Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
1.
Protein Expr Purif ; 221: 106520, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38833752

ABSTRACT

Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.


Subject(s)
Bacterial Proteins , Carbon-Nitrogen Ligases , Staphylococcus aureus , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/isolation & purification , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Gene Expression , Molecular Docking Simulation , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis
2.
J Chem Inf Model ; 64(11): 4462-4474, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38776464

ABSTRACT

The (S)-norcoclaurine synthase from Thalictrum flavum (TfNCS) stereoselectively catalyzes the Pictet-Spengler reaction between dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. TfNCS can catalyze the Pictet-Spengler reaction with various aldehydes and ketones, leading to diverse tetrahydroisoquinolines. This substrate promiscuity positions TfNCS as a highly promising enzyme for synthesizing fine chemicals. Understanding carbonyl-containing substrates' structural and electronic signatures that influence TfNCS activity can help expand its applications in the synthesis of different compounds and aid in protein optimization strategies. In this study, we investigated the influence of the molecular properties of aldehydes and ketones on their reactivity in the TfNCS-catalyzed Pictet-Spengler reaction. Initially, we compiled a library of reactive and unreactive compounds from previous publications. We also performed enzymatic assays using nuclear magnetic resonance to identify some reactive and unreactive carbonyl compounds, which were then included in the library. Subsequently, we employed QSAR and DFT calculations to establish correlations between substrate-candidate structures and reactivity. Our findings highlight correlations of structural and stereoelectronic features, including the electrophilicity of the carbonyl group, to the reactivity of aldehydes and ketones toward the TfNCS-catalyzed Pictet-Spengler reaction. Interestingly, experimental data of seven compounds out of fifty-three did not correlate with the electrophilicity of the carbonyl group. For these seven compounds, we identified unfavorable interactions between them and the TfNCS. Our results demonstrate the applications of in silico techniques in understanding enzyme promiscuity and specificity, with a particular emphasis on machine learning methodologies, DFT electronic structure calculations, and molecular dynamic (MD) simulations.


Subject(s)
Aldehydes , Ketones , Aldehydes/chemistry , Aldehydes/metabolism , Ketones/chemistry , Ketones/metabolism , Substrate Specificity , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/chemistry , Thalictrum/enzymology , Thalictrum/metabolism , Thalictrum/chemistry , Molecular Dynamics Simulation , Biocatalysis
3.
PLoS One ; 19(4): e0297122, 2024.
Article in English | MEDLINE | ID: mdl-38662671

ABSTRACT

Site specific biotinylation of AviTagged recombinant proteins using BirA enzyme is a widely used protein labeling technology. However, due to the incomplete biotinylation reactions and the lack of a purification method specific for the biotinylated proteins, it is challenging to purify the biotinylated sample when mixed with the non-biotinylated byproduct. Here, we have developed a monoclonal antibody that specifically recognizes the non-biotinylated AviTag but not the biotinylated sequence. After a ten-minute incubation with the resin that is conjugated with the antibody, the non-biotinylated AviTagged protein is trapped on the resin while the fully biotinylated material freely passes through. Therefore, our AviTrap (anti-AviTag antibody conjugated resin) provides an efficient solution for enriching biotinylated AviTagged proteins via a simple one-step purification.


Subject(s)
Antibodies, Monoclonal , Biotinylation , Antibodies, Monoclonal/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Humans , Biotin/chemistry , Animals , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism
4.
Int J Biol Macromol ; 267(Pt 2): 131510, 2024 May.
Article in English | MEDLINE | ID: mdl-38608989

ABSTRACT

Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.


