Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Sci Total Environ ; 926: 171688, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38492606

ABSTRACT

Ocean acidification (OA) driven by elevated carbon dioxide (CO2) levels is expected to disturb marine ecological processes, including the formation and control of harmful algal blooms (HABs). In this study, the effects of rising CO2 on the allelopathic effects of macroalgae Ulva pertusa to a toxic dinoflagellate Karenia mikimotoi were investigated. It was found that high level of CO2 (1000 ppmv) promoted the competitive growth of K. mikimotoi compared to the group of present ambient CO2 level (420ppmv), with the number of algal cell increased from 32.2 × 104 cells/mL to 36.75 × 104 cells/mL after 96 h mono-culture. Additionally, rising CO2 level weakened allelopathic effects of U. pertusa on K. mikimotoi, as demonstrated by the decreased inhibition rate (50.6 % under the original condition VS 34.3 % under the acidified condition after 96 h co-culture) and the decreased reactive oxygen species (ROS) level, malondialdehyde (MDA) content, antioxidant enzymes activity (superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT) and non-enzymatic antioxidants (glutathione (GSH) and ascorbic acid (ascorbate, vitamin C). Indicators for cell apoptosis of K. mikimotoi including decreased caspase-3 and -9 protease activity were observed when the co-cultured systems were under rising CO2 exposure. Furthermore, high CO2 level disturbed fatty acid synthesis in U. pertusa and significantly decreased the contents of fatty acids with allelopathy, resulting in the allelopathy weakening of U. pertusa. Collectively, rising CO2 level promoted the growth of K. mikimotoi and weakened allelopathic effects of U. pertusa on K. mikimotoi, indicating the increased difficulties in controlling K. mikimotoi using macroalgae in the future.


Subject(s)
Dinoflagellida , Seaweed , Carbon Dioxide/toxicity , Hydrogen-Ion Concentration , Seawater , Dinoflagellida/physiology , Harmful Algal Bloom
2.
Aquat Toxicol ; 270: 106885, 2024 May.
Article in English | MEDLINE | ID: mdl-38479125

ABSTRACT

Rising carbon dioxide (CO2) in aquatic ecosystems due to climate change is a challenge for aquatic ectotherms. We examined whether interindividual variation in behavioural responses to CO2 could predict how a teleost fish would respond to elevated CO2 for multiple phenotypic and molecular traits. To this end, we first quantified behavioural responses of individuals exposed to acute elevated CO2, and used these to assign individuals as either high or low responders relative to the population mean. Subsequently, we exposed both high and low responders to elevated CO2 for 6 weeks and quantified the effect on body condition, behaviour, and mRNA transcript responses of gill and liver genes associated with relevant physiological processes. Generally, we found few relationships between the phenotypic groups and body condition and behaviour following the CO2 exposure period; however, stark differences between the phenotypic groups with respect to gene transcripts from each tissue related to various processes were found, mostly independent of CO2 exposure. The most pronounced changes were in the gill transcripts related to acid-base regulation, suggesting that the observed behavioural variation used to assign fish to phenotypic groups may have an underlying molecular origin. Should the link between behaviour and gene transcripts be shown to have a fitness advantage and be maintained across generations, interindividual variation in behavioural responses to acute CO2 exposure may be a viable and non-invasive tool to predict future population responses to elevated aquatic CO2.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Oryzias/genetics , Carbon Dioxide/toxicity , RNA, Messenger/genetics , Ecosystem , Water Pollutants, Chemical/toxicity
3.
Environ Toxicol ; 39(5): 3188-3197, 2024 May.
Article in English | MEDLINE | ID: mdl-38356236

ABSTRACT

Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1ß in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1ß and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.


