carboline monomer M3 and dimer D4 showed selective activity and higher cytotoxicity in tumor cells than in normal cells. Structure-activity relationships (SAR) indicated that the amide group at C3 enhanced the antitumor activity. M3 blocked the A549 (IC50 = 1.44 ± 1.10 µM) cell cycle in the S phase and inhibited A549 cell migration, while D4 blocked the HepG2 (IC50 = 2.84 ± 0.73 µM) cell cycle in the G0/G1 phase, both of which ultimately induced apoptosis. Furthermore, associations of M3 and D4 with CDK2 and DNA were proven by network pharmacology analysis, molecular docking, and western blotting. The expression level of CDK2 was downregulated in M3-treated A549 cells and D4-treated HepG2 cells. Moreover, M3 and D4 interact with DNA and CDK2 at sub-micromolar concentrations in endothermic interactions caused by entropy-driven adsorption processes, which means that the favorable entropy change (ΔS > 0) overcomes the unfavorable enthalpy change (ΔH > 0) and drives the spontaneous reaction (ΔG < 0). Overall, these results clarified the antitumor mechanisms of M3 and D4 through disrupting the cell cycle by binding DNA and CDK2, which demonstrated the potential of M3 and D4 as novel antiproliferative drugs targeting mitosis.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Molecular Docking Simulation , Cell Cycle , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , DNA , Carbolines/pharmacology , Carbolines/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure
6.
Chin J Nat Med ; 22(2): 171-177, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342569

ABSTRACT

This study reports the isolation of four new ß-carboline alkaloids (1-4) and six previously identified alkaloids (5-10) from the roots of Peganum harmala L. Among these compounds, 1 and 2 were characterized as rare ß-carboline-quinazoline dimers exhibiting axial chirality. Compound 3 possessed a unique 6/5/6/7 tetracyclic ring system with an azepine ring, and compound 4 was a novel annomontine ß-carboline. The structures of these compounds were elucidated by spectroscopic data and quantum mechanical calculations. The biosynthetic pathways of 1-3 were proposed. Additionally, the cytotoxicity of some isolates against four cancer cell lines (HL-60, A549, MDA-MB-231, and DU145) was evaluated. Notably, compound 4 exhibited significant cytotoxicity against HL-60, A549, and DU145 cells with IC50 values of 12.39, 12.80, and 30.65 µmol·L-1, respectively. Furthermore, compound 2 demonstrated selective cytotoxicity against HL-60 cells with an IC50 value of 17.32 µmol·L-1.


Subject(s)
Alkaloids , Peganum , Humans , Peganum/chemistry , Peganum/metabolism , Alkaloids/chemistry , Carbolines/chemistry , HL-60 Cells
7.
Photochem Photobiol ; 100(1): 87-100, 2024.
Article in English | MEDLINE | ID: mdl-37448143

ABSTRACT

This study reports valuable information regarding the presence and concentration of a series of photoactive ß-carboline (ßCs) alkaloids (norharmane, harmane, harmine, harmol, harmaline, and harmalol) and their distribution across the floral age and organs of Passiflora caerulea. UHPLC-MS/MS data reported herein reveal that the ßCs' content ranged from 1 to 110 µg kg-1 , depending on the floral organ and age. In certain physiologically relevant organs, such as anthers, ßCs' content was one order of magnitude higher than in other organs, suggesting a special role for ßCs in this specific organ. ßCs' content also varied in a structure-dependent manner. Alkaloids bearing a hydroxyl group at position C(7) of the main ßC ring were present at concentrations one order of magnitude higher than other ßC derivatives investigated. UV-visible and fluorescence spectroscopy of the flower extracts provided complementary information regarding other biologically relevant groups of chromophores (phenolic/indolic derivatives, flavonoids/carotenes, and chlorophylls). Since flowers are constantly exposed to solar radiation, the presence of photoactive ßCs in floral organs may have several (photo)biological implications that are further discussed.


