Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97.918
Filter
1.
PeerJ ; 12: e17393, 2024.
Article in English | MEDLINE | ID: mdl-38799067

ABSTRACT

Inland waters are crucial in the carbon cycle, contributing significantly to the global CO2 fluxes. Carbonate lakes may act as both sources and sinks of CO2 depending on the interactions between the amount of dissolved inorganic carbon (DIC) inputs, lake metabolisms, and geochemical processes. It is often difficult to distinguish the dominant mechanisms driving CO2 dynamics and their effects on CO2 emissions. This study was undertaken in three groundwater-fed carbonate-rich lakes in central Spain (Ruidera Lakes), severely polluted with nitrates from agricultural overfertilization. Diel and seasonal (summer and winter) changes in CO2 concentration (CCO2) DIC, and CO2 emissions-(FCO2)-, as well as physical and chemical variables, including primary production and phytoplanktonic chlorophyll-a were measured. In addition, δ13C-DIC, δ13C-CO2 in lake waters, and δ13C of the sedimentary organic matter were measured seasonally to identify the primary CO2 sources and processes. While the lakes were consistently CCO2 supersaturated and FCO2 was released to the atmosphere during both seasons, the highest CCO2 and DIC were in summer (0.36-2.26 µmol L-1). Our results support a strong phosphorus limitation for primary production in these lakes, which impinges on CO2 dynamics. External DIC inputs to the lake waters primarily drive the CCO2 and, therefore, the FCO2. The δ13C-DIC signatures below -12‰  confirmed the primary geogenic influence on DIC. As also suggested by the high values on the calcite saturation index, the Miller-Tans plot revealed that the CO2 source in the lakes was close to the signature provided by the fractionation of δ13C-CO2 from calcite precipitation. Therefore, the main contribution behind the CCO2 values found in these karst lakes should be attributed to the calcite precipitation process, which is temperature-dependent according to the seasonal change observed in δ13C-DIC values. Finally, co-precipitation of phosphate with calcite could partly explain the observed low phytoplankton production in these lakes and the impact on the contribution to increasing greenhouse gas emissions. However, as eutrophication increases and the soluble reactive phosphorus (SRP) content increases, the co-precipitation of phosphate is expected to be progressively inhibited. These thresholds must be assessed to understand how the CO32- ions drive lake co-precipitation dynamics. Carbonate regions extend over 15% of the Earth's surface but seem essential in the CO2 dynamics at a global scale.


Subject(s)
Carbon Dioxide , Lakes , Seasons , Lakes/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Spain , Environmental Monitoring/methods , Carbon Cycle , Phytoplankton/metabolism
2.
J Environ Manage ; 359: 121052, 2024 May.
Article in English | MEDLINE | ID: mdl-38704956

ABSTRACT

The cement industry plays a significant role in global carbon emissions, underscoring the urgent need for measures to transition it toward a net-zero carbon footprint. This paper presents a detailed plan to this end, examining the current state of the cement sector, its carbon output, and the imperative for emission reduction. It delves into various low-CO2 technologies and emerging innovations such as alkali-activated cements, calcium looping, electrification, and bio-inspired materials. Economic and policy factors, including cost assessments and governmental regulations, are considered alongside challenges and potential solutions. Concluding with future prospects, the paper offers recommendations for policymakers, industry players, and researchers, highlighting the roadmap's critical role in achieving a carbon-neutral cement sector.


Subject(s)
Carbon , Construction Materials , Carbon Dioxide , Carbon Footprint
3.
Nat Commun ; 15(1): 4490, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802424

ABSTRACT

Mercury (Hg), a potent neurotoxin posing risks to human health, is cycled through vegetation uptake, which is susceptible to climate change impacts. However, the extent and pattern of these impacts are largely unknown, obstructing predictions of Hg's fate in terrestrial ecosystems. Here, we evaluate the effects of climate change on vegetation elemental Hg [Hg(0)] uptake using a state-of-the-art global terrestrial Hg model (CLM5-Hg) that incorporates plant physiology. In a business-as-usual scenario, the terrestrial Hg(0) sink is predicted to decrease by 1870 Mg yr-1 in 2100, that is ~60% lower than the present-day condition. We find a potential decoupling between the trends of CO2 assimilation and Hg(0) uptake process by vegetation in the 21st century, caused by the decreased stomatal conductance with increasing CO2. This implies a substantial influx of Hg into aquatic ecosystems, posing an elevated threat that warrants consideration during the evaluation of the effectiveness of the Minamata Convention.


