Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.630
Filter
1.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766857

ABSTRACT

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Subject(s)
Adipocytes , Antigens, Neoplasm , Breast Neoplasms , Carbonic Anhydrase IX , Cell Movement , Colonic Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Leptin , Paracrine Communication , Humans , Carbonic Anhydrase IX/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Antigens, Neoplasm/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Leptin/metabolism , Cell Line, Tumor , Animals , Obesity/metabolism , Culture Media, Conditioned/pharmacology , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Mice
2.
Proc Natl Acad Sci U S A ; 121(19): e2315348121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38701117

ABSTRACT

Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.


Subject(s)
Carbonic Anhydrase IX , Mitochondria , Ovarian Neoplasms , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Cell Line, Tumor , Animals , Mice , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glycolysis/drug effects , Gene Silencing , Gene Expression Regulation, Neoplastic/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Metabolic Reprogramming
3.
Neoplasma ; 71(2): 123-142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766851

ABSTRACT

Lung cancer represents the leading cause of cancer-related deaths. Non-small cell lung cancer (NSCLC), the most common form of lung cancer, is a molecularly heterogeneous disease with intratumoral heterogeneity and a significant mutational burden associated with clinical outcome. Tumor microenvironment (TME) plays a fundamental role in the initiation and progression of primary de novo lung cancer and significantly influences the response of tumor cells to therapy. Hypoxia, an integral part of the tumor microenvironment and a serious clinical phenomenon, is associated with increased genetic instability and a more aggressive phenotype of NSCLC, which correlates with the risk of metastasis. Low oxygen concentration influences all components of TME including the immune microenvironment. Hypoxia-inducible pathway activated in response to low oxygen supply mediates the expression of genes important for the adaptation of tumor cells to microenvironmental changes. A highly active transmembrane hypoxia-induced metalloenzyme - carbonic anhydrase IX (CAIX), as a part of transport metabolon, contributes to the maintenance of intracellular pH within physiological values and to the acidification of the extracellular space. CAIX supports cell migration and invasion and plays an important role in NSCLC tumor tissue and pleural effusion. Due to its high expression, it also represents a potential diagnostic differential biomarker and therapeutic target in NSCLC. To test new potential targeted therapeutic compounds, suitable models are required that more faithfully simulate tumor tissue, TME components, and spatial architecture.


Subject(s)
Antigens, Neoplasm , Biomarkers, Tumor , Carbonic Anhydrase IX , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Carbonic Anhydrase IX/metabolism , Biomarkers, Tumor/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Antigens, Neoplasm/metabolism , Hypoxia/metabolism
4.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38606915

ABSTRACT

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Subject(s)
Carbonic Anhydrases , Hydantoins , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase IX , Structure-Activity Relationship , Carbonic Anhydrase I , Carbonic Anhydrase II , Protein Isoforms/metabolism , Phthalimides/pharmacology , Hydantoins/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Molecular Structure
5.
Sci Rep ; 14(1): 8789, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627429

ABSTRACT

The aim of this study was to analyze the association between vaginal microbiota, carbonic anhydrase IX (CAIX) and histological findings of cervical intraepithelial neoplasia (CIN). The study included 132 females, among them 66 were diagnosed with high-grade intraepithelial lesion (CIN2, CIN3, and cancer), 14 with low-grade disease, and 52 assigned to the control group. An interview focused on the behavior risk factors, together with vaginal fluid pH measurement, wet mount microscopy, detection of Chlamydia trachomatis, and Trichomonas vaginalis were performed. After colposcopy, high-grade abnormalities were detected via direct biopsies and treated with conization procedure. Conuses were immuno-stained with CAIX antibody. The histological findings were CIN1 (n = 14), and CIN2+ (included CIN2 (n = 10), CIN3 (n = 49), and cancer (n = 7; squamous cell carcinomas)). Prevalence of bacterial vaginosis (BV) was similar between the groups. Moderate or severe aerobic vaginitis (msAV) was diagnosed more often among CIN2+ (53.0%) than CIN1 (21.4%). Moderate or strong immunostaining of CAIX (msCAIX) was not detected among CIN1 cases. Thus, msAV was prevalent in CAIX non-stained group (p = 0.049) among CIN2 patients. Co-location of msAV and msCAIX was found in CIN3. Regression model revealed that msAV associated with high-grade cervical intraepithelial neoplasia independently from smoking and the number of partners.


