Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.317
Filter
1.
Microb Ecol ; 87(1): 69, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730059

ABSTRACT

Biocrust inoculation and microbially induced carbonate precipitation (MICP) are tools used in restoring degraded arid lands. It remains unclear whether the ecological functions of the two tools persist when these methods are combined and subjected to freeze-thaw (FT) cycles. We hypothesized a synergetic interaction between MICP treatment and biocrust under FT cycles, which would allow both components to retain their ecological functions. We grew cyanobacterial (Nostoc commune) biocrusts on bare soil and on MICP (Sporosarcina pasteurii)-treated soil, subjecting them to repeated FT cycles simulating the Mongolian climate. Generalized linear modeling revealed that FT cycling did not affect physical structure or related functions but could increase the productivity and reduce the nutrient condition of the crust. The results confirm the high tolerance of MICP-treated soil and biocrust to FT cycling. MICP treatment + biocrust maintained higher total carbohydrate content under FT stress. Our study indicates that biocrust on biomineralized soil has a robust enough structure to endure FT cycling during spring and autumn and to promote restoration of degraded lands.


Subject(s)
Cyanobacteria , Freezing , Soil Microbiology , Soil , Soil/chemistry , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Carbonates/chemistry , Carbonates/metabolism , Ecosystem , Sporosarcina/metabolism , Sporosarcina/growth & development
2.
J Mater Chem B ; 12(18): 4509-4520, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38647022

ABSTRACT

One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.


Subject(s)
Calcinosis , Thyroid Neoplasms , Zinc , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Zinc/chemistry , Calcinosis/pathology , Calcinosis/metabolism , Carbonates/chemistry , Crystallization , Cell Proliferation/drug effects , Cell Line, Tumor , Durapatite/chemistry
3.
Mar Drugs ; 22(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38667777

ABSTRACT

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Subject(s)
Calcium Phosphates , Chitosan , Coculture Techniques , Fibroblasts , Nanofibers , Osteoblasts , Osteoblasts/drug effects , Chitosan/chemistry , Fibroblasts/drug effects , Porosity , Nanofibers/chemistry , Calcium Phosphates/chemistry , Animals , Bone Regeneration/drug effects , Mice , Tissue Scaffolds/chemistry , Carbonates/chemistry , Calcification, Physiologic/drug effects
4.
Article in English | MEDLINE | ID: mdl-38655590

ABSTRACT

The effect of temperature on the solubility of lead-bearing solid phases in water distribution systems for different water chemistry conditions remains unclear although lead concentrations are known to vary seasonally. The study objective is to explore the effect of temperature on the solubility of the lead(II) carbonate hydrocerussite under varying pH and DIC conditions. This is achieved through batch dissolution experiments conducted at multiple pHs (6-10) and DIC concentrations (20-200 mg CL-1) at temperatures ranging from 5 to 40 °C. A thermodynamic model was also applied to evaluate the model's ability to predict temperature effects on lead(II) carbonate solubility including solid phase transformations. In general, increasing temperature increased total dissolved lead at high pHs and the effect of temperature was greater for high DIC conditions, particularly for pH > 8. Temperature also influenced the pH at which the dominant lead(II) solid phase switched from hydrocerussite to cerussite (occurred between pH 7.25 to 10). Finally, the model was able to capture the overall trends observed despite thermodynamic data limitations. While this study focuses on a simple lead solid-aqueous system, findings provide important insights regarding the way in which temperature and water chemistry interact to affect lead concentrations.


Subject(s)
Carbonates , Lead , Solubility , Temperature , Lead/chemistry , Hydrogen-Ion Concentration , Carbonates/chemistry , Thermodynamics , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Models, Chemical
5.
J Hum Evol ; 190: 103498, 2024 05.
Article in English | MEDLINE | ID: mdl-38581918

ABSTRACT

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Subject(s)
Hominidae , Animals , Kenya , Ecosystem , Biological Evolution , Carbonates , Archaeology , Fossils
6.
Chemosphere ; 357: 141985, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614404