Subject(s)
Adenosine/analogs & derivatives , Anti-Bacterial Agents , Ivermectin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ivermectin/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Molecular Docking Simulation , Biological Products/pharmacology , Biological Products/chemistry , Microbial Sensitivity Tests , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mutagenesis, Site-Directed
5.
mBio ; 15(5): e0341423, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38572988

ABSTRACT

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Subject(s)
Acetyl-CoA Carboxylase , Carbon-Nitrogen Ligases , Chloroflexus , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/chemistry , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/chemistry , Chloroflexus/genetics , Chloroflexus/metabolism , Chloroflexus/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biotin/metabolism , Biotin/biosynthesis , Malonyl Coenzyme A/metabolism , Acetyl Coenzyme A/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Fatty Acid Synthase, Type II
6.
Proteins ; 92(4): 435-448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37997490

ABSTRACT

Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.


Subject(s)
Carbon-Nitrogen Ligases , Escherichia coli Proteins , Animals , Humans , Biotinylation , Biotin/chemistry , Biotin/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Proteins/metabolism , Escherichia coli/metabolism , Ligases/genetics , Ligases/metabolism , Bacteria/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mammals/metabolism
7.
Cell Mol Life Sci ; 79(10): 534, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36180607

ABSTRACT

Tissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, causes impaired adipocyte adhesion and defective adipose tissue architecture. Moreover, CTPS influences integrin distribution and dot-like deposition of type IV collagen (Col IV). Col IV-integrin signaling reciprocally regulates the assembly of cytoophidia in adipocytes. Our results demonstrate that a positive feedback signaling loop containing both cytoophidia and integrin adhesion complex couple tissue architecture and metabolism in Drosophila adipose tissue.


Subject(s)
Carbon-Nitrogen Ligases , Collagen Type IV , Animals , Adipose Tissue/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Drosophila/metabolism , Integrins
8.
Exp Cell Res ; 418(1): 113250, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35691380

ABSTRACT

CTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. We show that Myc level is low in these two types of cells. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Moreover, overexpressing Myc induces cytoophidium formation in stalk cells. When CTPS is overexpressed, cytoophidia can be observed both in stalk cells and polar cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.


Subject(s)
Carbon-Nitrogen Ligases , Drosophila , Animals , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Germ Cells , Glutamine
9.
Elife ; 102021 11 04.
Article in English | MEDLINE | ID: mdl-34734801

ABSTRACT

Many metabolic enzymes self-assemble into micron-scale filaments to organize and regulate metabolism. The appearance of these assemblies often coincides with large metabolic changes as in development, cancer, and stress. Yeast undergo cytoplasmic acidification upon starvation, triggering the assembly of many metabolic enzymes into filaments. However, it is unclear how these filaments assemble at the molecular level and what their role is in the yeast starvation response. CTP Synthase (CTPS) assembles into metabolic filaments across many species. Here, we characterize in vitro polymerization and investigate in vivo consequences of CTPS assembly in yeast. Cryo-EM structures reveal a pH-sensitive assembly mechanism and highly ordered filament bundles that stabilize an inactive state of the enzyme, features unique to yeast CTPS. Disruption of filaments in cells with non-assembly or pH-insensitive mutations decreases growth rate, reflecting the importance of regulated CTPS filament assembly in homeotstasis.


Subject(s)
Carbon-Nitrogen Ligases/chemistry , Saccharomyces cerevisiae/enzymology , Cryoelectron Microscopy , Hydrogen-Ion Concentration , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry
10.
J Biol Chem ; 297(4): 101091, 2021 10.
Article in English | MEDLINE | ID: mdl-34416230