Subject(s)
Dermatitis, Atopic , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/toxicity , Dinitrochlorobenzene/therapeutic use , AMP-Activated Protein Kinases , Carbon Dioxide/toxicity , Carbon Dioxide/therapeutic use , Tumor Necrosis Factor-alpha , Cytokines/metabolism , Macrophages/metabolism , Anti-Inflammatory Agents/therapeutic use , Interleukin-12/toxicity , Interleukin-12/therapeutic use , Lipids , Mice, Inbred BALB C , Skin
4.
Environ Res ; 243: 117738, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37993048

ABSTRACT

Algae have great application prospects in excess sludge reclamation and recovery of high-value biomass. Chlorococcum humicola was cultivated in this research, using sludge extract (mixed with SE medium) with additions of 10%, 20%, and 30% CO2 (v/v). Results showed that under 20% CO2, the dry weight and polysaccharide yield reached 1.389 ± 0.070 g/L and 313.49 ± 10.77 mg/L, respectively. 10% and 20% CO2 promoted the production of cellular antioxidant molecules to resist the toxic stress and the toxicity of 20% CO2 group decreased from 62.16 ± 3.11% to 33.02 ± 3.76%. 10% and 20% CO2 accelerated the electron transfer, enhanced carbon assimilation, and promoted the photosynthetic efficiency, while 30% CO2 led to photosystem damage and disorder of antioxidant system. Proteomic analysis showed that 20% CO2 mainly affected energy metabolism and the oxidative stress level on the early stage (10 d), while affected photosynthesis and organic substance metabolism on the stable stage (30 d). The up-regulation of PSII photosynthetic protein subunit 8 (PsbA, PsbO), A0A383W1S5 and A0A383VRI4 promoted the efficiency of PSII and chlorophyll synthesis, and the up-regulation of A0A383WH74 and A0A2Z4THB7 led to the accumulation of polysaccharides. The up-regulation of A0A383VDH1, A0A383VX37 and A0A383VA86 promoted respiration. Collectively, this work discloses the regulatory mechanism of high-concentration CO2 on Chlorococcum humicola to overcome toxicity and accumulate polysaccharides.


Subject(s)
Carbon Dioxide , Chlorophyll , Chlorophyll/metabolism , Carbon Dioxide/toxicity , Antioxidants , Proteomics , Sewage
5.
Sci Total Environ ; 912: 168790, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000735

ABSTRACT

Biological communities are currently facing multi-stressor scenarios whose ecological impacts are challenging to estimate. In that respect, considering the complex nature of ecosystems and types and interaction among stressors is mandatory. Microcosm approaches using free-living nematode assemblages can effectively be used to assess complexity since they preserve the interactions inherent to complex systems when testing for multiple stress effects. In this study, we investigated the interaction effects of three stress factors, namely i-metallic mixture of Cu, Pb, Zn, and Hg (control [L0], low, [L1] and high [L2]), ii- CO2-driven acidification (pH 7.6 and 8.0), and iii- temperature rise (26 and 28 °C), on estuarine free-living nematode assemblages. Metal contamination had the greatest influence on free-living nematode assemblages, irrespective of pH and temperature scenarios. Interestingly, whilst the most abundant free-living nematode genera showed significant decreases in their densities when exposed to contamination, other, less abundant, genera were apparently favored and showed significantly higher densities in contaminated treatments. The augmented densities of tolerant genera may be attributed to indirect effects resulting from the impacts of toxicity on other components of the system, indicating the potential for emergent effects in response to stress. Temperature and pH interacted significantly with contamination. Whilst temperature rise had potentialized contamination effects, acidification showed the opposite trend, acting as a buffer to the effects of contamination. Such results show that temperature rise and CO2-driven acidification interact with contamination on coastal waters, highlighting the importance of considering the intricate interplay of these co-occurring stressors when assessing the ecological impacts on coastal ecosystems.


