Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.944
Filter
1.
Anal Chim Acta ; 1312: 342749, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834263

ABSTRACT

Carbon monoxide (CO) is an innate signaling molecule that can regulate immune responses and interact with crucial elements of the circadian clock. Moreover, pharmacologically, CO has been substantiated for its therapeutic advantages in animal models of diverse pathological conditions. Given that an excessive level of CO can be toxic, it is imperative to quantify the necessary amount for therapeutic use accurately. However, estimating gaseous CO is notably challenging. Therefore, novel techniques are essential to quantify CO in therapeutic applications and overcome this obstacle precisely. The classical Myoglobin (Mb) assay technique has been extensively used to determine the amount of CO-release from CO-releasing molecules (CORMs) within therapeutic contexts. Nevertheless, specific challenges arise when applying the Mb assay to evaluate CORMs featuring innovative molecular architectures. Here, we report a fluorinated photo-CORM (CORM-FBS) for the photo-induced CO-release. We employed the 19F NMR spectroscopy approach to monitor the release of CO as well as quantitative evaluation of CO release. This new 19F NMR approach opens immense opportunities for researchers to develop reliable techniques for identifying molecular structures, quantitative studies of drug metabolism, and monitoring the reaction process.


Subject(s)
Carbon Monoxide , Light , Myoglobin , Carbon Monoxide/analysis , Myoglobin/chemistry , Magnetic Resonance Spectroscopy/methods , Fluorine/chemistry , Animals , Photochemical Processes
2.
Environ Monit Assess ; 196(6): 521, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714584

ABSTRACT

The transport sector is considered the largest contributor of air pollutants in urban areas, mainly on-road vehicles, affecting the environment and human health. Bahía Blanca is a medium-sized Latin American city, with high levels of traffic in the downtown area during peak hours. In this regard, it is necessary to analyze air pollution using an air quality model considering that there are no air pollutant measurements in the central area. Furthermore, this type of study has not been carried out in the region and since the city is expected to grow, it is necessary to evaluate the current situation in order to make effective future decisions. In this sense, the AERMOD model (US-EPA version) and the RLINE source type were used in this work. This study analyzes the variations of pollutant concentrations coming from mobile sources in Bahía Blanca's downtown area, particularly carbon monoxide (CO) and nitrogen oxides (NOx) during the period Jul-2020 to Jun-2022. It is interesting to note the results show the maximum concentration values detected are not directly associated with maximum levels of vehicle flow or emission rates, which highlights the importance of meteorological parameters in the modeling. In addition, alternative scenarios are proposed and analyzed from a sustainable approach. Regarding the scenario analysis, it can be concluded that diesel vehicles have a large influence on NOx emissions. Moreover, restrictions as strict as those proposed for a Low Emission Zone would be less applicable in the city than alternative temporary measures that modify traffic at peak hours.


Subject(s)
Air Pollutants , Air Pollution , Carbon Monoxide , Cities , Environmental Monitoring , Vehicle Emissions , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Vehicle Emissions/analysis , Carbon Monoxide/analysis , Nitrogen Oxides/analysis , Latin America , Models, Theoretical , Particulate Matter/analysis
3.
Chemosphere ; 358: 142198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697566

ABSTRACT

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.


Subject(s)
Air Pollutants , Palladium , Air Pollutants/analysis , Palladium/chemistry , Adsorption , Water/chemistry , Environmental Monitoring/methods , Gases/analysis , Humidity , Carbon Monoxide/analysis , Nitriles/chemistry , Nitriles/analysis
4.
J Environ Manage ; 359: 121017, 2024 May.
Article in English | MEDLINE | ID: mdl-38718602