Subject(s)
Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Vulvovaginitis , Female , Humans , Carbonic Anhydrase IX , Conization , Papillomaviridae , Papillomavirus Infections/complications , Uterine Cervical Dysplasia/pathology , Uterine Cervical Neoplasms/pathology
6.
J Inorg Biochem ; 256: 112547, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581802

ABSTRACT

Transition metal ions are structural and catalytic cofactors of many proteins including human carbonic anhydrase (CA), a Zn-dependent hydrolase. Sulfonamide inhibitors of CA recognize and form a coordination bond with the Zn ion located in the active site of the enzyme. The Zn ion may be removed or substituted with other metal ions. Such CA protein retains the structure and could serve as a tool to study metal ion role in the recognition and binding affinity of inhibitor molecules. We measured the affinities of selected divalent transition metal ions, including Mn, Fe, Co, Ni, Cu, Cd, Hg, and Zn to metal-free CA isozymes CA I, CA II, and CAIX by fluorescence-based thermal shift assay, prepared metal-substituted CAs, and determined binding of diverse sulfonamide compounds. Sulfonamide inhibitor binding to metal substituted CA followed a U-shape pH dependence. The binding was dissected to contributing binding-linked reactions and the intrinsic binding reaction affinity was calculated. This value is independent of pH and protonation reactions that occur simultaneously upon binding native CA and as demonstrated here, to metal substituted CA. Sulfonamide inhibitor binding to cancer-associated isozyme CAIX diminished in the order: Zn > Co > Hg > Cu > Cd > Mn > Ni. Energetic contribution of the inhibitor-metal coordination bond was determined for all above metals. The understanding of the principles of metal influence on ligand affinity and selectivity should help design new drugs targeting metalloenzymes.


Subject(s)
Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Sulfonamides , Sulfonamides/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Humans , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/chemistry , Protein Binding , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/chemistry , Hydrogen-Ion Concentration
7.
J Med Chem ; 67(9): 7406-7430, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38642371

ABSTRACT

A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Coumarins , Molecular Docking Simulation , Thiazoles , Vascular Endothelial Growth Factor Receptor-2 , Humans , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship , Mice , Crystallography, X-Ray , Apoptosis/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , Neoplasms/drug therapy , Neoplasms/pathology , Male , Antigens, Neoplasm/metabolism
8.
Comput Biol Chem ; 110: 108073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678727

ABSTRACT

Human Carbonic anhydrase IX (hCA IX) is found to be an essential biomarker for the treatment of hypoxic tumors in both the early and metastatic stages of cancer. Due to its active function in maintaining pH levels and overexpression in hypoxic conditions, hCA IX inhibitors can be a potential candidate specifically designed to target cancer development at various stages. In search of selective hCA IX inhibitors, we developed a pharmacophore model from the existing natural product inhibitors with IC50 values less than 50 nm. The identified hit molecules were then investigated on protein-ligand interactions using molecular docking experiments followed by molecular dynamics simulations. Among the zinc database 186 hits with an RMSD value less than 1 were obtained, indicating good contact with key residues HIS94, HIS96, HIS119, THR199, and ZN301 required for optimum activity. The top three compounds were subjected to molecular dynamics simulations for 100 ns to know the protein-ligand complex stability. Based on the obtained MD simulation results, binding free energies are calculated. Density Functional Theory (DFT) studies confirmed the energy variation between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). The current study has led to the discovery of lead compounds that show considerable promise as hCA IX inhibitors and suggests that three compounds with special molecular features are more likely to be better-inhibiting hCA IX. Compound S35, characterized by a higher stability margin and a smaller energy gap in quantum studies, is an ideal candidate for selective inhibition of CA IX.


Subject(s)
Antigens, Neoplasm , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Density Functional Theory , Molecular Docking Simulation , Molecular Dynamics Simulation , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/chemistry , Humans , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/chemistry , Molecular Structure , Ligands , Pharmacophore
9.
Int J Biol Macromol ; 268(Pt 1): 131548, 2024 May.
Article in English | MEDLINE | ID: mdl-38642682

ABSTRACT

The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.