Subject(s)
Mercury , Nematoda , Animals , Ecosystem , Carbon Dioxide/toxicity , Mercury/pharmacology , Biota
6.
Environ Pollut ; 342: 123143, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38097156

ABSTRACT

Tropospheric ozone (O3) is a significant phytotoxic air pollutant that has a negative impact on plant carbon gain. Although date palm (Phoenix dactylifera L.) is a globally important crop in arid or semi-arid regions, so far O3 risk assessment for this species has not been reported. This study estimated leaf- and plant-level photosynthetic CO2 uptake for understanding how elevated levels of O3 affects date palm biomass growth. Ozone risks to date palm plants were assessed based on exposure- (AOT40) or flux-based indices (Phytotoxic Ozone Dose, PODy, where y is a threshold of uptake). For this purpose, plants were exposed to three levels of O3 [ambient air, AA (45 ppb as daily average); 1.5 × AA; 2.0 × AA] for 92 days in an O3 Free-Air Controlled Exposure facility. According to the model simulations, the negative effects of O3 on plant-level net photosynthetic CO2 uptake were attributed to reduced gross photosynthetic carbon gain and increased respiratory carbon loss. Season-long O3 exposure and elevated temperatures promoted the negative O3 effect because of a further increase of respiratory carbon loss, which was caused by increased leaf temperature due to stomatal closure. POD1 nonlinearly affected the photosynthetic CO2 uptake, which was closely related to the variation of dry mass increment during the experiment. Although the dose-response relationship suggested that a low O3 dose (POD1 < 5.2 mmol m-2) may even positively affect photosynthetic CO2 uptake in date palms, stomatal O3 uptake at the current ambient O3 levels has potentially a negative impact on date palm growth. The results indicate 5.8 mmol m-2 POD1 or 21.1 ppm h AOT40 as critical levels corresponding to a 4% reduction of net CO2 uptake for date palm, suggesting that this species can be identified as a species moderately sensitive to O3.


Subject(s)
Air Pollutants , Ozone , Phoeniceae , Ozone/analysis , Carbon Dioxide/toxicity , Plant Leaves/chemistry , Air Pollutants/toxicity , Air Pollutants/analysis , Photosynthesis
7.
Mar Environ Res ; 191: 106150, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37611375

ABSTRACT

Photosynthetic marine macrophytes such as seaweeds have been proposed to provide habitat refugia for marine calcifiers against ocean acidification (OA) by increasing the local pH. However, the effectiveness of seaweed as a potential habitat refugia for marine calcifiers such as corals remains to be investigated. This study focused on the seaweed Nemacystus decipiens, which are widely farmed in the shallow reef lagoon of Okinawa coral reefs, Japan, and aimed to evaluate their response to high pCO2 and whether they can mitigate the effect of high pCO2 on the coral Montipora digitata. Corals were cultured with and without seaweed under control (300-400 µatm) or high pCO2 conditions (OA, 900-1000 µatm) for 2 weeks. Results showed that all photo-physiological parameters examined in the seaweed N. decipiens were not affected by high pCO2, suggesting that OA will not positively affect their productivity. The calcification rate of the coral M. digitata was found to decrease under OA and the effect was further exaggerated by the presence of seaweed. The present study suggests that farming seaweeds will not act as a potential habitat refugia for adjacent corals under future OA, but instead can exaggerate the negative effect of OA on coral calcification.


Subject(s)
Anthozoa , Phaeophyceae , Seaweed , Animals , Anthozoa/physiology , Seawater , Hydrogen-Ion Concentration , Ocean Acidification , Carbon Dioxide/toxicity , Coral Reefs , Oceans and Seas
8.
Undersea Hyperb Med ; 50(2): 85-93, 2023.
Article in English | MEDLINE | ID: mdl-37302073

ABSTRACT

During deep-sea freediving, many freedivers describe symptoms fairly similar to what has been related to inert gas narcosis in scuba divers. This manuscript aims to present the potential mechanisms underlying these symptoms. First, known mechanisms of narcosis are summarized while scuba diving. Then, potential underlying mechanisms involving the toxicity of gases (nitrogen, carbon dioxide and oxygen) are presented in freedivers. As the symptoms are felt during ascent, nitrogen is likely not the only gas involved. Since freedivers are frequently exposed to hypercapnic hypoxia toward the end of the dive, it is proposed that carbon dioxide and oxygen gases both play a major role. Finally, a new "hemodynamic hypothesis" based on the diving reflex is proposed in freedivers. The underlying mechanisms are undoubtedly multifactorial and therefore require further research and a new descriptive name. We propose a new term for these types of symptoms: freediving transient cognitive impairment.