Subject(s)
Alkaloids , Passiflora , Tandem Mass Spectrometry , Carbolines/chemistry
8.
J Med Chem ; 66(13): 9040-9056, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37314697

ABSTRACT

Agrochemical science prioritizes the discovery and effective synthesis of innovative and promising lead compounds. Herein, we developed an efficient column chromatography-free synthesis for ß-carboline 1-hydrazides via a mild CuBr2-catalyzed oxidation and investigated the antifungal and antibacterial activities and mechanisms for these compounds. In our study, compounds 4de (EC50 = 0.23 µg·mL-1) and 4dq (EC50 = 0.11 µg·mL-1) displayed the best efficacy, demonstrating enhancements in inhibitory activity of more than 20-fold against Ggt compared to silthiopham (EC50 = 2.39 µg·mL-1). Additionally, compound 4de (EC50 = 0.21 µg·mL-1) demonstrated outstanding in vitro antifungal activities as well as in vivo curative activities against Fg. According to preliminary mechanistic studies, ß-carboline 1-hydrazides led to the accumulation of reactive oxygen species, destruction of cell membranes, and dysregulation of histone acetylation. Furthermore, several substances exhibited antibacterial activity against Psg and Cms by preventing the development of bacterial biofilms.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antifungal Agents/pharmacology , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Carbolines/chemistry
9.
J Mol Biol ; 435(11): 168025, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37330290

ABSTRACT

Positron emission tomography (PET) imaging allows monitoring the progression of amyloid aggregation in the living brain. [18F]-Flortaucipir is the only approved PET tracer compound for the visualisation of tau aggregation. Here, we describe cryo-EM experiments on tau filaments in the presence and absence of flortaucipir. We used tau filaments isolated from the brain of an individual with Alzheimer's disease (AD), and from the brain of an individual with primary age-related tauopathy (PART) with a co-pathology of chronic traumatic encephalopathy (CTE). Unexpectedly, we were unable to visualise additional cryo-EM density for flortaucipir for AD paired helical or straight filaments (PHFs or SFs), but we did observe density for flortaucipir binding to CTE Type I filaments from the case with PART. In the latter, flortaucipir binds in a 1:1 molecular stoichiometry with tau, adjacent to lysine 353 and aspartate 358. By adopting a tilted geometry with respect to the helical axis, the 4.7 Å distance between neighbouring tau monomers is reconciled with the 3.5 Å distance consistent with π-π-stacking between neighbouring molecules of flortaucipir.


Subject(s)
Alzheimer Disease , Carbolines , Chronic Traumatic Encephalopathy , Intermediate Filaments , Radioactive Tracers , tau Proteins , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Cryoelectron Microscopy , Ligands , Positron-Emission Tomography/methods , tau Proteins/chemistry , Tauopathies/metabolism , Tauopathies/pathology , Intermediate Filaments/chemistry , Carbolines/chemistry , Protein Binding
10.
Arch Pharm (Weinheim) ; 356(7): e2300091, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37021551

ABSTRACT

As flavin adenine dinucleotide (FAD)-dependent enzymes, monoamine oxidases (MAOs) catalyze the oxidative deamination of various endogenous and exogenous amines. MAO-A inhibitors are thought to be effective therapeutic agents for treating neurological diseases including depression and anxiety. Due to the academic challenge of developing new human (h) MAO-A inhibitors and the potential for discovering substances with remarkable properties compared to existing MAO-A inhibitors, numerous research groups are looking into novel classes of chemical compounds that may function as selective hMAO-A inhibitors. ß-Carbolines are reported to be a prominent class of bioactive molecules exhibiting MAO-A inhibition. Chemically, ß-carboline is a tricyclic pyrido-3,4-indole ring. It has only recently been discovered that this chemotype has highly effective and specific MAO-A inhibitory activity. In this review, structure-activity relationship studies included in particular research publications from the 1960s to the present are discussed with regard to ß-carboline and its analogs. This comprehensive information helps to design and develop a new family of MAO-A inhibitors for the management of depressive disorders.