Subject(s)
Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Coumarins , Drug Design , Thiazoles , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Humans , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Antigens, Neoplasm/metabolism
10.
Chem Biol Interact ; 393: 110947, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38479716

ABSTRACT

In this study, twenty-nine coumarin-3-sulfonamide derivatives, twenty-seven of which are original were designed and synthesized. Cytotoxicity assay indicated that most of these derivatives exhibited moderated to good potency against A549 cells. Among them, compound 8q showed potent inhibition against the four tested cancer cell lines, especially A549 cells with IC50 value of 6.01 ± 0.81 µM, and much lower cytotoxicity on the normal cells was observed compared to the reference compounds. Bioinformatics analysis revealed human carbonic anhydrase IX (CAIX) was highly expressed in lung adenocarcinoma (LUAD) and associated with poor prognosis. The inhibitory activity of compound 8q against CAIX was assessed by using molecular docking and molecular dynamics simulations, which revealed prominent interactions of both compound 8q and CAIX at the active site and their high affinity. The results of ELISA assays verified that compound 8q possessed strong inhibitory activity against CAIX and high subtype selectivity, and could also down-regulate the expression of CAIX in A549 cells. Furthermore, the significant inhibitory effects of compound 8q on the migration and invasion of A549 cells were also found. After treatment with compound 8q, intracellular reactive oxygen species (ROS) levels increased and mitochondrial membrane potential (MMP) decreased. Mechanistic investigation using western blotting revealed compound 8q exerted the anti-migrative and anti-invasive effects probably through mitochondria-mediated PI3K/AKT pathway by targeting CAIX. In summary, coumarin-3-sulfonamide derivatives were developed as potential and effective CAIX inhibitors, which were worthy of further investigation.


Subject(s)
Carbonic Anhydrase Inhibitors , Coumarins , Humans , Carbonic Anhydrase IX , Molecular Docking Simulation , Coumarins/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Antigens, Neoplasm/metabolism , Sulfonamides/pharmacology , Structure-Activity Relationship , Molecular Structure
11.
Mol Cancer ; 23(1): 56, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38491381

ABSTRACT

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Subject(s)
Carbonic Anhydrases , Carcinoma, Renal Cell , Kidney Neoplasms , Receptors, Chimeric Antigen , Animals , Mice , Humans , Carbonic Anhydrase IX/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , Receptors, Chimeric Antigen/genetics , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/therapeutic use , Antigens, Neoplasm , Antibodies , T-Lymphocytes/metabolism
12.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542320

ABSTRACT

In this study, we designed two series of novel anthraquinone-based benzenesulfonamide derivatives and their analogues as potential carbonic anhydrase inhibitors (CAIs) and evaluated their inhibitory activities against off-target human carbonic anhydrase II (hCA II) isoform and tumor-associated human carbonic anhydrase IX (hCA IX) isoform. Most of these compounds exhibited good inhibitory activities against hCA II and IX. The compounds that exhibited the best hCA inhibition were further studied against the MDA-MB-231, MCF-7, and HepG2 cell lines under hypoxic and normoxic conditions. Additionally, the compounds exhibiting the best antitumor activity were subjected to apoptosis and mitochondrial membrane potential assays, which revealed a significant increase in the percentage of apoptotic cells and a notable decrease in cell viability. Molecular docking studies were performed to demonstrate the presence of numerous hydrogen bonds and hydrophobic interactions between the compounds and the active site of hCA. Absorption, distribution, metabolism, excretion (ADME) predictions showed that all of the compounds had good pharmacokinetic and physicochemical properties.


Subject(s)
Benzenesulfonamides , Carbonic Anhydrase Inhibitors , Humans , Molecular Structure , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/chemistry , Molecular Docking Simulation , Sulfonamides/chemistry , Carbonic Anhydrase IX/metabolism , Protein Isoforms/metabolism , Anthraquinones/pharmacology
13.
Pharmacol Res ; 202: 107128, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438089

ABSTRACT

The damage of integrated epithelial epithelium is a key pathogenic factor and closely associated with the recurrence of ulcerative colitis (UC). Here, we reported that vanillic acid (VA) exerted potent therapeutic effects on DSS-induced colitis by restoring intestinal epithelium homeostasis via the inhibition of ferroptosis. By the CETSA assay and DARTS assay, we identified carbonic anhydrase IX (CAIX, CA9) as the direct target of VA. The binding of VA to CA9 causes insulin-induced gene-2 (INSIG2) to interact with stromal interaction molecule 1 (STIM1), rather than SREBP cleavage-activating protein (SCAP), leading to the translocation of SCAP-SREBP1 from the endoplasmic reticulum (ER) to the Golgi apparatus for cleavage into mature SREBP1. The activation of SREBP1 induced by VA then significantly facilitated the transcription of stearoyl-CoA desaturase 1 (SCD1) to exert an inhibitory effect on ferroptosis. By inhibiting the excessive death of intestinal epithelial cells caused by ferroptosis, VA effectively preserved the integrity of intestinal barrier and prevented the progression of unresolved inflammation. In conclusion, our study demonstrated that VA could alleviate colitis by restoring intestinal epithelium homeostasis through CA9/STIM1-mediated inhibition of ferroptosis, providing a promising therapeutic candidate for UC.