ABSTRACT

Carbonate radical (CO3•-) has been proved to be an important secondary radical in advanced oxidation processes due to various radical reactions involved HCO3-/CO32-. However, the roles and contributions of CO3•- in organic micropollutant degradation have not been explored systematically. Here, we quantified the impact of CO3•- on the degradation kinetics of propranolol, a representative pollutant in the UV/peroxymonosulfate (PMS) system, by constructing a steady-state radical model. Substantially, the measured values were coincident with the predictive values, and the contributions of CO3•- on propranolol degradation were the water matrix-dependent. Propranolol degradation increased by 130% in UV/PMS system containing 10 mM HCO3-, and the contribution of CO3•- was as high as 58%. Relatively high pH values are beneficial for propranolol degradation in pure water containing HCO3-, and the contributions of CO3•- also enhanced, while an inverse phenomenon was shown for the effects of propranolol concentrations. Dissolved organic matter exhibited significant scavenging effects on HO•, SO4•-, and CO3•-, substantially retarding the elimination process. The developed model successfully predicted oxidation degradation kinetics of propranolol in actual sewage, and CO3•- contribution was up to 93%, which in indicative of the important role of CO3•- in organic micropollutant removal via AOPs treatment.


Subject(s)
Carbonates , Oxidation-Reduction , Peroxides , Propranolol , Ultraviolet Rays , Water Pollutants, Chemical , Propranolol/chemistry , Water Pollutants, Chemical/chemistry , Carbonates/chemistry , Kinetics , Peroxides/chemistry , Hydrogen-Ion Concentration
7.
J Mater Chem B ; 12(20): 4945-4961, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38685886

ABSTRACT

Self-activated luminescent calcium phosphate (CaP) nanoparticles, including hydroxyapatite (HA) and amorphous calcium phosphate (ACP), are promising for bioimaging and theragnostic applications in nanomedicine, eliminating the need for activator ions or fluorophores. In this study, we developed luminescent and stable citrate-functionalized carbonated ACP nanoparticles for bioimaging purposes. Our findings revealed that both the CO32- content and the posterior heating step at 400 °C significantly influenced the composition and the structural ordering of the chemically precipitated ACP nanoparticles, impacting the intensity, broadness, and position of the defect-related photoluminescence (PL) emission band. The heat-treated samples also exhibited excitation-dependent PL under excitation wavelengths typically used in bioimaging (λexc = 405, 488, 561, and 640 nm). Citrate functionalization improved the PL intensity of the nanoparticles by inhibiting non-radiative deactivation mechanisms in solution. Additionally, it resulted in an increased colloidal stability and reduced aggregation, high stability of the metastable amorphous phase and the PL emission for at least 96 h in water and supplemented culture medium. MTT assay of HepaRG cells, incubated for 24 and 48 h with the nanoparticles in concentrations ranging from 10 to 320 µg mL-1, evidenced their high biocompatibility. Internalization studies using the nanoparticles self-activated luminescence showed that cellular uptake of the nanoparticles is both time (4-24 h) and concentration (160-320 µg mL-1) dependent. Experiments using confocal laser scanning microscopy allowed the successful imaging of the nanoparticles inside cells via their intrinsic PL after 4 h of incubation. Our results highlight the potential use of citrate-functionalized carbonated ACP nanoparticles for use in internalization assays and bioimaging procedures.


Subject(s)
Calcium Phosphates , Nanoparticles , Calcium Phosphates/chemistry , Nanoparticles/chemistry , Humans , Particle Size , Luminescence , Optical Imaging , Cell Survival/drug effects , Carbonates/chemistry
8.
Sci Total Environ ; 929: 172572, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38641113

ABSTRACT

Carbonate bound arsenic act as an important reservoir for arsenic (As) in nature aquifers. Sulfate-reducing bacteria (SRB), one of the dominant bacterial species in reductive groundwater, profoundly affects the biogeochemical cycling of As. However, whether and how SRB act on the migration and transformation of carbonate bound arsenic remains to be elucidated. Batch culture experiment was employed using filed collected arsenic bearing calcite to investigate the release and species transformation of As by SRB. We found that arsenic in the carbonate samples mostly exist as inorganic As(V) (93.92 %) and As(III). The present of SRB significantly facilitated arsenic release from carbonates with a maximum of 22.3 µg/L. The main release mechanisms of As by SRB include 1) calcite dissolution and the liberate of arsenic in calcite lattices, and 2) the break of H-bonds frees arsenic absorbed on carbonate surface. A redistribution of arsenic during culture incubation took place which may due to the precipitation of As2Sx or secondary FeAl minerals. To our best knowledge, it is the first experimental study focusing on the release of carbonate bound arsenic by SRB. This study provides new insights into the fate and transport of arsenic mediated by microorganism within high arsenic groundwater-sediment system.