ABSTRACT

Energy transition currently brings focus on fuel cell micro-combined heat and power (mCHP) systems for residential uses. The two main technologies already commercialized are the Proton Exchange Membrane Fuel Cells (PEMFCs) and Solid Oxide Fuel Cells (SOFCs). The pollutant emissions of one system of each technology have been tested with a portable probe both in laboratory and field-test configurations. In this paper, the nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon monoxide (CO) emission levels are compared to other combustion technologies such as a recent Euro 6 diesel automotive vehicle, a classical gas condensing boiler, and a gas absorption heat pump. At last, a method of converting the concentration of pollutants (in ppm) measured by the sensors into pollutant intensity per unit of energy (in mg/kWh) is documented and reported. This allows for comparing the pollutant emissions levels with relevant literature, especially other studies conducted with other measuring sensors. Both tested residential fuel cell technologies fed by natural gas can be considered clean regarding SO2 and NOx emissions. The CO emissions can be considered quite low for the tested SOFC and even nil for the tested PEMFC. The biggest issue of natural gas fuel cell technologies still lies in the carbon dioxide (CO2) emissions associated with the fossil fuel they consume. The gas absorption heat pump however shows worse NOx and CO levels than the classical gas condensing boiler. At last, this study illustrates that the high level of hybridization between a fuel cell and a gas boiler may be responsible for unexpected ON/OFF cycling behaviours and therefore prevent both sub-systems from operating as optimally and reliably as they would have as standalone units.


Subject(s)
Air Pollutants , Nitrogen Oxides , Air Pollutants/analysis , Nitrogen Oxides/analysis , Carbon Monoxide/analysis , Sulfur Dioxide/analysis , Benchmarking , Vehicle Emissions/analysis , Environmental Monitoring/methods
5.
J Hazard Mater ; 472: 134505, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703689

ABSTRACT

It is critical to explore intervenable environmental factors in suicide mortality. Based on 30,688 suicide cases obtained from the Mortality Surveillance System of the Jiangsu Provincial Centre for Disease Control and Prevention, we utilized a case-crossover design, and found that the OR of suicide deaths increased by a maximum of 0.71 % (95 % CI: 0.09 %, 1.32 %), 0.68 % (95 % CI: 0.12 %, 1.25 %), 0.77 % (95 % CI: 0.19 %, 1.37 %), 2.95 % (95 % CI: 1.62 %, 4.29 %), 4.18 % (95 % CI: 1.55 %, 6.88 %), and 0.93 % (95 % CI: 0.10 %, 1.77 %), respectively, for per 10 µg/m3 increase in the particulate matter (PM) with diameters ≤ 2.5 µm (PM2.5), PM with diameters ≤ 10 µm (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and per 0.1 mg/m3 increase in carbon monoxide (CO) concentrations with the conditional logistic regression analysis. People living in county-level cities were more susceptible. Particularly, a significant positive association was found between air pollutant mixture exposure and suicide deaths (OR=1.04,95 % CI: 1.01, 1.06). The excess fraction of suicide deaths due to air pollution reached a maximum of 8.07 %. In conclusion, we found associations between individual and mixed ambient air pollutants and suicide deaths, informing the development of integrated air pollution management and targeted measures for suicide prevention and intervention. ENVIRONMENTAL IMPLICATION: As a major contributor to the global burden of disease, air pollution was confirmed by accumulating studies to have adverse impact on mental health, and potentially lead to suicide deaths. However, systematic studies on the association between air pollution and suicide mortality are lacking. We explored the associations of multiple air pollutants and pollution mixtures with suicide deaths and assessed excess suicide mortality due to air pollution, emphasizing the importance of air pollution control on suicide prevention. Our study provides evidence to support mechanistic studies on the association between air pollution and suicide, and informs comprehensive air pollution management.


Subject(s)
Air Pollutants , Cross-Over Studies , Particulate Matter , Suicide , Humans , Suicide/statistics & numerical data , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Male , Female , Middle Aged , Adult , China/epidemiology , Ozone/toxicity , Ozone/analysis , Sulfur Dioxide/analysis , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Aged , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Carbon Monoxide/analysis , Carbon Monoxide/toxicity , Young Adult
6.
BMC Public Health ; 24(1): 1411, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802825