Subject(s)
Colitis , Ferroptosis , Humans , Animals , Mice , Vanillic Acid , Stromal Interaction Molecule 1 , Colitis/chemically induced , Colitis/drug therapy , Homeostasis , Intestinal Mucosa , Dextran Sulfate , Mice, Inbred C57BL , Carbonic Anhydrase IX , Antigens, Neoplasm , Neoplasm Proteins
14.
Funct Integr Genomics ; 24(2): 49, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438595

ABSTRACT

Long noncoding RNAs (lncRNAs) play important roles in modulating the tumorigenesis and progression of malignant tumors. LINC02086 is a newly identified oncogene associated with tumorigenesis, but its role in pancreatic cancer (PC) has not been fully elucidated. In this study we examined the expression levels of LINC02086, miR-342-3p, and CA9 in PC. The relationship of ferroptosis with these factors was analyzed by detecting the expression levels of Fe2+, reactive oxygen species (ROS), and ferroptosis marker proteins. The expression of these genes was altered to observe their effects on cell proliferation, migration, and invasion ability. Bioinformatics was used to predict target genes, and the binding relationship was verified luciferase reporter assay. Finally, the function of LINC02086 was evaluated in vivo. The findings suggest that LINC02086 is highly expressed in PC tissues and cell lines and is correlated with a poor prognosis. In vitro experiments demonstrated that LINC02086 knockdown promoted ferroptosis in PC cells to suppress their malignant phenotype. LINC02086 acts as a competitive endogenous RNA that adsorbed miR-342-3p. miR-342-3p hinders the malignant progression of PC by promoting ferroptosis. In addition, miR-342-3p targets CA9 and affects its function. Further mechanistic studies revealed that LINC02086 inhibits ferroptosis and promotes PC progression by acting as a sponge for miR-342-3p to upregulate CA9 expression. In vivo experiments further confirmed this mechanism. Taken together, LINC02086 upregulates CA9 expression by competitively binding with miR-342-3p, thereby inhibiting ferroptosis in PC cells and promoting their malignant phenotype. The results of our study provide new insights into how LINC02086 contributes to the progression of PC.


Subject(s)
Ferroptosis , MicroRNAs , Pancreatic Neoplasms , Humans , Ferroptosis/genetics , Pancreatic Neoplasms/genetics , Carcinogenesis , Phenotype , MicroRNAs/genetics , Carbonic Anhydrase IX , Antigens, Neoplasm
15.
J Nucl Med ; 65(5): 761-767, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38514083

ABSTRACT

The membrane protein carbonic anhydrase IX (CAIX) is highly expressed in many hypoxic or von Hippel-Lindau tumor suppressor-mutated tumor types. Its restricted expression in healthy tissues makes CAIX an attractive diagnostic and therapeutic target. DPI-4452 is a CAIX-targeting cyclic peptide with a DOTA cage, allowing radionuclide chelation for theranostic purposes. Here, we report CAIX expression in multiple tumor types and provide in vitro and in vivo evaluations of 68Ga-labeled DPI-4452 ([68Ga]Ga-DPI-4452) and 177Lu-labeled DPI-4452 ([177Lu]Lu-DPI-4452). Methods: CAIX expression was assessed by immunohistochemistry with a panel of tumor and healthy tissues. The molecular interactions of complexed and uncomplexed DPI-4452 with CAIX were assessed by surface plasmon resonance and cell-binding assays. In vivo characterization of radiolabeled and nonradiolabeled DPI-4452 was performed in HT-29 colorectal cancer (CRC) and SK-RC-52 clear cell renal cell carcinoma (ccRCC) human xenograft mouse models and in healthy beagle dogs. Results: Overexpression of CAIX was shown in several tumor types, including ccRCC, CRC, and pancreatic ductal adenocarcinoma. DPI-4452 specifically and selectively bound CAIX with subnanomolar affinity. In cell-binding assays, DPI-4452 displayed comparably high affinities for human and canine CAIX but a much lower affinity for murine CAIX, demonstrating that the dog is a relevant species for biodistribution studies. DPI-4452 was rapidly eliminated from the systemic circulation of beagle dogs. The highest uptake of [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 was observed in the small intestine and stomach, 2 organs known to express CAIX. Uptake in other organs (e.g., kidneys) was remarkably low. In HT-29 and SK-RC-52 xenograft mouse models, both [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 showed tumor-selective uptake; in addition, [177Lu]Lu-DPI-4452 significantly reduced tumor growth. These results demonstrated the theranostic potential of DPI-4452. Conclusion: DPI-4452 selectively targets CAIX. [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 localized to tumors and were well tolerated in mice. [177Lu]Lu-DPI-4452 demonstrated strong tumor growth inhibition in 2 xenograft mouse models. Thus, the 2 agents potentially provide a theranostic approach for selecting and treating patients with CAIX-expressing tumors such as ccRCC, CRC, and pancreatic ductal adenocarcinoma.