Subject(s)
Carbon Dioxide , Climate Change , Ecosystem , Mercury , Plants , Carbon Dioxide/metabolism , Mercury/metabolism , Plants/metabolism
4.
PLoS One ; 19(5): e0304830, 2024.
Article in English | MEDLINE | ID: mdl-38820469

ABSTRACT

Over the last twenty years, there has been swift growth in industrialization and technological advancements, driving economic progress. Nevertheless, it is inevitable that these sectors will bring about environmental shifts. Thus far, endeavors have been undertaken to assess the influence of industrialization and technological advancements on environmental deterioration. Additionally, the extensive discussion surrounding the impact of financial development, trade openness, and technological innovation on the environment has not yielded conclusive empirical findings. Studies often operate under the assumption of symmetric relationships, potentially leading to biased results. Adding to the discussion on the drivers of carbon neutrality, the time-dependent effects of critical aspects such as financial development and technological innovation should inform meaningful policies for environmental management. This article explores the time-varying causal association between trade openness, industrialization, financial development, technological innovation, and CO2 emissions in Thailand using novel time-varying Granger causality tests. The time-varying causality outcomes demonstrate that the associations change significantly over time, in contrast to the results of Toda-Yamamoto causality. Overall, there exists a bidirectional relationship between industrialization, financial development, trade openness, technological innovation, and CO2 emissions over different time sequences. These outcomes have implications for both policy and research.


Subject(s)
Economic Development , Industrial Development , Inventions , Thailand , Industrial Development/trends , Inventions/economics , Commerce/economics , Carbon Dioxide/analysis , Humans , Technology/economics , Time Factors
6.
Parasitol Res ; 123(5): 218, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777889

ABSTRACT

The most widely used attractant to capture adult female mosquitoes is CO2. However, there are also baits available on the market that emit a scent resembling human skin. These baits were specifically designed to attract highly anthropophilic species such as Aedes albopictus and Aedes aegypti. In this study, we compare the effectiveness of CDC traps baited either with CO2 or with a commercial blend simulating skin odor, BG-Sweetscent, for trapping female mosquitoes during daylight hours in an urban reserve in the City of Buenos Aires. We employed a hurdle generalized linear mixed model to analyze trap capture probability and the number of mosquitoes captured per hour, considering the effects of attractant, mosquito species, and their interaction. Traps baited with CO2 captured ten mosquito species, while those baited with BG-Sweetscent captured six in overall significantly lower abundance. The odds of capturing mosquitoes were 292% higher for the CO2-baited traps than for those baited with BG-Sweetscent. No evidence of a combined effect of attractant type and species on female mosquito captures per hour was found. Results indicated that CDC traps baited with CO2 were more effective than those baited with BG-Sweetscent in capturing more mosquito species and a higher number of mosquitoes within each species, even if the species captured with CO2 exhibited a certain level of anthropophilia. This result has practical implications for mosquito surveillance and control in urban natural reserves.


Subject(s)
Culicidae , Mosquito Control , Animals , Female , Mosquito Control/methods , Culicidae/physiology , Culicidae/classification , Culicidae/drug effects , Pheromones/pharmacology , Carbon Dioxide , Cities , Odorants/analysis , Argentina , Humans
8.
Glob Chang Biol ; 30(5): e17336, 2024 May.
Article in English | MEDLINE | ID: mdl-38775780