Subject(s)
Monoamine Oxidase Inhibitors , Monoamine Oxidase , Humans , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship , Monoamine Oxidase/metabolism , Carbolines/pharmacology , Carbolines/chemistry
11.
Eur J Med Chem ; 252: 115247, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36931118

ABSTRACT

ß-Carboline alkaloids are an eminent class of nitrogen-based natural alkaloids and therapeutic molecules which exert various pharmacological activities through diverse mechanisms. A lot of attention has recently been directed towards this moiety in order to develop effective antimalarial drugs. "Malaria", an acute febrile illness caused by diverse Plasmodium parasites, is a continuing and escalating problem that devastates economically less developed countries by significantly increased morbidity and mortality rates. The mounting parasite resistance towards the antimalarial drugs and augmenting the 'habitat of the insect vector' are creating a catastrophe, indicating an urgent need for new efficacious therapeutics to combat this tropical disease. This article comprehensively encapsulates the clinical and preclinical antimalarial scaffolds comprising ß-carboline moiety in their structure. Herein, various classes of natural and semi-synthetic analogues of ß-carbolines reported in the last decade (2011-2021) have been extensively studied and illustrated. This review will help the readers to develop an insight into the ß-carboline based antimalarials and molecular mechanisms lying behind their mode of action, which is anticipated to be beneficial for the future development of new ß-carboline based therapeutics.


Subject(s)
Alkaloids , Antimalarials , Plasmodium , Antimalarials/chemistry , Carbolines/pharmacology , Carbolines/chemistry , Alkaloids/chemistry , Plasmodium falciparum
12.
J Biol Chem ; 299(4): 104605, 2023 04.
Article in English | MEDLINE | ID: mdl-36918100

ABSTRACT

Pseudorabies virus (PRV) has become a "new life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2020. To identify novel anti-PRV agents, we screened a total of 107 ß-carboline derivatives and found 20 compounds displaying antiviral activity against PRV. Among them, 14 compounds showed better antiviral activity than acyclovir. We found that compound 45 exhibited the strongest anti-PRV activity with an IC50 value of less than 40 nM. Our in vivo studies showed that treatment with 45 significantly reduced the viral loads and protected mice challenged with PRV. To clarify the mode of action of 45, we conducted a time of addition assay, an adsorption assay, and an entry assay. Our results indicated that 45 neither had a virucidal effect nor affected viral adsorption while significantly inhibiting PRV entry. Using the FITC-dextran uptake assay, we determined that 45 inhibits macropinocytosis. The actin-dependent plasma membrane protrusion, which is important for macropinocytosis, was also suppressed by 45. Furthermore, the kinase DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) was predicted to be a potential target for 45. The binding of 45 to DYRK1A was confirmed by drug affinity responsive target stability and cellular thermal shift assay. Further analysis revealed that knockdown of DYRK1A by siRNA suppressed PRV macropinocytosis and the tumor necrosis factor alpha-TNF-induced formation of protrusions. These results suggested that 45 could restrain PRV macropinocytosis by targeting DYRK1A. Together, these findings reveal a unique mechanism through which ß-carboline derivatives restrain PRV infection, pointing to their potential value in the development of anti-PRV agents.


Subject(s)
Antiviral Agents , Carbolines , Herpesvirus 1, Suid , Animals , Humans , Mice , Acyclovir/pharmacology , Acyclovir/toxicity , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Carbolines/chemistry , Carbolines/pharmacology , Carbolines/therapeutic use , Gene Knockdown Techniques , Herpesvirus 1, Suid/drug effects , Inhibitory Concentration 50 , Pinocytosis/drug effects , Protein-Tyrosine Kinases/antagonists & inhibitors , Pseudorabies/drug therapy , Pseudorabies/prevention & control , Pseudorabies/virology , Virus Internalization/drug effects , HeLa Cells , Models, Chemical , Dyrk Kinases
13.
Bioorg Chem ; 133: 106401, 2023 04.
Article in English | MEDLINE | ID: mdl-36746025

ABSTRACT

Bis-ß-carboline alkaloids are widely distributed in natural products and represent a promising drug-like scaffold for discovering drugs and bioactive molecules. In this study, we utilized the structural simplification strategy to construct a novel bis-ß-carboline scaffold via "one-pot" condensation-Mannich reaction. The simplified bis-ß-carboline derivatives were obtained in good yield. Antitumor evaluation revealed most compounds, especially 3m, displayed potent antitumor activity (IC50 values for 3m: 0.96 µM âˆ¼ 1.52 µM). More importantly, 3m displayed valuable antitumor properties including anti-migration and anti-invasion activity against cancer cells, antiangiogenic and vascular-disrupting properties. Mechanistic studies revealed 3m potently inhibited both Top1 and Top2 activity, thus interfering with DNA synthesis in cancer cells. Taken together, this study developed a new synthetic methodology to construct a novel bis-ß-carboline scaffold, which represents a promising lead structure for antitumor drug discovery.


