Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.772
Filter
1.
Respir Res ; 25(1): 205, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730297

ABSTRACT

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Subject(s)
Carboxy-Lyases , Endothelial Cells , Lung , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Succinates , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Obesity/metabolism , Obesity/complications , Male , Succinates/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Lung/blood supply , Cells, Cultured , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Hydro-Lyases
2.
J Agric Food Chem ; 72(21): 12119-12129, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38761152

ABSTRACT

Taurine (Tau) is a semiessential amino acid in mammals with preventive and therapeutic effects on several intestinal disorders. However, the exact function of taurine in ulcerative colitis (UC) is still largely unclear. In this study, we used two taurine-deficient mouse models (CSAD-/- and TauT-/- mice) to explore the influence of taurine on the progression of UC in both dextran sulfate sodium (DSS)-induced colitis and LPS-stimulated Caco-2 cells. We found that cysteine sulfinic acid decarboxylase (CSAD) and taurine transporter (TauT) expressions and taurine levels were markedly reduced in colonic tissues of mice treated with DSS. The CSAD and TauT knockouts exacerbated DSS-induced clinical symptoms and pathological damage and aggravated the intestinal barrier dysfunction and the colonic mucosal inflammatory response. Conversely, taurine pretreatment enhanced the intestinal barrier functions by increasing goblet cells and upregulating tight junction protein expression. Importantly, taurine bound with TLR4 and inhibited the TLR4/NF-κB pathway, ultimately reducing proinflammatory factors (TNF-α and IL-6) and oxidative stress. Our findings highlight the essential role of taurine in maintaining the intestinal barrier integrity and inhibiting intestinal inflammation, indicating that taurine is a promising supplement for colitis treatment.


Subject(s)
Colitis , Intestinal Mucosa , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B , Signal Transduction , Taurine , Toll-Like Receptor 4 , Animals , Taurine/pharmacology , Taurine/administration & dosage , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Mice , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction/drug effects , Colitis/drug therapy , Colitis/metabolism , Colitis/chemically induced , Colitis/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Caco-2 Cells , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Dextran Sulfate/adverse effects , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Intestinal Barrier Function
3.
Clin Transl Med ; 14(4): e1661, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644791

ABSTRACT

BACKGROUND: Spinal cord injury (SCI)-induced neuroinflammation and oxidative stress (OS) are crucial events causing neurological dysfunction. Aconitate decarboxylase 1 (ACOD1) and its metabolite itaconate (Ita) inhibit inflammation and OS by promoting alkylation of Keap1 to induce Nrf2 expression; however, it is unclear whether there is another pathway regulating their effects in inflammation-activated microglia after SCI. METHODS: Adult male C57BL/6 ACOD1-/- mice and their wild-type (WT) littermates were subjected to a moderate thoracic spinal cord contusion. The degree of neuroinflammation and OS in the injured spinal cord were assessed using qPCR, western blot, flow cytometry, immunofluorescence, and trans-well assay. We then employed immunoprecipitation-western blot, chromatin immunoprecipitation (ChIP)-PCR, dual-luciferase assay, and immunofluorescence-confocal imaging to examine the molecular mechanisms of ACOD1. Finally, the locomotor function was evaluated with the Basso Mouse Scale and footprint assay. RESULTS: Both in vitro and in vivo, microglia with transcriptional blockage of ACOD1 exhibited more severe levels of neuroinflammation and OS, in which the expression of p62/Keap1/Nrf2 was down-regulated. Furthermore, silencing ACOD1 exacerbated neurological dysfunction in SCI mice. Administration of exogenous Ita or 4-octyl itaconate reduced p62 phosphorylation. Besides, ACOD1 was capable of interacting with phosphorylated p62 to enhance Nrf2 activation, which in turn further promoted transcription of ACOD1. CONCLUSIONS: Here, we identified an unreported ACOD1-p62-Nrf2-ACOD1 feedback loop exerting anti-inflammatory and anti-OS in inflammatory microglia, and demonstrated the neuroprotective role of ACOD1 after SCI, which was different from that of endogenous and exogenous Ita. The present study extends the functions of ACOD1 and uncovers marked property differences between endogenous and exogenous Ita. KEY POINTS: ACOD1 attenuated neuroinflammation and oxidative stress after spinal cord injury. ACOD1, not itaconate, interacted with p-p62 to facilitate Nrf2 expression and nuclear translocation. Nrf2 was capable of promoting ACOD1 transcription in microglia.