ABSTRACT

Climate change and land-use change are widely altering freshwater ecosystem functioning and there is an urgent need to understand how these broad stressor categories may interact in future. While much research has focused on mean temperature increases, climate change also involves increasing variability of both water temperature and flow regimes and increasing concentrations of atmospheric CO2, all with potential to alter stream invertebrate communities. Deposited fine sediment is a pervasive land-use stressor with widespread impacts on stream invertebrates. Sedimentation may be managed at the catchment scale; thus, uncovering interactions with these three key climate stressors may assist mitigation of future threats. This is the first experiment to investigate the individual and combined effects of enriched CO2, heatwaves, flow velocity variability, and fine sediment on realistic stream invertebrate communities. Using 128 mesocosms simulating small stony-bottomed streams in a 7-week experiment, we manipulated dissolved CO2 (ambient; enriched), fine sediment (no sediment; 300 g dry sediment), temperature (ambient; two 7-day heatwaves), and flow velocity (constant; variable). All treatments changed community composition. CO2 enrichment reduced abundances of Orthocladiinae and Chironominae and increased Copepoda abundance. Variable flow velocity had only positive effects on invertebrate abundances (7 of 13 common taxa and total abundance), in contrast to previous experiments showing negative impacts of reduced velocity. CO2 was implicated in most stressor interactions found, with CO2 × sediment interactions being most common. Communities forming under enriched CO2 conditions in sediment-impacted mesocosms had ~20% fewer total invertebrates than those with either treatment alone. Copepoda abundances doubled in CO2-enriched mesocosms without sediment, whereas no CO2 effect occurred in mesocosms with sediment. Our findings provide new insights into potential future impacts of climate change and land use in running freshwaters, in particular highlighting the potential for elevated CO2 to interact with fine sediment deposition in unpredictable ways.


Subject(s)
Carbon Dioxide , Climate Change , Geologic Sediments , Invertebrates , Rivers , Animals , Carbon Dioxide/analysis , Geologic Sediments/analysis , Invertebrates/physiology , Hot Temperature , Water Movements , Ecosystem
9.
Environ Monit Assess ; 196(6): 563, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771410

ABSTRACT

The greenhouse gas (GHG) emissions inventories in our context result from the production of electricity from fuel oil at the Mbalmayo thermal power plant between 2016 and 2020. Our study area is located in the Central Cameroon region. The empirical method of the second level of industrialisation was applied to estimate GHG emissions and the application of the genetic algorithm-Gaussian (GA-Gaussian) coupling method was used to optimise the estimation of GHG emissions. Our work is of an experimental nature and aims to estimate the quantities of GHG produced by the Mbalmayo thermal power plant during its operation. The search for the best objective function using genetic algorithms is designed to bring us closer to the best concentration, and the Gaussian model is used to estimate the concentration level. The results obtained show that the average monthly emissions in kilograms (kg) of GHGs from the Mbalmayo thermal power plant are: 526 kg for carbon dioxide (CO2), 971.41 kg for methane (CH4) and 309.41 kg for nitrous oxide (N2O), for an average monthly production of 6058.12 kWh of energy. Evaluation of the stack height shows that increasing the stack height helps to reduce local GHG concentrations. According to the Cameroonian standards published in 2021, the limit concentrations of GHGs remain below 30 mg/m3 for CO2 and 200 µg/m3 for N2O, while for CH4 we reach the limit value of 60 µg/m3. These results will enable the authorities to take appropriate measures to reduce GHG concentrations.


Subject(s)
Air Pollutants , Algorithms , Environmental Monitoring , Greenhouse Gases , Methane , Power Plants , Greenhouse Gases/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Cameroon , Methane/analysis , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Air Pollution/statistics & numerical data , Normal Distribution
10.
Lasers Med Sci ; 39(1): 134, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771416

ABSTRACT

PURPOSE: Climate change has serious consequences for our wellbeing. Healthcare systems themselves contribute significantly to our total carbon footprint, of which emissions from surgical practice are a major component. The primary sources of emissions identified are anaesthetic gases, disposal of single-use equipment, energy usage, and travel to and from clinical areas. We sought to quantify the waste generated by laser surgery which, to our knowledge, has not been previously reported. METHODS: The carbon footprint of two laser centres operating within the United Kingdom were measured. The internationally recognised Greenhouse Gas Protocol was used as a guiding framework to classify sources of waste and conversion factors issued by the UK government were used to quantify emissions. RESULTS: The total carbon footprints per day at each unit were 299.181 carbon dioxide equivalents (kgCo2eq) and 121.512 kgCO2eq, respectively. We found the carbon footprint of individual laser treatments to be approximately 15 kgCO2eq per procedure. The biggest overall contributor to the carbon footprint was found to be the emissions generated from staff, patient and visitor travel. This was followed by electricity usage, and indirect emissions from physical waste and laundry. CONCLUSIONS: The carbon footprint of laser procedures was considerably less than the average surgical operation in the UK. This initial study measures the carbon footprint of a laser center in a clinical setting and allows us to identify where improvements can be made to eventually achieve a net carbon zero health care system.