Subject(s)
Diving , Inert Gas Narcosis , Stupor , Humans , Stupor/complications , Carbon Dioxide/toxicity , Inert Gas Narcosis/etiology , Diving/adverse effects , Nitrogen , Oxygen
9.
Sci Total Environ ; 891: 164398, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37244616

ABSTRACT

Ozone (O3) is an air pollutant that is toxic to trees. O3 reduces steady-state net photosynthetic rate (A), and the adverse effects of O3 are mitigated under elevated CO2 condition. However, the combined effects of O3 and elevated CO2 on dynamic photosynthesis under variable light conditions have not yet been clarified. In this study, we investigated the effects of O3 and elevated CO2 on dynamic photosynthesis in the leaves of Fagus crenata seedlings under variable light conditions. The seedlings were grown under four gas treatments comprising two levels of O3 concentration (lower and two times higher than the ambient O3 concentration) and two levels of CO2 concentration (ambient and 700 ppm). Although O3 significantly decreased steady-state A under ambient CO2 concentrations, no significant decrease was observed under elevated CO2 concentrations, indicating the mitigating effect of elevated CO2 on O3-induced adverse effects on steady-state A. During photosynthetic induction, the response of A to the change in photosynthetic photon flux density (PPFD) from 50 (low light) to 1000 µmol m-2 s-1 (high light) showed that the increase in A was slowed by O3 and accelerated by elevated CO2. Under fluctuating light condition of repeating low light for 4 min and high light for 1 min, A at end of each high light period gradually decreased in all treatments, and O3 and elevated CO2 accelerated the reduction of A. In contrast to steady-state A, no mitigating effect of elevated CO2 was observed for any parameters related to dynamic photosynthesis. We conclude that the combined effects of O3 and elevated CO2 on A of F. crenata are different under steady-state and variable light conditions, and the O3-induced decrease in leaf A may not be mitigated by elevated CO2 in the field under variable light conditions.


Subject(s)
Fagus , Ozone , Carbon Dioxide/toxicity , Fagus/physiology , Seedlings , Ozone/toxicity , Photosynthesis , Plant Leaves/physiology
10.
Environ Res ; 231(Pt 1): 116019, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37119846

ABSTRACT

The reduction in seawater pH from rising levels of carbon dioxide (CO2) in the oceans has been recognized as an important force shaping the future of marine ecosystems. Therefore, numerous studies have reported the effects of ocean acidification (OA) in different compartments of important animal groups, based on field and/or laboratory observations. Calcifying invertebrates have received considerable attention in recent years. In the present systematic review, we have summarized the physiological responses to OA in coral, echinoderm, mollusk, and crustacean species exposed to predicted ocean acidification conditions in the near future. The Scopus, Web of Science, and PubMed databases were used for the literature search, and 75 articles were obtained based on the inclusion criteria. Six main physiological responses have been reported after exposure to low pH. Growth (21.6%), metabolism (20.8%), and acid-base balance (17.6%) were the most frequent among the phyla, while calcification and growth were the physiological responses most affected by OA (>40%). Studies show that the reduction of pH in the aquatic environment, in general, supports the maintenance of metabolic parameters in invertebrates, with redistribution of energy to biological functions, generating limitations to calcification, which can have severe consequences for the health and survival of these organisms. It should be noted that the OA results are variable, with inter and/or intraspecific differences. In summary, this systematic review offers important scientific evidence for establishing paradigms in the physiology of climate change in addition to gathering valuable information on the subject and future research perspectives.