ABSTRACT

BACKGROUND: Preterm birth (PTB) is an important predictor of perinatal morbidity and mortality. Previous researches have reported a correlation between air pollution and an increased risk of preterm birth. However, the specific relationship between short-term and long-term exposure to carbon monoxide (CO) and preterm birth remains less explored. METHODS: A population-based study was conducted among 515,498 pregnant women in Chongqing, China, to assess short-term and long-term effects of CO on preterm and very preterm births. Generalized additive models (GAM) were applied to evaluate short-term effects, and exposure-response correlation curves were plotted after adjusting for confounding factors. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using COX proportional hazard models to estimate the long-term effect. RESULTS: The daily incidence of preterm and very preterm birth was 5.99% and 0.41%, respectively. A positive association between a 100 µg/m³ increase in CO and PTB was observed at lag 0-3 days and 12-21 days, with a maximum relative risk (RR) of 1.021(95%CI: 1.001-1.043). The exposure-response curves (lag 0 day) revealed a rapid increase in PTB due to CO. Regarding long-term exposure, positive associations were found between a 100 µg/m3 CO increase for each trimester(Model 2 for trimester 1: HR = 1.054, 95%CI: 1.048-1.060; Model 2 for trimester 2: HR = 1.066, 95%CI: 1.060-1.073; Model 2 for trimester 3: HR = 1.007, 95%CI: 1.001-1.013; Model 2 for entire pregnancy: HR = 1.080, 95%CI: 1.073-1.088) and higher HRs of very preterm birth. Multiplicative interactions between air pollution and CO on the risk of preterm and very preterm birth were detected (P- interaction<0.05). CONCLUSIONS: Our findings suggest that short-term exposure to low levels of CO may have protective effects against preterm birth, while long-term exposure to low concentrations of CO may reduce the risk of both preterm and very preterm birth. Moreover, our study indicated that very preterm birth is more susceptible to the influence of long-term exposure to CO during pregnancy, with acute CO exposure exhibiting a greater impact on preterm birth. It is imperative for pregnant women to minimize exposure to ambient air pollutants.


Subject(s)
Air Pollutants , Carbon Monoxide , Premature Birth , Humans , Female , Pregnancy , Premature Birth/epidemiology , China/epidemiology , Carbon Monoxide/analysis , Adult , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , Infant, Newborn , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Time Factors , Young Adult , Risk Factors
7.
Environ Monit Assess ; 196(6): 545, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740605

ABSTRACT

In Tunisia, urban air pollution is becoming a bigger problem. This study used a combined strategy of biomonitoring with lichens and satellite mapping with Sentinel-5 satellite data processed in Google Earth Engine (GEE) to assess the air quality over metropolitan Tunis. Lichen diversity was surveyed across the green spaces of the Faculty of Science of Tunisia sites, revealing 15 species with a predominance of pollution-tolerant genera. The Index of Atmospheric Purity (IAP) calculated from the lichen data indicated poor air quality. Spatial patterns of pollutants sulfur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), and aerosol index across Greater Tunis were analyzed from Sentinel-5 datasets on the GEE platform. The higher values of these indices in the research area indicate that it may be impacted by industrial activity and highlight the considerable role that vehicle traffic plays in air pollution. The results of the IAP, IBL, and the combined ground-based biomonitoring and satellite mapping techniques confirm poor air quality and an environment affected by atmospheric pollutants which will enable proactive air quality management strategies to be put in place in Tunisia's rapidly expanding cities.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Lichens , Ozone , Sulfur Dioxide , Lichens/chemistry , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Tunisia , Ozone/analysis , Sulfur Dioxide/analysis , Nitrogen Dioxide/analysis , Cities , Satellite Imagery , Carbon Monoxide/analysis
8.
Waste Manag ; 182: 250-258, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677142

ABSTRACT

Carbon monoxide (CO) formation has been observed during composting of various fractions of organic waste. It was reported that this production can be biotic, associated with the activity of microorganisms. However, there are no sources considering the microbial communities producing CO production in compost. This preliminary research aimed to isolate and identify microorganisms potentially responsible for the CO production in compost collected from two areas of the biowaste pile: with low (118 ppm) and high CO concentration (785 ppm). Study proved that all isolates were bacterial strains with the majority of rod-shaped Gram-positive bacteria. Both places can be inhabited by the same bacterial strains, e.g. Bacillus licheniformis and Paenibacillus lactis. The most common were Bacillus (B. licheniformis, B. haynesii, B. paralicheniformis, and B. thermolactis). After incubation of isolates in sealed bioreactors for 4 days, the highest CO levels in the headspace were recorded for B. paralicheniformis (>1000 ppm), B. licheniformis (>800 ppm), and G. thermodenitrificans (∼600 ppm). High CO concentrations were accompanied by low O2 (<6%) and high CO2 levels (>8%). It is recommended to analyze the expression of the gene encoding CODH to confirm or exclude the ability of the identified strains to convert CO2 to CO.