Subject(s)
Carbon Footprint , Carbon Footprint/statistics & numerical data , United Kingdom , Humans , Laser Therapy/methods , Laser Therapy/statistics & numerical data , Greenhouse Gases/analysis , Carbon Dioxide/analysis
11.
J Environ Manage ; 359: 121004, 2024 May.
Article in English | MEDLINE | ID: mdl-38710146

ABSTRACT

In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.


Subject(s)
Aerosols , Carbon Dioxide , Carbon Isotopes , Particulate Matter , Carbon Dioxide/analysis , China , Particulate Matter/analysis , Aerosols/analysis , Carbon Isotopes/analysis , Coal , Air Pollutants/analysis , Carbon/analysis , Humans , Family Characteristics , Rural Population , Environmental Monitoring
12.
J Environ Manage ; 359: 121037, 2024 May.
Article in English | MEDLINE | ID: mdl-38714039

ABSTRACT

Russia ranks among the top five countries worldwide in terms of carbon emissions, with the energy, transportation, and manufacturing sectors as the major contributors. This poses a significant threat to both current and future generations. Russia faces challenges in achieving Sustainable Development Goal 13, necessitating the implementation of more innovative policies to promote environmental sustainability. Considering this alarming situation, this study investigates the role of financial regulations, energy price uncertainty, and climate policy uncertainty in reshaping sectoral CO2 emissions in Russia. This study utilizes a time-varying bootstrap rolling-window causality (BRW) approach using quarterly data from 1990 to 2021. The stability test for parameters indicates instability, suggesting that the full sample causality test may yield incorrect inferences. Thus, the BRW approach is employed for valid inferences. Our findings confirm the time-varying negative impact of financial regulations on CO2 emissions from energy, manufacturing, and transportation sectors. Additionally, findings confirm time-varying positive impact of energy prices and climate policy uncertainty on CO2 emissions from the energy, manufacturing, and transportation sectors. Strong financial regulations and stable energy and climate policies are crucial for achieving sustainability, highlighting significant policy implications for policymakers and stakeholders.


Subject(s)
Carbon Dioxide , Uncertainty , Carbon Dioxide/analysis , Transportation , Climate Change , Environmental Policy , Sustainable Development , Russia
13.
Environ Sci Technol ; 58(20): 8724-8735, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717952

ABSTRACT

Building and protecting soil organic carbon (SOC) are critical to agricultural productivity, soil health, and climate change mitigation. We aim to understand how mechanisms at the organo-mineral interfaces influence SOC persistence in three contrasting soils (Luvisol, Vertisol, and Calcisol) under long-term free air CO2 enrichment conditions. A continuous wheat-field pea-canola rotation was maintained. For the first time, we provided evidence to a novel notion that persistent SOC is molecularly simple even under elevated CO2 conditions. We found that the elevated CO2 condition did not change the total SOC content or C forms compared with the soils under ambient CO2 as identified by synchrotron-based soft X-ray analyses. Furthermore, synchrotron-based infrared microspectroscopy confirmed a two-dimensional microscale distribution of similar and less diverse C forms in intact microaggregates under long-term elevated CO2 conditions. Strong correlations between the distribution of C forms and O-H groups of clays can explain the steady state of the total SOC content. However, the correlations between C forms and clay minerals were weakened in the coarse-textured Calcisol under long-term elevated CO2. Our findings suggested that we should emphasize identifying management practices that increase the physical protection of SOC instead of increasing complexity of C. Such information is valuable in developing more accurate C prediction models under elevated CO2 conditions and shift our thinking in developing management practices for maintaining and building SOC for better soil fertility and future environmental sustainability.


Subject(s)
Carbon Dioxide , Carbon , Soil , Carbon Dioxide/chemistry , Soil/chemistry , Climate Change
14.
Sci Total Environ ; 931: 172942, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38719032