ABSTRACT

Cryptococcus neoformans is a fungus that causes life-threatening systemic mycoses. During infection of the human host, this pathogen experiences a major change in the availability of purines; the fungus can scavenge the abundant purines in its environmental niche of pigeon excrement, but must employ de novo biosynthesis in the purine-poor human CNS. Eleven sequential enzymatic steps are required to form the first purine base, IMP, an intermediate in the formation of ATP and GTP. Over the course of evolution, several gene fusion events led to the formation of multifunctional purine biosynthetic enzymes in most organisms, particularly the higher eukaryotes. In C. neoformans, phosphoribosyl-glycinamide synthetase (GARs) and phosphoribosyl-aminoimidazole synthetase (AIRs) are fused into a bifunctional enzyme, while the human ortholog is a trifunctional enzyme that also includes GAR transformylase. Here we functionally, biochemically, and structurally characterized C. neoformans GARs and AIRs to identify drug targetable features. GARs/AIRs are essential for de novo purine production and virulence in a murine inhalation infection model. Characterization of GARs enzymatic functional parameters showed that C. neoformans GARs/AIRs have lower affinity for substrates glycine and PRA compared with the trifunctional metazoan enzyme. The crystal structure of C. neoformans GARs revealed differences in the glycine- and ATP-binding sites compared with the Homo sapiens enzyme, while the crystal structure of AIRs shows high structural similarity compared with its H. sapiens ortholog as a monomer but differences as a dimer. The alterations in functional and structural characteristics between fungal and human enzymes could potentially be exploited for antifungal development.


Subject(s)
Antifungal Agents/chemistry , Carbon-Nitrogen Ligases , Cryptococcosis , Cryptococcus neoformans , Drug Delivery Systems , Enzyme Inhibitors/chemistry , Fungal Proteins , Animals , Antifungal Agents/therapeutic use , Carbon-Nitrogen Ligases/antagonists & inhibitors , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Cryptococcosis/drug therapy , Cryptococcosis/enzymology , Cryptococcosis/genetics , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/genetics , Crystallography, X-Ray , Enzyme Inhibitors/therapeutic use , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/genetics , Humans , Mice , Protein Domains
11.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301892

ABSTRACT

Cytidine triphosphate synthase (CTPS), which comprises an ammonia ligase domain and a glutamine amidotransferase domain, catalyzes the final step of de novo CTP biosynthesis. The activity of CTPS is regulated by the binding of four nucleotides and glutamine. While glutamine serves as an ammonia donor for the ATP-dependent conversion of UTP to CTP, the fourth nucleotide GTP acts as an allosteric activator. Models have been proposed to explain the mechanisms of action at the active site of the ammonia ligase domain and the conformational changes derived by GTP binding. However, actual GTP/ATP/UTP binding modes and relevant conformational changes have not been revealed fully. Here, we report the discovery of binding modes of four nucleotides and a glutamine analog 6-diazo-5-oxo-L-norleucine in Drosophila CTPS by cryo-electron microscopy with near-atomic resolution. Interactions between GTP and surrounding residues indicate that GTP acts to coordinate reactions at both domains by directly blocking ammonia leakage and stabilizing the ammonia tunnel. Additionally, we observe the ATP-dependent UTP phosphorylation intermediate and determine interacting residues at the ammonia ligase. A noncanonical CTP binding at the ATP binding site suggests another layer of feedback inhibition. Our findings not only delineate the structure of CTPS in the presence of all substrates but also complete our understanding of the underlying mechanisms of the allosteric regulation and CTP synthesis.


Subject(s)
Adenosine Triphosphate/metabolism , Ammonia/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Drosophila melanogaster/enzymology , Glutamine/metabolism , Uridine Triphosphate/metabolism , Allosteric Regulation , Animals , Binding Sites , Catalysis , Cryoelectron Microscopy , Hydrolysis , Kinetics , Ligands , Protein Conformation
12.
ACS Chem Biol ; 16(7): 1201-1207, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34129316