Subject(s)
Carbon Monoxide , Composting , Carbon Monoxide/metabolism , Carbon Monoxide/analysis , Soil Microbiology , Bacillus/metabolism , Bacillus/genetics , Bacillus/isolation & purification , Bioreactors/microbiology , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
9.
Environ Pollut ; 351: 124036, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677459

ABSTRACT

Mitigating ground-level ozone (GLO) remains challenging due to its highly nonlinear formation process. Thus, understanding GLO pollution trends is crucial for developing effective control strategies, especially Kaohsiung industrial city, Taiwan. Based on the long-term monitoring data set of 2011-2022, temporal analysis reveals that monthly mean GLO peaks in autumn (40.66 ± 5.10 ppb), carbon monoxide (CO) and major precursors such as nitrogen oxides (NOx), nonmethane hydrocarbons (NMHC) reach their highest levels in winter. The distinct seasonal variation of air pollutants in Kaohsiung is primarily influenced by the unique blocking effect of the mountainous area under the northeasterly wind, as the city is situated downwind, causing high GLO levels during autumn due to the accumulation of stagnant air hindering the dispersion of pollutants. Over the 12 years (2011-2022), the deseasonalized trend analysis was conducted with p < 0.001, revealing a stabilization trend of GLO (+0.04 ppb/yr) from a previous sharp increase. The observed improvement is credited to a drastic decrease in total oxidants (Ox) at -0.63 ppb/yr due to significantly reducing their precursors. Furthermore, the effectiveness of precursor reduction is also supported by GLO daily maximum profile changes. While high GLO events (>120 ppb) decrease, days within midrange (60-80 ppb) rise from 24.4% to 33.3%. A notable difference emerges when comparing daytime and nighttime GLO. While daytime GLO decreased at -0.22 ppb/yr, nighttime GLO increased at +0.34 ppb/yr. Weakened nocturnal titration effects accounted for the nighttime increase. The distinct spatial variations in GLO trends on a citywide scale underscore that areas with complicated industrial activities may not benefit from a continuing reduction of precursors compared to less-polluted areas. The findings of this study hold significant implications for improving GLO control strategies in heavily industrialized city and provide valuable information to the general public about the current state of GLO pollution.


Subject(s)
Air Pollutants , Air Pollution , Cities , Environmental Monitoring , Ozone , Seasons , Taiwan , Ozone/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Nitrogen Oxides/analysis , Carbon Monoxide/analysis
10.
Environ Pollut ; 351: 124054, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677455

ABSTRACT

Carbon monoxide (CO) is a poisonous gas produced by incomplete combustion of carbon-based fuels that is linked to mortality and morbidity. Household air pollution from burning fuels on poorly ventilated stoves can lead to high concentrations of CO in homes. There are few datasets available on household concentrations of CO in urban areas of sub-Saharan African countries. CO was measured every minute over 24 h in a sample of homes in Nairobi, Kenya. Data on household characteristics were gathered by questionnaire. Metrics of exposure were summarised and analysis of temporal changes in concentration was performed. Continuous 24-h data were available from 138 homes. The mean (SD), median (IQR) and maximum 24-h CO concentration was 4.9 (6.4), 2.8 (1.0-6.3) and 44 ppm, respectively. 50% of homes had detectable CO concentrations for 847 min (14h07m) or longer during the 24-h period, and 9% of homes would have activated a CO-alarm operating to European specifications. An association between a metric of total CO exposure and self-reported exposure to vapours >15 h per week was identified, however this were not statistically significant after adjustment for the multiple comparisons performed. Mean concentrations were broadly similar in homes from a more affluent area and an informal settlement. A model of typical exposure suggests that cooking is likely to be responsible for approximately 60% of the CO exposure of Nairobi schoolchildren. Household CO concentrations are substantial in Nairobi, Kenya, despite most homes using gas or liquid fuels. Concentrations tend to be highest during the evening, probably associated with periods of cooking. Household air pollution from cooking is the main source of CO exposure of Nairobi schoolchildren. The public health impacts of long-term CO exposure in cities in sub-Saharan Africa may be considerable and should be studied further.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Carbon Monoxide , Carbon Monoxide/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Kenya , Humans , Air Pollutants/analysis , Environmental Monitoring , Cities , Housing , Public Health , Cooking , Family Characteristics , Environmental Exposure/statistics & numerical data
11.
J Perinatol ; 44(6): 897-901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38627593