Subject(s)
Carbonic Anhydrase IX , Gallium Radioisotopes , Lutetium , Radioisotopes , Carbonic Anhydrase IX/metabolism , Humans , Animals , Mice , Radioisotopes/therapeutic use , Cell Line, Tumor , Tissue Distribution , Ligands , Antigens, Neoplasm/metabolism , Theranostic Nanomedicine , Precision Medicine , Female , Dogs
16.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473830

ABSTRACT

2H-Benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxide (BTD) based carbonic anhydrase (CA) inhibitors are here explored as new anti-mycobacterial agents. The chemical features of BTD derivatives meet the criteria for a potent inhibition of ß-class CA isozymes. BTD derivatives show chemical features meeting the criteria for a potent inhibition of ß-class CA isozymes. Specifically, three ß-CAs (MtCA1, MtCA2, and MtCA3) were identified in Mycobacterium tuberculosis and their inhibition was shown to exert an antitubercular action. BTDs derivatives 2a-q effectively inhibited the mycobacterial CAs, especially MtCA2 and MtCA3, with Ki values up to a low nanomolar range (MtCA3, Ki = 15.1-2250 nM; MtCA2, Ki = 38.1-4480 nM) and with a significant selectivity ratio over the off-target human CAs I and II. A computational study was conducted to elucidate the compound structure-activity relationship. Importantly, the most potent MtCA inhibitors demonstrated efficacy in inhibiting the growth of M. tuberculosis strains resistant to both rifampicin and isoniazid-standard reference drugs for Tuberculosis treatment.


Subject(s)
Carbonic Anhydrases , Mycobacterium tuberculosis , Tuberculosis , Humans , Molecular Structure , Carbonic Anhydrase Inhibitors/pharmacology , Isoenzymes/metabolism , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Antitubercular Agents/pharmacology , Carbonic Anhydrase IX
17.
ChemMedChem ; 19(10): e202400004, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38356418

ABSTRACT

A new series of tetrasubstituted imidazole carrying sulfonamide as zinc-anchoring group has been designed. The structures of the synthesized derivatives 5 a-l have been confirmed by spectroscopic analysis. These compounds incorporate an ethylenic spacer between the benzenesulfonamide and the rest of the trisubstituted imidazole moiety and were tested as inhibitors of carbonic anhydrases and for in-vitro cytotoxicity. Most of them act as effective inhibitors of the tumor-linked CA isoforms IX and XII, in nanomolar range. Also, different compounds have shown selectivity in comparable with the standard acetazolamide. Our IBS 5 d, 5 g, and 5 l (with Ki: 10.1, 19.4, 19.8 nM against hCA IX and 47, 45, 20 nM against hCA IX) showed the best inhibitory profile. In-vitro screening of all derivatives against a full sixty-cell-lined from NCI at a single dose of 10 µM offered growth inhibition of up to 45 %. Compound 5 b has been identified with the most potent cytotoxic activity and broad spectrum. Docking studies have also been implemented and were also in accordance with the biological outcomes. Our SAR analysis has interestingly proposed efficient tumor-related hCAs IX/XII suppression.