ABSTRACT

Red blood cells (RBCs) can serve as vascular carriers for drugs, proteins, peptides, and nanoparticles. Human RBCs remain in the circulation for ∼120 days, are biocompatible, and are immunologically largely inert. RBCs are cleared by the reticuloendothelial system and can induce immune tolerance to foreign components attached to the RBC surface. RBC conjugates have been pursued in clinical trials to treat cancers and autoimmune diseases and to correct genetic disorders. Still, most methods used to modify RBCs require multiple steps, are resource-intensive and time-consuming, and increase the risk of inflicting damage to the RBCs. Here, we describe direct conjugation of peptides and proteins onto the surface of RBCs in a single step, catalyzed by a highly efficient, recombinant asparaginyl ligase under mild, physiological conditions. In mice, the modified RBCs remain intact in the circulation, display a normal circulatory half-life, and retain their immune tolerance-inducing properties, as shown for protection against an accelerated model for type 1 diabetes. We conjugated different nanobodies to RBCs with retention of their binding properties, and these modified RBCs can target cancer cells in vitro. This approach provides an appealing alternative to current methods of RBC engineering. It provides ready access to more complex RBC constructs and highlights the general utility of asparaginyl ligases for the modification of native cell surfaces.


Subject(s)
Carbon-Nitrogen Ligases/chemistry , Erythrocyte Membrane/metabolism , Peptides/chemistry , Single-Domain Antibodies/chemistry , Animals , Carbon-Nitrogen Ligases/genetics , Cell Engineering , Cell Line, Tumor , Cysteine Endopeptidases/genetics , Diabetes Mellitus, Experimental/prevention & control , Erythrocyte Membrane/chemistry , Erythrocyte Transfusion , Female , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mutation , Oldenlandia/enzymology , Plant Proteins/genetics
13.
Acta Crystallogr D Struct Biol ; 77(Pt 4): 510-521, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33825711

ABSTRACT

Biotin protein ligase catalyses the post-translational modification of biotin carboxyl carrier protein (BCCP) domains, a modification that is crucial for the function of several carboxylases. It is a two-step process that results in the covalent attachment of biotin to the ϵ-amino group of a conserved lysine of the BCCP domain of a carboxylase in an ATP-dependent manner. In Leishmania, three mitochondrial enzymes, acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase, depend on biotinylation for activity. In view of the indispensable role of the biotinylating enzyme in the activation of these carboxylases, crystal structures of L. major biotin protein ligase complexed with biotin and with biotinyl-5'-AMP have been solved. L. major biotin protein ligase crystallizes as a unique dimer formed by cross-handshake interactions of the hinge region of the two monomers formed by partial unfolding of the C-terminal domain. Interestingly, the substrate (BCCP domain)-binding site of each monomer is occupied by its own C-terminal domain in the dimer structure. This was observed in all of the crystals that were obtained, suggesting a closed/inactive conformation of the enzyme. Size-exclusion chromatography studies carried out using high protein concentrations (0.5 mM) suggest the formation of a concentration-dependent dimer that exists in equilibrium with the monomer.


Subject(s)
Carbon-Nitrogen Ligases/chemistry , Carrier Proteins/chemistry , Leishmania major/enzymology , Leishmaniasis, Cutaneous/microbiology , Protozoan Proteins/chemistry , Binding Sites , Biotinylation , Dimerization , Protein Conformation , Protein Domains
14.
Biochemistry ; 60(4): 324-345, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33464881

ABSTRACT

2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin's rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH⧧ and a less negative ΔS⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a "wet" dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/chemistry , Carbon-Nitrogen Ligases/chemistry , Crystallography, X-Ray , Enzyme Stability , Hot Temperature , Protein Domains , Structure-Activity Relationship
15.
Chem Soc Rev ; 50(5): 2911-2926, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33458734

ABSTRACT

The interactions of biomolecules underpin all cellular processes, and the understanding of their dynamic interplay can lead to significant advances in the treatment of disease through the identification of novel therapeutic strategies. Protein-protein interactions (PPIs) in particular play a vital role within this arena, providing the basis for the majority of cellular signalling pathways. Despite their great importance, the elucidation of weak or transient PPIs that cannot be identified by immunoprecipitation remains a significant challenge, particularly in a disease relevant cellular environment. Recent approaches towards this goal have utilized the in situ generation of high energy intermediates that cross-link with neighboring proteins, providing a snapshot of the biomolecular makeup of the local area or microenvironment, termed the interactome. In this tutorial review, we discuss these reactive intermediates, how they are generated, and the impact they have had on the discovery of new biology. Broadly, we believe this strategy has the potential to significantly accelerate our understanding of PPIs and how they affect cellular physiology.