ABSTRACT

OBJECTIVES: To determine, among neonates at-risk for hyperbilirubinemia, whether measuring end-tidal carbon monoxide concentration (ETCOc) twice before 48 hours could identify those who would develop hyperbilirubinemia and differentiate hemolytic vs. non-hemolytic causes. METHODS: Prospective study on neonates meeting criteria "at-risk for hyperbilirubinemia." Routine bilirubin measurements and 10-day follow-up were used to categorize neonates as; (1) normal (no hyperbilirubinemia, all bilirubins <95th percentile of Bhutani nomogram), (2) having hemolytic hyperbilirubinemia (bilirubin ≥95th percentile, DAT+, elevated retic, or G6PD+), or (3) having non-hemolytic hyperbilirubinemia. RESULTS: 386 neonates were enrolled. 321 (83%) did not develop hyperbilirubinemia and 65 (17%) did, of which 29 were judged hemolytic and 36 non-hemolytic. High ETCOc differentiated the hemolytic group (p < 0.001). First-day ETCOc correlated with bilirubin and with reticulocyte count (r = 0.896 and 0.878) and sensitivity and specificity for predicting hyperbilirubinemia were excellent (83% and 95%). CONCLUSIONS: ETCO measurement in the first 48 hours after birth predicts hemolytic hyperbilirubinemia.


Subject(s)
Bilirubin , Carbon Monoxide , Hyperbilirubinemia, Neonatal , Humans , Infant, Newborn , Prospective Studies , Female , Male , Carbon Monoxide/analysis , Bilirubin/blood , Bilirubin/analysis , Hyperbilirubinemia, Neonatal/diagnosis , Hyperbilirubinemia, Neonatal/blood , Predictive Value of Tests , Reticulocyte Count , Hemolysis , Infant, Premature
12.
ACS Sens ; 9(4): 1682-1705, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38593007

ABSTRACT

Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.


Subject(s)
Carbon Monoxide , Electrochemical Techniques , Gasotransmitters , Hydrogen Sulfide , Nitric Oxide , Gasotransmitters/analysis , Electrochemical Techniques/methods , Carbon Monoxide/analysis , Nitric Oxide/analysis , Hydrogen Sulfide/analysis , Humans , Biosensing Techniques/methods , Animals
13.
Meat Sci ; 213: 109466, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38489920

ABSTRACT

Limited studies have determined the effects of modified atmospheric packaging (MAP) on atypical dark-cutting beef surface color. The objective was to compare the impacts of using vacuum packaging, carbon monoxide (CO-MAP), and HiOx-MAP (high­oxygen) on the retail color of normal-pH and atypical dark-cutting beef aged 14 d. Atypical dark-cutting beef (pH 5.63) had numerically greater (P > 0.05) pH than normal-pH beef (pH 5.56). Atypical dark-cutting steaks were darker in color (lower L* values; P < 0.05) than normal-pH steaks. Atypical dark-cutting steaks had greater (P < 0.05) oxygen consumption, lower (P < 0.05) relative oxygenation, and less inter-muscle bundle space (P < 0.05) than normal-pH steaks. There were no differences (P > 0.05) in redness between normal-pH and atypical dark-cutting steaks when packaged in HiOx-MAP. Although a minimal increase in pH was observed in atypical dark-cutting beef, steaks in CO-MAP had lower redness than normal-pH steaks.


Subject(s)
Color , Food Packaging , Oxygen , Red Meat , Animals , Cattle , Food Packaging/methods , Red Meat/analysis , Hydrogen-Ion Concentration , Vacuum , Carbon Monoxide/analysis , Atmosphere , Muscle, Skeletal/chemistry , Oxygen Consumption
14.
Biometrics ; 80(1)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38477485

ABSTRACT

Environmental epidemiologic studies routinely utilize aggregate health outcomes to estimate effects of short-term (eg, daily) exposures that are available at increasingly fine spatial resolutions. However, areal averages are typically used to derive population-level exposure, which cannot capture the spatial variation and individual heterogeneity in exposures that may occur within the spatial and temporal unit of interest (eg, within a day or ZIP code). We propose a general modeling approach to incorporate within-unit exposure heterogeneity in health analyses via exposure quantile functions. Furthermore, by viewing the exposure quantile function as a functional covariate, our approach provides additional flexibility in characterizing associations at different quantile levels. We apply the proposed approach to an analysis of air pollution and emergency department (ED) visits in Atlanta over 4 years. The analysis utilizes daily ZIP code-level distributions of personal exposures to 4 traffic-related ambient air pollutants simulated from the Stochastic Human Exposure and Dose Simulator. Our analyses find that effects of carbon monoxide on respiratory and cardiovascular disease ED visits are more pronounced with changes in lower quantiles of the population's exposure. Software for implement is provided in the R package nbRegQF.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Exposure , Air Pollution/analysis , Carbon Monoxide/analysis
15.
Environ Monit Assess ; 196(3): 291, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383898