Subject(s)
Arsenic , Carbonates , Groundwater , Sulfates , Water Pollutants, Chemical , Arsenic/metabolism , Groundwater/chemistry , Groundwater/microbiology , Water Pollutants, Chemical/metabolism , Carbonates/metabolism , Sulfates/metabolism , Bacteria/metabolism , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124233, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38583394

ABSTRACT

A new phenolate-thiazole derivative (L) has been synthesized and structurally characterized.The chemo-sensing activity of L is detected by the naked eye for the aqueous carbonate anion in the pH range of 4 to 8. The selective 'turn-on' fluorescence occurs through the formation of a stable intermediate L∙CO32-(1) following the PET mechanism. The limit of detection (LOD) is found 0.18 µM based on the absorbance-based assay.The quinonoid form of bromophenol unit binds strongly with CO32- through thiazole nitrogen and hydrazinic nitrogen. Further, the selective holding of CO32- anion over other planar tetranuclear anions (e.g., SO32-, NO3-) happens with several intra and intermolecular hydrogen bonds as envisaged by the DFT/TDFT study. The formation mechanism of L∙CO32- is proposed based on experimental and theoretical studies. The biological experiments (MTT and cell imaging)reveal the non-cytotoxicity nature of L and the biocompatible uptake of L mostly in the cytoplasm at physiological pH.


Subject(s)
Anions , Carbonates , Density Functional Theory , Thiazoles , Crystallography, X-Ray , Thiazoles/chemistry , Anions/analysis , Carbonates/chemistry , Humans , Models, Molecular , Spectrometry, Fluorescence , Hydrogen-Ion Concentration , Limit of Detection , Phenols/chemistry , Phenols/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis
10.
Chemosphere ; 356: 141840, 2024 May.
Article in English | MEDLINE | ID: mdl-38582167

ABSTRACT

The extensive use of tetracyclines (TCs) has led to their widespread distribution in the environment, causing serious harm to ecosystems because of their toxicity and resistance to decomposition. Adsorption is presently the principal approach to dispose of TCs, and the development of excellent adsorbents is crucial to TC removal. Herein, a novel amorphous cobalt carbonate hydroxide (ACCH) was successfully prepared by a one-step solvothermal method, which was identified as Co(CO3)0·63(OH)0.74·0.07H2O. The ultimate adsorption capacity of ACCH for TC reaches 2746 mg g-1, and the excellent adsorption performance can be maintained over a wide pH (3.0-11.0) and temperature (10-70 °C) range. Moreover, ACCH also exhibits a wonderful adsorption performance for other organic contaminants, such as ciprofloxacin and Rhodamine B. The TC adsorption process can be reasonably described by the pseudo-second-order kinetic model, intraparticle model and Langmuir isothermal model. The experimental results in this work suggest that the excellent adsorption performance of ACCH is ascribed to the large specific surface area, alkaline characteristics and numerous functional groups of ACCH. Accordingly, this work provides a promising strategy for the development of highly-efficient adsorbents and demonstrates their application prospects in environmental remediation.


Subject(s)
Carbonates , Cobalt , Tetracycline , Cobalt/chemistry , Adsorption , Tetracycline/chemistry , Carbonates/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Nanostructures/chemistry , Hydrogen-Ion Concentration , Temperature , Anti-Bacterial Agents/chemistry
11.
Chemosphere ; 356: 141856, 2024 May.
Article in English | MEDLINE | ID: mdl-38582171

ABSTRACT

Mechanistic investigations of an environmentally friendly and easy-to-implement oxidation method in the remediation of contaminated anoxic waters, i.e. groundwater, through the sole use of oxygen for the oxygen-induced oxidation of pollutants were the focus of this work. This was achieved by the addition of O2 under anoxic conditions in the presence of ferrous iron which initiated the ferrous oxidation and the simultaneous formation of reactive •OH radicals. The involvement of inorganic ligands such as carbonates in the activation of oxygen as part of the oxidation of Fe2+ in water was investigated, too. The formation of •OH radicals, was confirmed in two different, indirect approaches by a fluorescence-based method involving coumarin as •OH scavenger and by the determination of the oxidation products of different aromatic VOCs. In the latter case, the oxidation products of several typical aromatic groundwater contaminants such as BTEX (benzene, toluene, ethylbenzene, xylenes), indane and ibuprofen, were determined. The influence of other ligands in the absence of bicarbonate and the effect of pH were also addressed. The possibility of activation of O2 in carbonate-rich water i.e. groundwater, may also potentially contribute to oxidation of groundwater contaminants and support other primary remediation techniques.