Subject(s)
Alkaloids , Antineoplastic Agents , Carbolines , Alkaloids/pharmacology , Alkaloids/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carbolines/pharmacology , Carbolines/chemistry , Molecular Structure , Structure-Activity Relationship
14.
Food Res Int ; 164: 112465, 2023 02.
Article in English | MEDLINE | ID: mdl-36738015

ABSTRACT

Harman and norharman were the most abundant ß-carboline-type heterocyclic amines (HCAs) detected in various foodstuffs. Unsaturated fatty acids in foods may undergo rapid oxidative deterioration during transportation, storage and heat treatment, forming reactive carbonyl species (RCS). This work studied the effects of acrolein, a highly reactive RCS, on the formation of harman and norharman in the tryptophan model system. Results showed that 0.005, 0.01, 0.015, 0.02, 0.05, 0.1 and 0.2 mmol of acrolein led to harman production increased by 528 %, 752 %, 981 %, 1172 %, 1375 %, 1288 % and 768 % respectively, and led to norharman formation increased by 116 %, 129 %, 152 %, 169 %, and 197 %, 185 % and 157 %, respectively. Furthermore, acrolein addition reduced the residue of tryptophan (up to 63.19 %), but increased the level of the intermediates including formaldehyde (up to 352 %), acetaldehyde (up to 491 %), (1S,3S)-1-Methyl-1,2,3,4-tetrahydro-ß-carboline-3-carboxylic acid (MTCA, up to 1936 %), and 1,2,3,4-tetrahydro-ß-carboline-3-carboxylicacid (THCA, up to 2142 %) in the tryptophan model system. Acrolein might react with tryptophan, harman and norharman to eliminate them directly. These data suggested that acrolein may contribute to harman and norharman formation through participating in the above complex chemical reactions. In addition, the content of harman and norharman produced in roast beef patties made of minced beef oxidized for 2, 4, 6, 8, and 10 days increased by 118 %, 188 %, 267 %, 137 %, and 48 %, respectively, and led to norharman formation increased by 140 %, 132 %, 90 %, 86 %, and 74 %, respectively compared with those made of fresh minced beef, which further illustrated that lipid oxidation products potentially contributed to harman and norharman formation.


Subject(s)
Acrolein , Harmine , Animals , Cattle , Models, Chemical , Tryptophan , Carbolines/chemistry
15.
J Nat Med ; 77(2): 397-402, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36689084

ABSTRACT

Two new ß-carboline alkaloids, anemonilins A and B (1-2), and two known ß-carboline alkaloids, flazine (3) and 4-(9H-ß-carbolin-l-yl)-4-oxo-butyric acid (4), were isolated from the roots of Anemone altaica. The structures of the isolated compounds were elucidated with spectroscopic and spectrometric methods (1D and 2DNMR, HRESIMS). Compounds 2 and 4 significantly attenuated the growth inhibition induced by lipopolysaccharide (LPS) in normal rat kidney tubule epithelioid (NRK52e) cells (p < 0.05 or p < 0.01). Furthermore, compound 2 significantly reduced the apoptosis (p < 0.05) and the caspase-3/9 expression of NRK52e cells induced by LPS.


Subject(s)
Alkaloids , Anemone , Rats , Animals , Lipopolysaccharides/pharmacology , Alkaloids/chemistry , Carbolines/chemistry , Molecular Structure
16.
Fitoterapia ; 166: 105437, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36693439

ABSTRACT

Two new ß-carboline alkaloids (1-2), 1-pyrrolidone propionyl-ß-carboline (1) and 1-(3-hydroxy-2-oxopiperidine-1-ethyl)-4,8-dimethoxyl-ß-carboline (2), named kumujantine W and J respectively, together with ten known compounds (3-12) were isolated from the stems of Picrasma quassioides (D. Don) Benn. Their structures were elucidated from spectral data including 1D and 2D NMR, UV, IR, HR-ESI-MS spectroscopic analysis and ECD calculations as well as by comparison to the reference databases or literature. The anti-inflammatory effects of these alkaloids (1-12) and six other ß-carboline alkaloids (13-18) in LPS-induced RAW 264.7 cells were evaluated by measuring nitric oxide (NO) concentrations. Among them, compounds 1, 3, 6, 15, and 17 could inhibit the secretion of NO, displaying significant anti-inflammatory activity without affecting cell viability in vitro, and 3D-QSAR analysis further revealed the influence of groups on the activity in ß-carboline alkaloids.