ABSTRACT

This study conducts a spatio-temporal analysis of tropospheric nitrogen dioxide (NO2) and total carbon monoxide (CO) concentrations in the Punjab and Haryana regions of India and Pakistan, using datasets from the Sentinel 5-Precursor (S5P) satellite. These regions, marked by diverse economic growth factors including population expansion, power generation, transportation, and agricultural practices, face similar challenges in atmospheric pollution, particularly evident in major urban centers like Delhi and Lahore, identified as pollution hotspots. The study also spotlights pollution associated with power plants. In urban areas, tropospheric NO2 levels are predominantly elevated due to vehicular emissions, whereas residential activities mainly contribute to CO pollution. However, precisely attributing urban CO sources is complex due to its longer atmospheric residence time and intricate circulation patterns. Notably, the burning of rice crop residue in November significantly exacerbates winter pollution episodes and smog, showing a more pronounced correlation with total CO than with tropospheric NO2 levels. The temporal analysis indicates that the months from October to December witness peak pollution, contrasted with the relatively cleaner period during the monsoon months of July to September. The severe pollution in the OND quarter is attributed to factors such as variations in boundary layer height and depletion of OH radicals. Furthermore, the study highlights the positive impact of the COVID-19 lockdown on air quality, with a significant decrease in NO2 concentrations during April, 2020 (Delhi: 59%, Lahore: 58%). However, the reduction in total CO columns was less significant. The study also correlates lockdown stringency with tropospheric NO2 columns (R2: 0.37 for Delhi, 0.25 for Lahore, 0.22 for Rawalpindi/Islamabad), acknowledging the influence of various meteorological and atmospheric variables. The research highlights the significant impact of crop residue burning on winter pollution levels, particularly on total CO concentrations. The study also shows the notable effect of the COVID-19 lockdown on air quality, significantly reducing NO2 levels. Additionally, it explores the correlation between lockdown stringency and tropospheric NO2 columns, considering various meteorological factors.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Carbon Monoxide/analysis , COVID-19/epidemiology , Nitrogen Dioxide/analysis , Air Pollutants/analysis , Environmental Monitoring , Communicable Disease Control , Air Pollution/analysis , Particulate Matter/analysis
16.
Environ Sci Pollut Res Int ; 31(14): 21709-21720, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393567

ABSTRACT

Continued improvements in living standards and the economic well-being in the megacities have led to a huge surge in vehicular density. The worst environmental outcome of the same has been persistent unsafe urban air quality, thanks to vehicular emission. Further, the existing inspection and maintenance programs, conceived to check such emission remain largely ineffective, particularly in developing countries. This is due to the absence of a thorough assessment of the vehicle's compliance with the in-use emission norms generated through reliable field investigation data. To address this gap, the present comprehensive study collected real-time tailpipe emission data from 2040 cars in Delhi, India. Exhaust emission parameters, namely, CO (carbon monoxide), HC (hydrocarbon), and SE (smoke emission), were recorded from both petrol and diesel-driven cars of private ownership, in collaboration with the emission compliance test centers. The performance of cars was assessed in terms of their compliance with the in-use BS (Bharat Stage) emission norms. The one-of-its-kind study reported the petrol cars to be highly compliant toward the BS IV norm while faring even better toward BS II for both CO and HC emissions (80-90%). The conformance to the HC norm was found to be typically better than that for CO (85-90% versus 75-80%). For the diesel-driven cars, BS III compliance levels were reported relatively better compared to BS IV (90% in the case of the former against 80% in the latter's case). Further, the study puts forward a clear indication that the in-use emission norm and maintenance status of cars have a direct and negative relationship with tailpipe emission parameters. Cars of both overseas and domestic origin have almost equal degrees of compliance with the emission norms (over 80% in any case). The study recommends the incorporation of these two critical vehicular variables, i.e., maintenance status and in-use emission standard in the emission certification policy.