Subject(s)
Carbonates , Environmental Restoration and Remediation , Groundwater , Iron , Oxidation-Reduction , Oxygen , Water Pollutants, Chemical , Oxygen/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Iron/chemistry , Groundwater/chemistry , Environmental Restoration and Remediation/methods , Carbonates/chemistry , Volatile Organic Compounds/chemistry , Hydroxyl Radical/chemistry
12.
J Mater Chem B ; 12(17): 4232-4247, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38601990

ABSTRACT

The design and synthesis of nano- and microcarriers for preclinical and clinical imaging are highly attractive due to their unique features, for example, multimodal properties. However, broad translation of these carriers into clinical practice is postponed due to the unknown biological reactivity of the new components used for their synthesis. Here, we have developed microcarriers (∼2-3 µm) and  nanocarriers (<200 nm) made of barium carbonate (BaCO3) for multiple imaging applications in vivo. In general, barium in the developed carriers can be used for X-ray computed tomography, and the introduction of a diagnostic isotope (99mTc) into the BaCO3 structure enables in vivo visualization using single-photon emission computed tomography. The bioimaging has shown that the radiolabeled BaCO3 nano- and microcarriers had different biodistribution profiles and tumor accumulation efficiencies after intratumoral and intravenous injections. In particular, in the case of intratumoral injection, all the types of used carriers mostly remained in the tumors (>97%). For intravenous injection, BaCO3 microcarriers were mainly localized in the lung tissues. However, BaCO3 NPs were mainly accumulated in the liver. These results were supported by ex vivo fluorescence imaging, direct radiometry, and histological analysis. The BaCO3-based micro- and nanocarriers showed negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys, and spleen. This study provides a simple strategy for the design and fabrication of the BaCO3-based carriers for the development of dual bioimaging.


Subject(s)
Barium , Carbonates , Tomography, Emission-Computed, Single-Photon , Animals , Mice , Carbonates/chemistry , Barium/chemistry , Tomography, X-Ray Computed , Particle Size , Nanoparticles/chemistry , Humans , Tissue Distribution
13.
Geobiology ; 22(2): e12595, 2024.
Article in English | MEDLINE | ID: mdl-38596869

ABSTRACT

On the anoxic Archean Earth, prior to the onset of oxidative weathering, electron acceptors were relatively scarce, perhaps limiting microbial productivity. An important metabolite may have been sulfate produced during the photolysis of volcanogenic SO2 gas. Multiple sulfur isotope data can be used to track this sulfur source, and indeed this record indicates SO2 photolysis dating back to at least 3.7 Ga, that is, as far back as proposed evidence of life on Earth. However, measurements of multiple sulfur isotopes in some key strata from that time can be challenging due to low sulfur concentrations. Some studies have overcome this challenge with NanoSIMS or optimized gas-source mass spectrometry techniques, but those instruments are not readily accessible. Here, we applied an aqua regia leaching protocol to extract small amounts of sulfur from whole rocks for analyses of multiple sulfur isotopes by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Measurements of standards and replicates demonstrate good precision and accuracy. We applied this technique to meta-sedimentary rocks with putative biosignatures from the Eoarchean Isua Supracrustal Belt (ISB, >3.7 Ga) and found positive ∆33S (1.40-1.80‰) in four meta-turbidites and negative ∆33S (-0.80‰ and -0.66‰) in two meta-carbonates. Two meta-basalts do not display significant mass-independent fractionation (MIF, -0.01‰ and 0.16‰). In situ Re-Os dating on a molybdenite vein hosted in the meta-turbidites identifies an early ca. 3.7 Ga hydrothermal phase, and in situ Rb-Sr dating of micas in the meta-carbonates suggests metamorphism affected the rocks at ca. 2.2 and 1.7 Ga. We discuss alteration mechanisms and conclude that there is most likely a primary MIF-bearing phase in these meta-sediments. Our new method is therefore a useful addition to the geochemical toolbox, and it confirms that organisms at that time, if present, may indeed have been fed by volcanic nutrients.