Subject(s)
Ecosystem , Seawater , Animals , Seawater/chemistry , Hydrogen-Ion Concentration , Ocean Acidification , Invertebrates/physiology , Oceans and Seas , Carbon Dioxide/toxicity , Carbon Dioxide/analysis
11.
Sci Total Environ ; 874: 162444, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36842599

ABSTRACT

Large yellow croaker (Larimichthys crocea) is a coastal-dwelling soniferous, commercially important fish species that is sensitive to sound. An understanding of how ocean acidification might affect its auditory system is therefore important for its long-term viability and management as a fisheries resource. We tested the effects of ocean acidification with four CO2 treatments (440 ppm (control), 1000 ppm, 1800 ppm, and 3000 ppm) on the inner ear system of this species. After exposure to acidified water for 50 d, the impacts on the perimeter and mass of the sagitta, asteriscus, and lapillus otoliths were determined. In the acidified water treatments, the shape of sagittal otoliths became more irregular, and the surface became rougher. Similar sound frequency ranges triggered startle responses of fish in all treatments. In the highest CO2 treatment (3000 ppm CO2), significant asymmetry of the left and right lapillus perimeter and weight was apparent. Moreover, in the higher CO2 treatments (1800 ppm and 3000 ppm CO2), the fish were unable to maintain a balanced dorsal-up posture and tilted to one side. This result suggested that the balance functions of the inner ear might be affected by ocean acidification, which may threaten large yellow croaker individuals and populations. The molecular response to acidification was analyzed by RNA-Seq. The differentially expressed genes (DEGs) between right and left sensory epithelia of the utricle in each CO2 treatment group were identified. In higher CO2 concentration groups, nervous system function and regulation of bone mineralization pathways were enriched with DEGs. The comparative transcriptome analyses provide valuable molecular information about how the inner ear system responds to an acidified environment.


Subject(s)
Carbon Dioxide , Perciformes , Animals , Carbon Dioxide/toxicity , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Ocean Acidification , Seawater , Perciformes/metabolism , Fishes/metabolism , Fish Proteins/metabolism
12.
Aquat Toxicol ; 257: 106450, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827830

ABSTRACT

pH or pCO2 are usually taken to study the impact of ocean acidification on molluscs. Here we studied the different impact of seawater carbonate parameters on embryonic development and calcification of the Pacific abalone (Haliotis discus hannai). Early embryonic development was susceptible to elevated pCO2 level. Larvae hatching duration was positively and hatching rate was negatively correlated with the pCO2 level, respectively. Calcium carbonate (CaCO3) deposition of larval shell was found to be susceptible to calcium carbonate saturation state (Ω) rather than pCO2 or pH. Most larvae incubated in seawater with Ωarag = 1.5 succeeded in shell formation, even when seawater pCO2 level was higher than 3700 µatm and pHT was close to 7.4. Nevertheless, larvae failed to generate CaCO3 in seawater with Ωarag ≤ 0.52 and control level of pCO2, while seawater DIC level was lowered (≤ 852 µmol/kg). Surprisingly, some larvae completed CaCO3 deposition in seawater with Ωarag = 0.6 and slightly elevated DIC (2266 µmol/kg), while seawater pCO2 level was higher than 2700 µatm and pHT was lower than 7.3. This indicates that abalone may be capable of regulating carbonate chemistry to support shell formation, however, the capability was limited as surging pCO2 level lowered growth rate and jeopardized the integrity of larval shells. Larvae generated thicker shell in seawater with Ωarag = 5.6, while adult abalone could not deposit CaCO3 in seawater with Ωarag = 0.29 and DIC = 321 µmol/kg. This indicates that abalone may lack the ability to directly remove or add inorganic carbon at the calcifying sites. In conclusion, different seawater carbonate parameters play different roles in affecting early embryonic development and shell formation of the Pacific abalone, which may exhibit limited capacity to regulate carbonate chemistry.