ABSTRACT

Biochar is increasingly used in climate-smart agriculture, yet its impact on greenhouse gas (GHG) emissions and soil carbon (C) sequestration remains poorly understood. This study examined biochar-mediated changes in soil properties and their contribution to C stabilization and GHG mitigation by evaluating four types of biochar. Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions, soil chemical and biological properties, and soil organic carbon (SOC) mineralization kinetics were monitored using greenhouse, laboratory, and modeling experiments. Three pine wood biochars pyrolyzed at 460 °C (PB-460), 500 °C (PB-500), 700 °C (PB-700), and one pine bark biochar from gasification at 760 °C (GB-760) were added into soil at 1 % w/w basis. Soils amended with biochar were used to cultivate sorghum for three months in a greenhouse, followed by three months of laboratory incubation. Data obtained from laboratory incubation was modeled using various statistical approaches. The PB-500 and PB-700 reduced cumulative N2O-N emissions by 68.5 % and 73.9 % and CO2 equivalent C emissions by 66.9 % and 72.4 %, respectively, compared to unamended control. The N2O emissions were positively associated with soil nitrate N, available P, and biochar ash content while negatively associated with SOC. The CO2 emission was negatively related to biochar C:N ratio and volatile matter content. Biochar amended soils had 49.2 % (PB-500) to 87.7 % (PB-700) greater SOC and 22.9 % (PB-700) to 48.1 % (GB-760) greater sorghum yield than the control. While PB-700 had more saprophytes than the control, the GB-760 yielded a greater yield than biochars prepared by pyrolysis. Microbial biomass C was 7.23 to 23.3 % greater in biochar amended soils than in control. The double exponential decay model best explained the dynamics of C mineralization, which was associated with initial soil nitrate N and available P positively and total fungi and protozoa biomass negatively. Biochar amendment could be a climate smart agricultural strategy. Pyrolysis pine wood biochar showed the greatest potential to reduce GHG emissions and enhance SOC storage and stability, and gasification biochar contributed more to SOC storage and increased crop yield.


Subject(s)
Carbon , Charcoal , Greenhouse Gases , Soil , Charcoal/chemistry , Soil/chemistry , Greenhouse Gases/analysis , Carbon/analysis , Forests , Carbon Sequestration , Nitrous Oxide/analysis , Carbon Dioxide/analysis , Agriculture/methods , Air Pollutants/analysis
15.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38716561

ABSTRACT

Methane (CH4) produced from enteric fermentation is a potent greenhouse gas produced by ruminant animals. Multiple measurements are required across life stages to develop an understanding of how CH4 output changes throughout the animal's lifetime. The objectives of the current study were to estimate CH4 output across life stages in sheep and to investigate the relationship between CH4 output and dry matter (DM) intake (DMI). Data were generated on a total of 266 female Suffolk and Texel animals. Methane and carbon dioxide (CO2) output, estimated using portable accumulation chambers, and DMI, estimated using the n-alkane technique outdoors and using individual penning indoors, were quantified across the animal's life stage; as lambs (<12 mo), nulliparous hoggets (12 to 24 mo) and ewes (primiparous or greater; > 24 mo). Ewes were further classified as pregnant, lactating, and dry (non-pregnant and non-lactating). Multiple measurements were taken within and across the life stages of the same animals. A linear mixed model was used to determine if CH4 and CO2 output differed across life stages and using a separate linear mixed model the factors associated with CH4 output within each life stage were also investigated. Methane, CO2 output, and DMI differed by life stage (P < 0.05), with lactating ewes producing the greatest amount of CH4 (25.99 g CH4/d) and CO2 (1711.6 g CO2/d), while also having the highest DMI (2.18 kg DM/d). Methane output differed by live-weight of the animals across all life stages (P < 0.001). As ewe body condition score increased CH4 output declined (P < 0.05). Correlations between CH4 output measured across life stages ranged from 0.26 (SE 0.08; lambs and lactating ewes) to 0.59 (SE 0.06; hoggets and pregnant ewes), while correlations between CO2 output measured across life stages ranged from 0.12 (SE 0.06; lambs and hoggets) to 0.65 (SE 0.06; hoggets and lactating ewes). DMI was moderately correlated with CH4 (0.44; SE 0.04) and CO2 output (0.59; SE 0.03). Results from this study provide estimates of CH4 output across life stages in a pasture-based sheep production system and offer valuable information for the national inventory and the marginal abatement cost curve on the optimum time to target mitigation strategies.


Obtaining accurate estimates of methane (CH4) output across life stages is important to assess how CH4 output changes throughout the production cycle in pasture-based sheep production systems. This study investigated the factors associated with CH4 output at each life stage (lambs, hoggets, pregnant, lactating, and dry ewes), the relationship between CH4 output measured across life stages and the relationship between CH4 output and dry matter intake (DMI) in an Irish lowland sheep production system. Methane and carbon dioxide (CO2) output and DMI were measured on 266 purebred Suffolk and Texel females across their lifetime. Lactating ewes produced the highest CH4 and CO2 output, along with having the highest DMI. Across all life stages, CH4 output increased with increasing live weight while CH4 output decreased as body condition score increased. Weak to moderate relationships were found between CH4 output measured across life stages, with the strength of the relationship decreasing as the time between life stages increased. A positive relationship was found between DMI and CH4 output. Results from this study lead to the development of a profile of CH4 output across the production cycle of a pasture-based sheep system.