Subject(s)
Proteins/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Diazomethane/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Free Radicals/chemistry , Humans , Nucleic Acids/metabolism , Protein Interaction Maps , Proteins/chemistry , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Signal Transduction , Staining and Labeling/methods
16.
ACS Chem Biol ; 15(10): 2731-2740, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32880431

ABSTRACT

Staphyloferrin B is a key siderophore secreted by Staphylococcus aureus to acquire ferric ions from a host during infection, and its biosynthetic pathway has been validated to develop efficient antibacterial agents. Herein, we report the crystal structure of AMP-bound SbnC from S. aureus (SaSbnC) as the first representative structure of type B synthetases in the biosynthesis of α-hydroxycarboxylate siderophores. While type B synthetases specifically use α-ketoglutarate (α-KG) as their carboxylic acid substrate, SaSbnC showed unique structural features in the substrate pocket compared with the type A and C synthetases. Screening of α-KG analogues suggested that the hydrogen-bonding interaction between the α-carbonyl group of α-KG and residue Lys552 is a key determinant for the substrate selectivity of type B synthetases. Interestingly, citrate, the product of the tricarboxylic acid cycle and the substrate of type A synthetases, was found to inhibit the activity of SaSbnC with an IC50 value of 83 µM by mimicking α-KG binding, suggesting a potential regulatory role of the tricarboxylic acid cycle, whose activity is under the control of the intracellular iron concentration, to SaSbnC and other type B synthetases. These results provide critical new information to understand the structure, function, and regulation of type B synthetases in the siderophore-based iron acquisition system employed by a large number of pathogenic microbes.


Subject(s)
Bacterial Proteins/chemistry , Carbon-Nitrogen Ligases/chemistry , Siderophores/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Carbon-Nitrogen Ligases/antagonists & inhibitors , Carbon-Nitrogen Ligases/metabolism , Catalytic Domain , Citrates/chemistry , Citrates/metabolism , Citric Acid/chemistry , Citric Acid/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Lysine/chemistry , Protein Binding , Siderophores/metabolism , Staphylococcus aureus/enzymology
17.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32817212

ABSTRACT

The glycoprotein M of herpes simplex virus 1 (HSV-1) is dynamically relocated from nuclear membranes to the trans-Golgi network (TGN) during infection, but molecular partners that promote this relocalization are unknown. Furthermore, while the presence of the virus is essential for this phenomenon, it is not clear if this is facilitated by viral or host proteins. Past attempts to characterize glycoprotein M (gM) interacting partners identified the viral protein gN by coimmunoprecipitation and the host protein E-Syt1 through a proteomics approach. Interestingly, both proteins modulate the activity of gM on the viral fusion machinery. However, neither protein is targeted to the nuclear membrane and consequently unlikely explains the dynamic regulation of gM nuclear localization. We thus reasoned that gM may transiently interact with other molecules. To resolve this issue, we opted for a proximity-dependent biotin identification (BioID) proteomics approach by tagging gM with a BirA* biotinylation enzyme and purifying BirA substrates on a streptavidin column followed by mass spectrometry analysis. The data identified gM and 170 other proteins that specifically and reproducibly were labeled by tagged gM at 4 or 12 h postinfection. Surprisingly, 35% of these cellular proteins are implicated in protein transport. Upon testing select candidate proteins, we discovered that XPO6, an exportin, is required for gM to be released from the nucleus toward the TGN. This is the first indication of a host or viral protein that modulates the presence of HSV-1 gM on nuclear membranes.IMPORTANCE The mechanisms that enable integral proteins to be targeted to the inner nuclear membrane are poorly understood. Herpes simplex virus 1 (HSV-1) glycoprotein M (gM) is an interesting candidate, as it is dynamically relocalized from nuclear envelopes to the trans-Golgi network (TGN) in a virus- and time-dependent fashion. However, it was, until now, unclear how gM was directed to the nucleus or evaded that compartment later on. Through a proteomic study relying on a proximity-ligation assay, we identified several novel gM interacting partners, many of which are involved in vesicular transport. Analysis of select proteins revealed that XPO6 is required for gM to leave the nuclear membranes late in the infection. This was unexpected, as XPO6 is an exportin specifically associated with actin/profilin nuclear export. This raises some very interesting questions about the interaction of HSV-1 with the exportin machinery and the cargo specificity of XPO6.