Subject(s)
Gastropoda , Water Pollutants, Chemical , Animals , Seawater , Hydrogen-Ion Concentration , Water Pollutants, Chemical/toxicity , Carbonates , Gastropoda/physiology , Calcium Carbonate , Larva , Embryonic Development , Carbon Dioxide/toxicity , Carbon Dioxide/analysis
13.
Aquat Toxicol ; 257: 106423, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36822075

ABSTRACT

Marine organisms need to adapt to improve organismal fitness under ocean acidification (OA). Recent studies have shown that marine calcifiers can achieve acclimation by stimulating calcium binding/signaling pathways. Here, a CaM-like gene (CgCaLP-2) from oyster Crassostrea gigas which typically responded to long-term CO2 exposure (two months) rather than short-term exposure (one week) was characterized. The cloned cDNA was 678 bp and was shorter than the retrieved sequence from NCBI (1125 bp). The two sequences, designated as CgCaLP-2-v1 and CgCaLP-2-v2, were demonstrated to be different splice variants by the genome sequence analysis. Western blotting analysis revealed two bands of 23 kD and 43 kD in mantle and hemocytes, corresponding to predicted molecular weight of CgCaLP-2-v1 and CgCaLP-2-v2, respectively. The isoform CgCaLP-2-v1 (the 23 kD band) was highly stimulated in response to long-term CO2 exposure (42-day and 56-day treatment) in hemocytes and mantle tissue. The fluorescence signal of CgCaLP-2 in mantle and hemocytes became more intensive after long-term CO2 exposure. Besides, in hemocytes, CgCaLP-2 presented a higher localization on the nuclear membrane after long-term CO2 exposure (56 d). The target gene network of CgCaLP-2 was predicted, and a transcription factor (TF) gene annotated as Homeobox protein SIX4 (CgSIX4) showed a similar expressive trend to CgCaLP-2 during CO2 exposure. Suppression of CgCaLP-2 via RNA interference significantly reduced the mRNA expression of CgSIX4. The results suggested that CgCaLP-2 might mediate the Ca2+-CaLP-TF signal transduction pathway under long-term CO2 exposure. This study serves as an example to reveal that alternative splicing is an important mechanism for generation multiple protein isoforms and thus shape the plastic responses under CO2 exposure, providing new insight into the potential acclimation ability of marine calcifiers to future OA.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Crassostrea/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Seawater , Transcription Factors/metabolism , Carbon Dioxide/toxicity , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Ocean Acidification , Water Pollutants, Chemical/toxicity , Protein Isoforms/genetics , Protein Isoforms/metabolism , Acclimatization , Hemocytes/metabolism
14.
Sci Total Environ ; 858(Pt 1): 159804, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36349621

ABSTRACT

The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.


Subject(s)
Bass , Seawater , Animals , Seawater/chemistry , Hydrogen-Ion Concentration , Oceans and Seas , Climate Change , Bass/physiology , Carbon Dioxide/toxicity , Water
15.
Article in English | MEDLINE | ID: mdl-36232214

ABSTRACT

The huge volumes of currently generated agricultural waste pose a challenge to the economy of the 21st century. One of the directions for their reuse may be as fertilizer. Spent mushroom substrate (SMS) could become an alternative to manure (M). A three-year field experiment was carried out, in which the purpose was to test and compare the effect of SMS alone, as well as in multiple variants with mineral fertilization, and in manure with a variety of soil quality indices-such as enzymatic activity, soil phytotoxicity, and greenhouse gas emissions, i.e., CO2. The use of SMS resulted in significant stimulation of respiratory and dehydrogenase activity. Inhibition of acid phosphatase and arylsulfatase activity via SMS was recorded. SMS showed varying effects on soil phytotoxicity, dependent on time. A positive effect was noted for the growth index (GI), while inhibition of root growth was observed in the first two years of the experiment. The effect of M on soil respiratory and dehydrogenase activity was significantly weaker compared to SMS. Therefore, M is a safer fertilizer as it does not cause a significant persistent increase in CO2 emissions. Changes in the phytotoxicity parameters of the soil fertilized with manure, however, showed a similar trend as in the soil fertilized with SMS.