Subject(s)
Carbon Dioxide , Lactation , Methane , Animals , Methane/metabolism , Female , Sheep/growth & development , Sheep/physiology , Carbon Dioxide/metabolism , Lactation/physiology , Pregnancy
16.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747275

ABSTRACT

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Subject(s)
Carbon Dioxide , Chitosan , Cinnamomum zeylanicum , Drug Liberation , Nanoparticles , Silicon Dioxide , Chitosan/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/chemistry , Porosity , Cinnamomum zeylanicum/chemistry , Drug Carriers/chemistry , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Delayed-Action Preparations
17.
PLoS Biol ; 22(5): e3002592, 2024 May.
Article in English | MEDLINE | ID: mdl-38691548

ABSTRACT

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Subject(s)
Arabidopsis , Carbon Dioxide , Models, Biological , Plant Stomata , Signal Transduction , Plant Stomata/drug effects , Plant Stomata/metabolism , Plant Stomata/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Computer Simulation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
18.
Elife ; 132024 May 10.
Article in English | MEDLINE | ID: mdl-38727716

ABSTRACT

PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.


Subject(s)
Carbon Dioxide , Homeodomain Proteins , Transcription Factors , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Carbon Dioxide/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Rats , Gene Knockdown Techniques , Male , Hypoventilation/genetics , Hypoventilation/congenital , Hypoventilation/metabolism , Chemoreceptor Cells/metabolism , Rats, Sprague-Dawley , Sleep Apnea, Central/genetics , Sleep Apnea, Central/metabolism , Neurons/metabolism , Neurons/physiology
19.
Sci Adv ; 10(19): eadk7283, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728392

ABSTRACT

Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.


Subject(s)
Carbonic Anhydrases , Cyanobacteria , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/chemistry , Cyanobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/enzymology , Allosteric Regulation , Phylogeny , Ribulosephosphates/metabolism , Models, Molecular , Protein Multimerization , Carbon Dioxide/metabolism , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
20.
Crit Care ; 28(1): 146, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693569

ABSTRACT

PURPOSE: A systematic review and meta-analysis to evaluate the impact of extracorporeal carbon dioxide removal (ECCO2R) on gas exchange and respiratory settings in critically ill adults with respiratory failure. METHODS: We conducted a comprehensive database search, including observational studies and randomized controlled trials (RCTs) from January 2000 to March 2022, targeting adult ICU patients undergoing ECCO2R. Primary outcomes were changes in gas exchange and ventilator settings 24 h after ECCO2R initiation, estimated as mean of differences, or proportions for adverse events (AEs); with subgroup analyses for disease indication and technology. Across RCTs, we assessed mortality, length of stay, ventilation days, and AEs as mean differences or odds ratios. RESULTS: A total of 49 studies encompassing 1672 patients were included. ECCO2R was associated with a significant decrease in PaCO2, plateau pressure, and tidal volume and an increase in pH across all patient groups, at an overall 19% adverse event rate. In ARDS and lung transplant patients, the PaO2/FiO2 ratio increased significantly while ventilator settings were variable. "Higher extraction" systems reduced PaCO2 and respiratory rate more efficiently. The three available RCTs did not demonstrate an effect on mortality, but a significantly longer ICU and hospital stay associated with ECCO2R. CONCLUSIONS: ECCO2R effectively reduces PaCO2 and acidosis allowing for less invasive ventilation. "Higher extraction" systems may be more efficient to achieve this goal. However, as RCTs have not shown a mortality benefit but increase AEs, ECCO2R's effects on clinical outcome remain unclear. Future studies should target patient groups that may benefit from ECCO2R. PROSPERO Registration No: CRD 42020154110 (on January 24, 2021).


Subject(s)
Carbon Dioxide , Humans , Carbon Dioxide/analysis , Carbon Dioxide/blood , Pulmonary Gas Exchange/physiology , Respiration, Artificial/methods , Respiratory Insufficiency/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...