Subject(s)
Herpesvirus 1, Human/metabolism , Karyopherins/metabolism , Membrane Glycoproteins/metabolism , Nuclear Envelope/metabolism , Viral Envelope Proteins/metabolism , Viral Proteins/metabolism , ran GTP-Binding Protein/metabolism , trans-Golgi Network/metabolism , Biotinylation , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Gene Expression , Herpesvirus 1, Human/genetics , Host-Pathogen Interactions/genetics , Humans , Karyopherins/genetics , Membrane Glycoproteins/genetics , Nuclear Envelope/virology , Protein Binding , Protein Transport , Proteomics/methods , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Staining and Labeling/methods , Streptavidin/chemistry , Synaptotagmins/genetics , Synaptotagmins/metabolism , Viral Envelope Proteins/genetics , Viral Proteins/genetics , ran GTP-Binding Protein/genetics , trans-Golgi Network/virology
18.
Biochemistry ; 59(35): 3258-3270, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32786413

ABSTRACT

Free guanidine is increasingly recognized as a relevant molecule in biological systems. Recently, it was reported that urea carboxylase acts preferentially on guanidine, and consequently, it was considered to participate directly in guanidine biodegradation. Urea carboxylase combines with allophanate hydrolase to comprise the activity of urea amidolyase, an enzyme predominantly found in bacteria and fungi that catalyzes the carboxylation and subsequent hydrolysis of urea to ammonia and carbon dioxide. Here, we demonstrate that urea carboxylase and allophanate hydrolase from Pseudomonas syringae are insufficient to catalyze the decomposition of guanidine. Rather, guanidine is decomposed to ammonia through the combined activities of urea carboxylase, allophanate hydrolase, and two additional proteins of the DUF1989 protein family, expansively annotated as urea carboxylase-associated family proteins. These proteins comprise the subunits of a heterodimeric carboxyguanidine deiminase (CgdAB), which hydrolyzes carboxyguanidine to N-carboxyurea (allophanate). The genes encoding CgdAB colocalize with genes encoding urea carboxylase and allophanate hydrolase. However, 25% of urea carboxylase genes, including all fungal urea amidolyases, do not colocalize with cgdAB. This subset of urea carboxylases correlates with a notable Asp to Asn mutation in the carboxyltransferase active site. Consistent with this observation, we demonstrate that fungal urea amidolyase retains a strong substrate preference for urea. The combined activities of urea carboxylase, carboxyguanidine deiminase and allophanate hydrolase represent a newly recognized pathway for the biodegradation of guanidine. These findings reinforce the relevance of guanidine as a biological metabolite and reveal a broadly distributed group of enzymes that act on guanidine in bacteria.