Subject(s)
Agaricales , Greenhouse Gases , Acid Phosphatase , Arylsulfatases , Carbon Dioxide/toxicity , Fertilizers/toxicity , Greenhouse Effect , Manure , Oxidoreductases , Soil
16.
Mar Environ Res ; 181: 105758, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36183457

ABSTRACT

An in situ reciprocal transplant experiment was carried around a volcanic CO2 vent to evaluate the anti-predator responses of an anemone goby species exposed to ambient (∼380 µatm) and high (∼850 µatm) CO2 sites. Overall, the anemone gobies displayed largely unaffected behaviors under high-CO2 conditions suggesting an adaptive potential of Gobius incognitus to ocean acidification (OA) conditions. This is also supported by its 3-fold higher density recorded in the field under high CO2. However, while fish exposed to ambient conditions showed an expected reduction in the swimming activity in the proximity of the predator between the pre- and post-exposure period, no such changes were detected in any of the other treatments where fish experienced acute and long-term high CO2. This may suggest an OA effect on the goby antipredator strategy. Our findings contribute to the ongoing debate over the need for realistic predictions of the impacts of expected increased CO2 concentration on fish, providing evidence from a natural high CO2 system.


Subject(s)
Anemone , Perciformes , Animals , Seawater , Carbon Dioxide/toxicity , Hydrogen-Ion Concentration , Ocean Acidification , Fishes/physiology
17.
Sci Total Environ ; 852: 158144, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35988613

ABSTRACT

Ocean acidification (OA) resulting from the absorption of excess atmospheric CO2 by the ocean threatens the survival of marine calcareous organisms, including mollusks. This study investigated the effects of OA on adults of two abalone species (Haliotis diversicolor, a subtropical species, and Haliotis discus hannai, a temperate species). Abalone were exposed to three pCO2 conditions for 1 year (ambient, ~ 880, and ~ 1600 µatm), and parameters, including mortality, physiology, immune system, biochemistry, and carry-over effects, were measured. Survival decreased significantly at ~ 800 µatm pCO2 for H. diversicolor, while H. discus hannai survival was negatively affected only at a higher OA level (~ 1600 µatm pCO2). H. diversicolor exhibited depressed metabolic and excretion rates and a higher O:N ratio under OA, indicating a shift to lipids as a metabolism substrate, while these physiological parameters in H. discus hannai were robust to OA. Both abalone failed to compensate for the pH decrease of their internal fluids because of the lowered hemolymph pH under OA. However, the reduced hemolymph pH did not affect total hemocyte counts or tested biomarkers. Additionally, H. discus hannai increased its hemolymph protein content under OA, which could indicate enhanced immunity. Larvae produced by adults exposed to the three pCO2 levels were cultured in the same pCO2 conditions and larval deformation and shell length were measured to observe carry-over effects. Enhanced OA tolerance was observed for H. discus hannai exposed under both of the OA treatments, while that was only observed following parental pCO2 ~ 880 µatm exposure for H. diversicolor. Following pCO2 ~ 1600 µatm parental exposure, H. diversicolor offspring exhibited higher deformation and lower shell growth in all pCO2 treatments. In general, H. diversicolor were more susceptible to OA compared with H. discus hannai, suggesting that H. diversicolor could be unable to adapt to acidified oceans in the future.


Subject(s)
Carbon Dioxide , Gastropoda , Animals , Carbon Dioxide/toxicity , Hydrogen-Ion Concentration , Seawater , Gastropoda/physiology , Oceans and Seas , Aquatic Organisms , Lipids
18.
Environ Pollut ; 312: 119995, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36007788