Subject(s)
Air Pollutants , Air Pollution , Automobiles , Air Pollutants/analysis , Air Pollution/analysis , Vehicle Emissions/analysis , Carbon Monoxide/analysis , Gasoline/analysis
17.
Wilderness Environ Med ; 35(2): 129-137, 2024 06.
Article in English | MEDLINE | ID: mdl-38384121

ABSTRACT

INTRODUCTION: While the use of camping stoves in poorly ventilated areas is discouraged, the need to address dehydration challenges in harsh arctic conditions has led to their unconventional use inside snow caves for snow melting, subjecting occupants to unknown carbon monoxide (CO) levels. This study, located at sea level in northeastern Greenland, aimed to assess CO levels and dynamics during short cooking sessions in newly constructed emergency snow caves. METHODS: In 5 snow caves, constructed according to the same design principles by 4 different individuals, a single MSR Whisperlite multifuel burner, primed with ethanol and burning white gas, was used to melt snow. CO concentrations were monitored every minute until all the snow in a 5-L pot was converted to water and CO levels returned to below 10 ppm. RESULTS: A total of 16 experiments conducted showed that the priming phase generated the highest CO peaks, with a maximum of 120 ppm. Time-weighted averages ranged from 14 ppm to 67 ppm, with trial durations of 15 to 21 min. A single trial with a dirty burner resulted in up to a 10-fold increase in CO levels. CONCLUSIONS: While single, short cooking sessions of less than 10 min burn time in newly constructed snow caves may be tolerated under specific conditions, the study highlighted substantial variation between caves and the importance of using clean burners, emphasizing the need for further research to gain a comprehensive understanding of CO exposure dynamics in snow caves.


Subject(s)
Carbon Monoxide , Cooking , Snow , Humans , Carbon Monoxide/analysis , Cooking/methods , Greenland , Air Pollution, Indoor/analysis
18.
Eur Rev Med Pharmacol Sci ; 28(2): 789-796, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38305621

ABSTRACT

OBJECTIVE: Environmental pollution is an emerging global public health problem across the world and causes serious threats to ecosystems, human health, and the planet. This study is designed to explore the impact of environmental pollution particulate matter PM2.5, PM10, carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) on cognitive functions in students from schools located in or away from air-polluted areas. SUBJECTS AND METHODS: In this study, two schools were selected: one was located near a traffic-polluted area (school #1), and the second was in an area away from the traffic-polluted area (school #2). In this study, a total of 300 students were recruited: 150 (75 male and 75 female) students from school #1 located in a traffic-polluted area, and 150 students (75 male and 75 female) from school #2 located away from a traffic polluted area. The overall average age of students was 13.53±1.20 years. The students were selected based on age, gender, health status, height, weight, BMI, ethnicity, and homogenous socio-economic and educational status. The pollutants PM2.5, PM10, CO, NO2, O3, and SO2 were recorded in the surrounding environment. The overall mean concentration of environmental pollutants in school #1 was 35.00±0.65 and in school #2 was 29.95±0.32. The levels of airborne particles were measured, and the cognitive functions were recorded using the Cambridge Neuropsychological Test Automated Battery (CANTAB). The students performed the cognitive functions tasks, including the attention switching task (AST), choice reaction time (CRT), and motor screening task (MOT). RESULTS: The results revealed that the AST-Mean 928.34±182.23 vs. 483.79±146.73 (p=0.001), AST-mean congruent 889.12±197.12 vs. 473.30±120.11 (p=0.001), AST-mean in-congruent 988.98±201.27  vs. 483.87±144.57 (p=0.001), CRT-Mean 721.36±251.72  vs. 418.17±89.71 (p=0.001), and MOT-Mean 995.07±394.37 vs. 526.03±57.83 (p=0.001) were significantly delayed among the students who studied in school located in the traffic polluted area compared to students who studied in school which was located away from the traffic-polluted area. CONCLUSIONS: Environmental pollution was significantly higher in motor vehicle-congested areas. Cognitive functions were impaired among the students who were studying in a school located in a polluted area. The results further revealed that the students studying in schools located in environmentally polluted areas have attention, thinking, and decision-making abilities related to cognitive function impairment.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Ozone , Humans , Male , Female , Child , Adolescent , Carbon Monoxide/adverse effects , Carbon Monoxide/analysis , Sulfur Dioxide/adverse effects , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Ozone/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Ecosystem , Particulate Matter/adverse effects , Particulate Matter/analysis , Cognition
19.
Environ Pollut ; 346: 123587, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367695