Subject(s)
Alkaloids , Picrasma , Animals , Mice , Picrasma/chemistry , Lipopolysaccharides , Molecular Structure , Quantitative Structure-Activity Relationship , RAW 264.7 Cells , Alkaloids/pharmacology , Alkaloids/chemistry , Carbolines/pharmacology , Carbolines/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
17.
Photochem Photobiol Sci ; 22(3): 487-501, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36402936

ABSTRACT

Harmaline (1) and harmalol (2) represent two 3,4-dihydro-ß-carboline (DHßCs) most frequently reported in a vast number of living systems. Fundamental aspects including the photosensitizing properties, cellular uptake, as well as the cyto- and phototoxicity of 1 and 2 were investigated herein. The molecular basis underlying the investigated processes are elucidated. Data reveal that both alkaloids show a distinctive pattern of extracellular DNA photodamage. Compound 1 induces a DNA photodamage profile dominated by oxidised purines and sites of base loss (AP sites), whereas 2 mostly induces single-strand breaks (SSBs) in addition to a small extent of purine oxidative damage. In both cases, DNA oxidative damage would occur through type I mechanism. In addition, a concerted hydrolytic attack is suggested as an extra mechanism accounting for the SSBs formation photoinduced by 2. Subcellular internalisation, cyto- and phototoxicity of 1 and 2 and the corresponding full-aromatic derivatives harmine (3) and harmol (4) also showed quite distinctive patterns in a structure-dependent manner. These results are discussed in the framework of the potential biological, biomedical and/or pharmacological roles reported for these alkaloids. The subtle structural difference (i.e., the exchange of a methoxy group for a hydroxyl substituent at C(7)) between harmaline and harmalol, gives rise to distinctive photosensitizing and subcellular localisation patterns.


Subject(s)
Alkaloids , Harmaline , Harmaline/pharmacology , Harmaline/chemistry , Carbolines/pharmacology , Carbolines/chemistry , DNA
18.
Bioorg Chem ; 131: 106313, 2023 02.
Article in English | MEDLINE | ID: mdl-36516521

ABSTRACT

In a quest for effective cancer targeted drug therapy, a series of new ß-carboline tethered indole-3-glyoxylamide derivatives, conjoining salient pharmacophoric properties with prominent cytotoxicity, were synthesized. The in vitro cytotoxic ability of the compounds was established, and many of the compounds exhibited remarkable cytotoxicity (IC50 < 10 µM) on human cancer cell lines like HCT116, A549, SK-MEL-28, and MCF7. Precisely, compound 12x expressed the best cytotoxic potential against melanoma cancer cell line (SK-MEL-28) with an IC50 value of 4.37 µM. In addition, cytotoxicity evaluation against normal kidney cell line (NRK52E) entrenched the cytospecificity and selectivity index of 12x. The traditional apoptosis assays advised morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented nuclei, and generation of ROS. The flow cytometric analysis revealed significant early and slight late-stage induction of apoptosis. The target-based physiochemical assays indicated the ability of compound 12x to bind with DNA and inhibition of Topoisomerase II. Moreover, molecular modeling studies affirm the excellent DNA intercalation potential and stabilized interactions of 12x with DNA base pairs. In silico prediction of physicochemical parameters revealed the promising drug-like properties of the synthesized derivatives.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Molecular Structure , Structure-Activity Relationship , DNA/chemistry , Antineoplastic Agents/chemistry , Carbolines/pharmacology , Carbolines/chemistry , Computer Simulation , DNA Topoisomerases, Type II/metabolism , Drug Screening Assays, Antitumor , Cell Proliferation , Apoptosis , Cell Line, Tumor
19.
Methods Mol Biol ; 2558: 97-114, 2023.
Article in English | MEDLINE | ID: mdl-36169858