Subject(s)
Carbonates , Sulfur Isotopes/analysis
14.
Geobiology ; 22(2): e12596, 2024.
Article in English | MEDLINE | ID: mdl-38591761

ABSTRACT

The formation of intracellular amorphous calcium carbonate (ACC) by various cyanobacteria is a widespread biomineralization process, yet its mechanism and importance in past and modern environments remain to be fully comprehended. This study explores whether calcium (Ca) isotope fractionation, linked to ACC-forming cyanobacteria, can serve as a reliable tracer for detecting these microorganisms in modern and ancient settings. Accordingly, we measured stable Ca isotope fractionation during Ca uptake by the intracellular ACC-forming cyanobacterium Cyanothece sp. PCC 7425. Our results show that Cyanothece sp. PCC 7425 cells are enriched in lighter Ca isotopes relative to the solution. This finding is consistent with the kinetic isotope effects observed in the Ca isotope fractionation during biogenic carbonate formation by marine calcifying organisms. The Ca isotope composition of Cyanothece sp. PCC 7425 was accurately modeled using a Rayleigh fractionation model, resulting in a Ca isotope fractionation factor (Δ44Ca) equal to -0.72 ± 0.05‰. Numerical modeling suggests that Ca uptake by these cyanobacteria is primarily unidirectional, with minimal back reaction observed over the duration of the experiment. Finally, we compared our Δ44Ca values with those of other biotic and abiotic carbonates, revealing similarities with organisms that form biogenic calcite. These similarities raise questions about the effectiveness of using the Ca isotope fractionation factor as a univocal tracer of ACC-forming cyanobacteria in the environment. We propose that the use of Δ44Ca in combination with other proposed tracers of ACC-forming cyanobacteria such as Ba and Sr isotope fractionation factors and/or elevated Ba/Ca and Sr/Ca ratios may provide a more reliable approach.


Subject(s)
Cyanobacteria , Cyanothece , Calcium Carbonate , Carbonates , Calcium Isotopes , Isotopes/analysis , Aquatic Organisms , Calcium
15.
Mar Environ Res ; 197: 106471, 2024 May.
Article in English | MEDLINE | ID: mdl-38574496

ABSTRACT

Eolian dust and riverine discharge are identified as two key components of terrestrial input to the oceans. They supply micronutrients to the oceans and modify marine carbon biogeochemistry and global climate through dust-land-ocean interactions. However, it is challenging to accurately constrain regional terrestrial inputs in the past, with currently available models and geochemical proxies. The present study utilizes sedimentary wtCaCO3% records to estimate lithogenic fluxes. The depth-dependance of CaCO3 preservation in the Holocene and Last Glacial Maximum (LGM) sediments in two major basins of the tropical Northeast Atlantic Ocean is described using a carbonate dissolution model. Results show that during the LGM, reduced dust deposition and slight drops of fluvial input are found in the Canary Basin and Cape Verde margins, respectively. To supplement, carbonate deposition during the LGM indicates that the deep subtropical Northeast Atlantic is seized by more sluggish deep waters relative to today.


Subject(s)
Carbonates , Climate , Oceans and Seas , Atlantic Ocean , Dust/analysis
16.
J Hazard Mater ; 470: 134286, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615649

ABSTRACT

Microplastic hetero-aggregates are stable forms of microplastics in the aqueous environment. However, when disinfecting water containing microplastic hetero-aggregates, the response of them in water to different oxidizing agents and the effect on water quality have not been reported. Our results showed that Ca(ClO)2, K2S2O8, and sodium percarbonate (SPC) treatment could lead to the disaggregation of microplastic hetero-aggregates as well as a rise in cell membrane permeability, which caused a large amount of organic matter to be released. When the amount of oxidant dosing is insufficient, the oxidant cannot completely degrade the released organic matter, resulting in DOC, DTN, DTP and other indicators being higher than before oxidation, thus causing secondary pollution of the water body. In comparison, K2FeO4 can purify the water body stably without destroying the microplastic hetero-aggregates, but it only weakly inhibits the toxic cyanobacteria Microcystis and Pseudanabaena, which may cause cyanobacterial bloom as well as algal toxin and odorant contamination in practical application. Compared with the other oxidizers, K2S2O8 provides better inhibition of toxic cyanobacteria and has better ecological safety. Therefore, when treating microplastic-containing water bodies, we should consider both water purification and ecological safety, and select appropriate oxidant types and dosages to optimize the water treatment.