ABSTRACT

The turbocharged Miller cycle strategy is studied to improve the power density of diesel engines and reduce emissions. A thermodynamic model and a 1D simulation model of turbocharged diesel engine are established. Results show that the introduction of the Miller cycle reduces the thermal efficiency under naturally aspirated conditions because of the low effective compression ratio, whereas it increases the thermal efficiency under a turbocharged condition owing to the energy recovered by the turbocharger. Under restricted combustion pressure and fixed intake mass, the thermal efficiency first increases and then decreases with increasing Miller cycle ratio, and the peaks occur at approximately 30%-50%. The gain of isochoric combustion ratio overlaps the loss of effective compression ratio due to the Miller cycle on the lower side, whereas it reverses on the higher side. With maximum and equal intake mass, the maximum power initially increases and subsequently decreases with increasing Miller cycle ratio, reaching a peak at 40%. Under a fixed isochoric combustion ratio, the thermal efficiency first increases and then decreases with increasing intake mass, and the optimum intake mass corresponding to the highest thermal efficiency decreases with increasing Miller cycle ratio. The lower the restricted combustion pressure is, the higher the gain in power and thermal efficiency by the Miller cycle strategy. Based on the calculation of the 1D model validated using a practical engine, the power can be increased from 41.6 kW/L to 100 kW/L while the brake thermal efficiency can be increased from 34.98% into 38.55% by increasing the Miller cycle ratio from 19% to 30% and the combustion pressure from 17.7 MPa to 35 MPa. With the application of the supercharged Miller cycle, when the Miller cycle ratio is 30% and the power intensity is increased from 60 kW/L to 100 kW/L, NOx decreases by 32.4%, CO decreases by 28%, showing a tendency to decrease and then stabilize, and HC increases by 5.3%. When the power is 80 kW/L and the Miller cycle ratio is increased from 10% to 30%, NOx decreases by 8.6%, CO decreases by 2%, and HC increases by 0.04%.


Subject(s)
Gasoline , Vehicle Emissions , Thermodynamics , Biofuels , Carbon Monoxide/analysis
20.
J Environ Qual ; 53(2): 162-173, 2024.
Article in English | MEDLINE | ID: mdl-38297166

ABSTRACT

High emissions of aerosols and trace gases during nighttime can cause serious air quality, climate, and health issues, particularly in extremely polluted cities. In this paper, an effort has been made to examine the variations in aerosols and trace gases over a sub-Saharan city of Ilorin (Nigeria) during nighttime. We have used Aerosol Robotic Network data of aerosol optical depth (AOD) at 500 nm, Angstrom exponent (AE) (440/870), and precipitable water (WVC). Both AE and WVC showed a decreasing trend of -0.0012% and -0.0010% per year, respectively. We also analyzed nighttime data of carbon monoxide (CO), methane (CH4 ), and ozone (O3 ) from Atmospheric Infrared Sounder and aerosol subtypes from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation). AOD, AE, and WVC average values are found to be 0.64 ± 0.33, 0.74 ± 0.24, and 3.40 ± 0.97, respectively. As a result of northeasterly winds carrying Saharan dust during the dry season, the greatest value of AOD (1.29) was observed in February. Desert dust aerosols (37.63%) were the most prevalent type, followed by mixed aerosols (44.15%). Winds at a height of 1500 m above ground level were likely transporting Saharan dust to Ilorin. CALIPSO images revealed that Ilorin's atmosphere contained dust, polluted continental, clean maritime, and polluted dust on high AOD days. The National Oceanic and Atmospheric Administration's vertical sounding profiles showed that the presence of high AOD values was caused by the inversion layer trapping aerosol pollution. Average nighttime concentrations of CO, O3 , and CH4 were measured to be 127 ± 18, 29.7 ± 2.1, and 1822.6 ± 12.7 ppbv, respectively. The wavelet coherence spectra exhibited significant quasi-biannual and quasi-annual oscillations at statistically significant levels.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Nigeria , Dust/analysis , Seasons , Aerosols/analysis , Carbon Monoxide/analysis , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...