Subject(s)
Guanidine/metabolism , Hydrolases/metabolism , Nitrogen/metabolism , Pseudomonas syringae/enzymology , Urea/metabolism , Allophanate Hydrolase/chemistry , Allophanate Hydrolase/metabolism , Ammonia/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Catalysis , Citrullination/physiology , Hydrolases/chemistry , Metabolic Networks and Pathways/physiology , Molecular Sequence Annotation/standards , Protein Subunits/chemistry , Protein Subunits/metabolism , Pseudomonas syringae/metabolism
19.
BMC Med Genet ; 21(1): 155, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727382

ABSTRACT

BACKGROUND: Holocarboxylase synthetase (HLCS) deficiency is a rare inborn disorder of biotin metabolism, which results in defects in several biotin-dependent carboxylases and presents with metabolic ketoacidosis and skin lesions. CASE PRESENTATION: In this paper, we report a Chinese Han pedigree with HLCS deficiency diagnosed by using next-generation sequencing and validated with Sanger sequencing of the HLCS and BTD genes. The Chinese proband carries the common missense mutation c.1522C > T (p.Arg508Trp) in exon 9 of the HLCS gene, which generates an increased Km value for biotin. A novel frameshift mutation c.1006_1007delGA (p.Glu336Thrfs*15) in exon 6 of the HLCS gene is predicted to be deleterious through PROVEAN and MutationTaster. A novel heterozygous mutation, c.638_642delAACAC (p.His213Profs*4), in the BTD gene is also identified. CONCLUSIONS: The Chinese proband carries the reported Arg508Trp variant, the novel 2-bp frameshift mutation c.1006_1007delGA (p.Glu336Thrfs*15), which expands the mutational spectrum of the HLCS gene, and the novel heterozygous mutation c.638_642delAACAC (p.His213Profs*4), which expands the mutational spectrum of the BTD gene. Furthermore, reversible hearing damage is rarely reported in patients with HLCS deficiency, which deserves further discussion.


Subject(s)
Asian People/genetics , Ethnicity/genetics , Holocarboxylase Synthetase Deficiency/genetics , Pedigree , Amino Acid Sequence , Base Sequence , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Female , Holocarboxylase Synthetase Deficiency/blood , Holocarboxylase Synthetase Deficiency/enzymology , Holocarboxylase Synthetase Deficiency/urine , Humans , Infant , Male , Metabolome , Mutation/genetics , Protein Domains
20.
Arch Biochem Biophys ; 691: 108509, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32717225

ABSTRACT

Biotin protein ligase (BPL) is an essential enzyme in all kingdoms of life, making it a potential target for novel anti-infective agents. Whilst bacteria and archaea have simple BPL structures (class I and II), the homologues from certain eukaryotes such as mammals, insects and yeast (class III) have evolved a more complex structure with a large extension on the N-terminus of the protein in addition to the conserved catalytic domain. The absence of atomic resolution structures of any class III BPL hinders structural and functional analysis of these enzymes. Here, two new class III BPLs from agriculturally important moulds Botrytis cinerea and Zymoseptoria tritici were characterised alongside the homologue from the prototypical yeast Saccharomyces cerevisiae. Circular dichroism and ion mobility-mass spectrometry analysis revealed conservation of the overall tertiary and secondary structures of all three BPLs, corresponding with the high sequence similarity. Subtle structural differences were implied by the different thermal stabilities of the enzymes and their varied Michaelis constants for their interactions with ligands biotin, MgATP, and biotin-accepting substrates from different species. The three BPLs displayed different preferences for fungal versus bacterial protein substrates, providing further evidence that class III BPLs have a 'substrate validation' activity for selecting only appropriate proteins for biotinylation. Selective, potent inhibition of these three BPLs was demonstrated despite sequence and structural homology. This highlights the potential for targeting BPL for novel, selective antifungal therapies against B. cinerea, Z. tritici and other fungal species.


Subject(s)
Carbon-Nitrogen Ligases/chemistry , Fungal Proteins/chemistry , Ascomycota/enzymology , Botrytis/enzymology , Carbon-Nitrogen Ligases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Fungal Proteins/antagonists & inhibitors , Protein Conformation , Protein Stability , Protein Unfolding , Saccharomyces cerevisiae/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...