Subject(s)
Antigens, Neoplasm , Benzenesulfonamides , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Imidazoles , Sulfonamides , Humans , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Structure-Activity Relationship , Carbonic Anhydrases/metabolism , Antigens, Neoplasm/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Molecular Structure , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
18.
Cancer Sci ; 115(5): 1405-1416, 2024 May.
Article in English | MEDLINE | ID: mdl-38413363

ABSTRACT

Hypoxia is a common feature of solid tumors. However, the impact of hypoxia on immune cells within tumor environments remains underexplored. Carbonic anhydrase 9 (CA9) is a hypoxia-responsive tumor-associated enzyme. We previously noted that regardless of human CA9 (hCA9) expression, hCA9-expressing mouse renal cell carcinoma RENCA (RENCA/hCA9) presented as a "cold" tumor in syngeneic aged mice. This study delves into the mechanisms behind this observation. Gene microarray analyses showed that RENCA/hCA9 cells exhibited elevated mouse serpinB9, an inhibitor of granzyme B, relative to RENCA cells. Corroborating this, RENCA/hCA9 cells displayed heightened resistance to antigen-specific cytotoxic T cells compared with RENCA cells. Notably, siRNA-mediated serpinB9 knockdown reclaimed this sensitivity. In vivo tests showed that serpinB9 inhibitor administration slowed RENCA tumor growth, but this effect was reduced in RENCA/hCA9 tumors, even with adjunctive immune checkpoint blockade therapy. Further, inducing hypoxia or introducing the mouse CA9 gene upregulated serpinB9 expression, and siRNA-mediated knockdown of the mouse CA9 gene inhibited the hypoxia-induced induction of serpinB9 in the original RENCA cells. Supernatants from RENCA/hCA9 cultures had lower pH than those from RENCA, suggesting acidosis. This acidity enhanced serpinB9 expression and T cell apoptosis. Moreover, coculturing with RENCA/hCA9 cells more actively prompted T cell apoptosis than with RENCA cells. Collectively, these findings suggest hypoxia-associated CA9 not only boosts serpinB9 in cancer cells but also synergistically intensifies T cell apoptosis via acidosis, characterizing RENCA/hCA9 tumors as "cold."


Subject(s)
Acidosis , Apoptosis , Carbonic Anhydrase IX , Carcinoma, Renal Cell , Kidney Neoplasms , Serpins , Animals , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Mice , Serpins/metabolism , Serpins/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/immunology , Cell Line, Tumor , Humans , Acidosis/metabolism , Acidosis/pathology , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
19.
ChemMedChem ; 19(9): e202300680, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38323458

ABSTRACT

This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Sulfonamides , Humans , Antigens, Neoplasm/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis
20.
Bioorg Chem ; 144: 107154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309003

ABSTRACT

Novel 1,2,3-triazole benzenesulfonamide derivatives were designed as inhibitors for the tumor- related hCA IX and XII isoforms. Most of the synthesized compounds showed good inhibitory activity against hCA IX and hCA XII isoforms. Compounds 4d, 5h and 6b, exhibited remarkable activity as hCA IX inhibitors, with Ki values in the range of 0.03 to 0.06 µM, more potent than AAZ. Additionally, compounds 5b and 6d, efficiently inhibited hCA XII isoform, with Ki value of 0.02 µM, respectively, similar to AAZ. Further investigation for those potent derivatives against MCF-7, Hep-3B and WI-38 cell lines was achieved. Compounds 4d and 6d exerted dual cytotoxic activity against MCF-7 and Hep-3B cell lines, with IC50 values of 3.35 & 2.12 µM against MCF-7 cell line and 1.72 & 1.56 µM against Hep-3B cell line, with high SI values ranged from 8.92 to 17.38 on both of the cell lines. Besides, they showed a high safety profile against normal human cell line, WI-38. Moreover, compound 5h had better cytotoxic effect on MCF-7 than the reference, DOX, with IC50 value of 4.02 µM. While, compounds 5b and 6b showed higher activity against Hep-3B if compared to the reference drug, 5-FU. From ADME study, compounds 4d, 5b, 6b and 6d obeyed Lipinski's rule of five, and they might be orally active derivatives, while, compound 5h exerted less oral bioavailability than the reference standard acetazolamide. Molecular docking and MDS studies predicted the binding mode and the stability of the target compounds inside hCA IX and hCA XII active sites, especially for compounds 5b and 6b.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrases , Humans , Carbonic Anhydrase IX , Benzenesulfonamides , Carbonic Anhydrases/metabolism , Molecular Docking Simulation , Triazoles/pharmacology , Triazoles/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Antineoplastic Agents/chemistry , Protein Isoforms/metabolism , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...