ABSTRACT

Monoamine oxidase (MAO) enzymes (MAO A and B) catalyze the oxidative deamination of biogenic amines, neurotransmitters, and xenobiotic amines and contribute to the regulation of the content of these active substances in mammalian organisms. The oxidation of biogenic amines by MAO produces hydrogen peroxide (H2O2) and aldehydes that represent risk factors for oxidative injury. The inhibitors of MAO are useful as antidepressants and neuroprotective agents. Usually, the assays of MAO determine amine deamination products or measure the H2O2 released by using direct spectrophotometric or fluorimetric methods. Direct methods are more prone to interferences and can afford inaccurate results. Those limitations can be avoided by using chromatographic techniques. This work describes a chromatographic method to assay MAO A and MAO B activity by using kynuramine as a nonselective substrate and the subsequent analysis of 4-hydroxyquinoline by RP-HPLC-DAD-fluorescence and mass spectrometry (MS). Alternatively, the assay uses the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin as a substrate of MAO that is oxidized (bioactivated) to neurotoxic pyridinium cations which are analyzed by HPLC. These methods are applied to assess the inhibition of MAO by bioactive ß-carboline alkaloids occurring in foods, plants, and biological systems.


Subject(s)
Alkaloids , Neuroprotective Agents , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Aldehydes , Alkaloids/analysis , Animals , Carbolines/chemistry , Carbolines/pharmacology , Cations , Chromatography, High Pressure Liquid/methods , Hydrogen Peroxide , Kynuramine , Mammals , Mass Spectrometry , Monoamine Oxidase , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Neurotoxins/analysis , Xenobiotics
20.
Front Immunol ; 13: 922183, 2022.
Article in English | MEDLINE | ID: mdl-36325324

ABSTRACT

ß-Carbolines are potentially strong alkaloids with a wide range of bioactivities, and their dimers exhibit stronger antitumor activity other than the monomers. However, the detailed mechanisms of the ß-carboline dimers in inhibiting sarcoma (SARC) remain unclear. The results showed that ß-carboline-3-carboxylic acid dimers Comp1 and Comp2, which were synthesized in our lab and modified at the N9 position and linked at the C3 position, exhibited effective inhibition activity on MG-63 proliferation (IC50 = 4.6µM). Meanwhile, the large scale transcriptome profiles of SARC from The Cancer Genome Atlas (TCGA) were analyzed, and found that abnormal expression of genes relevant to apoptosis, cell cycle, and signaling pathways of Hedgehog, HIF, Ras involved in the SARC pathogenesis. Interestingly, both dimers could promote the apoptosis and arrest the cell cycle in S phase to inhibit proliferation of MG-63. Moreover, Comp1 and Comp2 inhibited the expression CDK2, CCNA2, DBF4, and PLK1 associated with various immune cells and cell cycle in MG-63. Remarkably, drug-target interaction network analysis showed that numerous proteins involved in cell cycle were the potential targets of Comp1 and Comp2, especially CCNA2. Further molecular docking, isothermal titration calorimetry (ITC) and Cellular Thermal Shift Assay (CETSA) confirmed that both dimers could directly interact with CCNA2, which is significantly correlated with CD4+ T cells, by strong hydrophobic interactions (Kd=5.821 ×106 N). Meanwhile, the levels of CCNA2 and CDK2 were inhibited to decrease in MG-63 by both dimer treatments at transcription and protein levels, implying that Comp1 and Comp2 blocked the interaction between CCNA2 and CDK2 through competitive binding with CCNA2 to arrest the cell cycle of MG-63 cells in the S phase. Additionally, the transcriptome profiles of ß-carboline-treated mice from Gene Expression Omnibus (GEO) were obtained, and found that similar antitumor mechanism was shared among ß-carboline derivatives. Overall, our results elucidated the antitumor mechanisms of Comp1 and Comp2 through dual-suppressing the function of CCNA2 to profoundly arrest cell cycle of MG-63, then effectively inhibited cell proliferation of MG-63. These results provide new insights into the antitumor mechanism of ß-carboline dimers and new routes of various novel cancer-related drug targets for future possible cancer therapy.


Subject(s)
Antineoplastic Agents , Sarcoma , Animals , Mice , Molecular Docking Simulation , Cell Line, Tumor , Carbolines/pharmacology , Carbolines/chemistry , Cell Cycle Checkpoints , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...