Subject(s)
Microplastics , Oxidants , Water Pollutants, Chemical , Oxidants/chemistry , Microplastics/toxicity , Microplastics/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Carbonates/chemistry , Water Purification/methods
17.
J Hazard Mater ; 470: 134210, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581876

ABSTRACT

Modern metallurgical and smelting activities discharge the lead-containing wastewater, causing serious threats to human health. Bacteria and urease applied to microbial-induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) are denatured under high Pb2+ concentration. The nano-hydroxyapatite (nHAP)-assisted biomineralization technology was applied in this study for Pb immobilization. Results showed that the extracellular polymers and cell membranes failed to secure the urease activity when subjected to 60 mM Pb2+. The immobilization efficiency dropped to below 50% under MICP, whereas it due to a lack of extracellular polymers and cell membranes dropped to below 30% under EICP. nHAP prevented the attachment of Pb2+ either through competing with bacteria and urease or promoting Ca2+/Pb2+ ion exchange. Furthermore, CO32- from ureolysis replaced the hydroxyl (-OH) in hydroxylpyromorphite to encourage the formation of carbonate-bearing hydroxylpyromorphite of higher stability (Pb10(PO4)6CO3). Moreover, nHAP application overcame an inability to provide nucleation sites by urease. As a result, the immobilization efficiency, when subjected to 60 mM Pb2+, elevated to above 80% under MICP-nHAP and to some 70% under EICP-nHAP. The findings highlight the potential of applying the nHAP-assisted biomineralization technology to Pb-containing water bodies remediation.


Subject(s)
Biomineralization , Durapatite , Lead , Urease , Water Pollutants, Chemical , Durapatite/chemistry , Lead/chemistry , Urease/metabolism , Urease/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Carbonates/chemistry , Environmental Restoration and Remediation/methods
18.
Sci Total Environ ; 927: 172268, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583629

ABSTRACT

Due to the inappropriate disposal of waste materials containing lead (Pb) and irrigation with sewage containing Pb, the migration of Pb2+ within the soil profile has been extensively investigated. The conventional Pb2+ block method is challenging to implement due to its complex operational procedures and high construction costs. To address this issue, this study introduces the microbial-induced carbonate precipitation (MICP) technique as a novel approach to impede the migration of Pb2+ in the soil profile. Soil acclimatization with urea resulted in an increased proportion of urease-producing microorganisms, including Bacillus, Paenibacillus, and Planococcaceae, along with heightened expression of urea-hydrolyzing genes (UreA, UreB, UreC, and UreG). This indicates that urea-acclimatized soil (Soil-MICP) possesses the potential to induce carbonate precipitation. Batch Pb2+ fixation experiments confirmed that the fixation efficiency of Soil-MICP on Pb2+ exceeded that of soil without MICP, attributed to the MICP process within the Soil-MICP group. Dynamic migration experiments revealed that the MICP reaction transformed exchangeable lead into carbonate-bound Pb, effectively impeding Pb2+ migration in the soil profile. Additionally, the migration rate of Pb2+ in Soil-MICP was influenced by varying urea amounts, pH levels, and pore flow rates, leading to a slowdown in migration. The Two-site sorption model aptly described the Pb2+ migration process in the Soil-MICP column. This study aims to elucidate the MICP biomineralization process, uncover the in-situ blocking mechanism of MICP on lead in soil, investigate the impact of Pb on key genes involved in urease metabolism, enhance the comprehension of the chemical morphology of lead mineralization products, and provide a theoretical foundation for MICP technology in preventing the migration of Pb2+ in soil profiles.


Subject(s)
Carbonates , Lead , Soil Microbiology , Soil Pollutants , Soil , Soil/chemistry , Urease/metabolism , Chemical Precipitation
19.
Waste Manag ; 178: 331-338, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38430747

ABSTRACT

The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.


Subject(s)
Calcium Compounds , Carbon Dioxide , Sewage , Silicates , Carbon Dioxide/chemistry , Anaerobiosis , Biofuels , Calcium Chloride , Minerals , Carbonates , Methane , Bioreactors
20.
Org Lett ; 26(10): 2034-2038, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486497

ABSTRACT

Tuberculosis (TB) is one of the most dreadful diseases, killing more than 3 million humans annually. M. tuberculosis (MTb) is the causative agent for TB and has a thick and waxy cell wall, making it an attractive target for immunological studies. In this study, a heptamannopyranoside containing 1 → 2 and 1 → 6 α-mannopyranosidic linkages has been explored for the immunological evaluations. The conjugation-ready heptamannopyranoside was synthesized by exploiting the salient features of recently discovered [Au]/[Ag]-glycosidation of ethynylcyclohexyl glycosyl carbonate donors. The glycan was conjugated to the ESAT6, an early secreted protein of MTb for further characterization as a potential subunit vaccine candidate.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/metabolism , Carbonates , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...