ABSTRACT

The decreasing ocean pH seems to adversely affect marine organisms, including crustaceans, which leads to potential threats to seafood safety. The present investigation evaluated the effect of seawater acidification on the edible marine mud crab Scylla serrata instars. The experimental setup was designed using a multi-cell cage based system assembled with 20 pre holed PVC pipes containing 20 individual crabs to avoid cannibalism. The crab instars were exposed to CO2 driven acidified seawater at pH 7.8 (IPCC forecast pH at the end of the 21st century), 7.6, 7.4, 7.2, and 7.0 for 60 days. The crabs reared in seawater without acidification at pH 8.2 served as control. The present study revealed a notable decrease in survival, feed intake, growth, molting, tissue biochemical constituents, minerals, chitin, and alkaline phosphatase in S. serrata instar reared in acidified seawater, denotes the adverse effect of seawater acidification on crabs. The significant elevations in antioxidants, lipid peroxidation, and metabolic enzymes in all acidified seawater compared to ambient pH indicates the physiological stress of the crabs' instars. The changes in the metabolic enzymes reveal the metabolism of protein and glucose for additional energy required by the crabs to tolerate the acidic stress. Hence, the present study provides insight into the seawater acidification can adversely affect the crab S. serrata.


Subject(s)
Brachyura , Alkaline Phosphatase , Animals , Antioxidants/pharmacology , Brachyura/physiology , Carbon Dioxide/toxicity , Chitin/pharmacology , Glucose/pharmacology , Hydrogen-Ion Concentration , Oceans and Seas , Polyvinyl Chloride , Seawater/chemistry
19.
Mar Pollut Bull ; 181: 113857, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35749979

ABSTRACT

This study aimed to assess the combined effects of ocean acidification (OA) and pollution to the polychaete Syllis prolifera inhabiting the CO2 vent system of the Castello Aragonese (Ischia Island, Italy). We investigated the basal activities of antioxidant enzymes in organisms from the acidified site and from an ambient-pH control site in two different periods of the year. Results showed a limited influence of acidified conditions on the functionality of the antioxidant system. We then investigated the responsiveness of individuals living inside the CO2 vent compared to those from the control to face exposure to acetone and copper. Results highlighted a higher susceptibility of organisms from the vent to acetone and a different response of antioxidant enzymes in individuals from the two sites. Conversely, a higher tolerance to copper was observed in polychaetes from the acidified-site with respect to controls, but any significant oxidative stress was induced at sublethal concentrations.


Subject(s)
Carbon Dioxide , Seawater , Acetone , Antioxidants , Carbon Dioxide/analysis , Carbon Dioxide/toxicity , Copper , Humans , Hydrogen-Ion Concentration , Oceans and Seas , Seawater/chemistry
20.
Sci Total Environ ; 837: 155858, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35561921

ABSTRACT

Plant growth, photosynthesis, and hydraulics are affected by heavy metals but also by elevated atmospheric CO2 concentration (e[CO2]) and nitrogen (N) deposition. However, few studies have investigated the response of woody species to the combined effects of these three factors. We conducted an open-top chamber experiment with two common subtropical trees (Acacia auriculiformis and Syzygium hainanense) to explore the effects of cadmium (Cd)-contamination, e[CO2], and N addition on plant eco-physiological traits. We found that the growth of A. auriculiformis was insensitive to the treatments, indicating that it is a Cd-tolerant and useful afforestation species. For S. hainanense, in contrast, e[CO2] and/or N addition offset the detrimental effects of Cd addition by greatly increasing plant biomass and reducing the leaf Cd concentration. We then found that e[CO2] and/or N addition offset the detrimental Cd effects on S. hainanense biomass by increasing its photosynthetic rate, its N concentration, and the efficiency of its stem water transport network. These offsetting effects of e[CO2] and/or N addition, however, came at the expense of reduced xylem hydraulic safety resulting from wider vessels, thinner vessel walls, and therefore weaker vessel reinforcement. Our study suggests that, given future increases in global CO2 concentration and N deposition, the growth of Cd-tolerant tree species (like A. auriculiformis) will be probably stable while the growth of Cd-sensitive tree species (like S. hainanense) might be enhanced despite reduced hydraulic safety. This also suggests that both species will be useful for afforestation of Cd-contaminated soils given future global change scenarios.


Subject(s)
Cadmium , Trees , Cadmium/toxicity , Carbon Dioxide/toxicity , Nitrogen , Photosynthesis , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...