Subject(s)
Carboxy-Lyases , Hydro-Lyases , Microglia , NF-E2-Related Factor 2 , Spinal Cord Injuries , Succinates , Animals , Male , Mice , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Disease Models, Animal , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , NF-E2-Related Factor 2/metabolism , Sequestosome-1 Protein/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/complications , Succinates/pharmacology , Succinates/metabolism
4.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38624200

ABSTRACT

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Subject(s)
Aspergillus oryzae , Carboxy-Lyases , Fungal Proteins , Oryza , Aspergillus oryzae/genetics , Aspergillus oryzae/enzymology , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Carboxy-Lyases/chemistry , Oryza/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Agmatine/metabolism
5.
J Agric Food Chem ; 72(18): 10163-10178, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38653191

ABSTRACT

Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.


Subject(s)
Bacteria , Carboxy-Lyases , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Carboxy-Lyases/chemistry , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Fungi/genetics , Fungi/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Biocatalysis , Oxalates/metabolism , Oxalates/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Gene Expression Regulation, Enzymologic , Humans , Catalysis , Animals
6.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652544

ABSTRACT

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.


Subject(s)
Mitochondria, Muscle , Muscle, Skeletal , Phosphatidylethanolamines , Pyruvic Acid , Animals , Mice , Muscle, Skeletal/metabolism , Pyruvic Acid/metabolism , Mitochondria, Muscle/metabolism , Phosphatidylethanolamines/metabolism , Sedentary Behavior , Male , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Mice, Knockout , Stearoyl-CoA Desaturase
7.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652203

ABSTRACT

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Subject(s)
Gene Expression Regulation, Plant , Olea , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Phylogeny , Olea/genetics , Olea/metabolism , Phenylethyl Alcohol/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Iridoid Glucosides/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Pyridoxal Phosphate/metabolism , Iridoids/metabolism , Genes, Plant
8.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672479

ABSTRACT

Polyamines are polycations derived from amino acids that play an important role in proliferation and growth in almost all living cells. In Streptococcus pneumoniae (the pneumococcus), modulation of polyamine metabolism not only plays an important regulatory role in central metabolism, but also impacts virulence factors such as the capsule and stress responses that affect survival in the host. However, functional annotation of enzymes from the polyamine biosynthesis pathways in the pneumococcus is based predominantly on computational prediction. In this study, we cloned SP_0166, predicted to be a pyridoxal-dependent decarboxylase, from the Orn/Lys/Arg family pathway in S. pneumoniae TIGR4 and expressed and purified the recombinant protein. We performed biochemical characterization of the recombinant SP_0166 and confirmed the substrate specificity. For polyamine analysis, we developed a simultaneous quantitative method using hydrophilic interaction liquid chromatography (HILIC)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) without derivatization. SP_0166 has apparent Km, kcat, and kcat/Km values of 11.3 mM, 715,053 min-1, and 63,218 min-1 mM-1, respectively, with arginine as a substrate at pH 7.5. We carried out inhibition studies of SP_0166 enzymatic activity with arginine as a substrate using chemical inhibitors DFMO and DFMA. DFMO is an irreversible inhibitor of ornithine decarboxylase activity, while DFMA inhibits arginine decarboxylase activity. Our findings confirm that SP_0166 is inhibited by DFMA and DFMO, impacting agmatine production. The use of arginine as a substrate revealed that the synthesis of putrescine by agmatinase and N-carbamoylputrescine by agmatine deiminase were both affected and inhibited by DFMA. This study provides experimental validation that SP_0166 is an arginine decarboxylase in pneumococci.


Subject(s)
Carboxy-Lyases , Streptococcus pneumoniae , Tandem Mass Spectrometry , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/chemistry , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics , Chromatography, High Pressure Liquid , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Polyamines/metabolism , Kinetics
9.
Microbiol Res ; 284: 127732, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677265

ABSTRACT

The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.


Subject(s)
Carboxy-Lyases , Colletotrichum , Drug Resistance, Fungal , Fungal Proteins , Fungicides, Industrial , Plant Diseases , Colletotrichum/genetics , Colletotrichum/drug effects , Colletotrichum/pathogenicity , Colletotrichum/enzymology , Colletotrichum/growth & development , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Plant Diseases/microbiology , Spores, Fungal/growth & development , Spores, Fungal/drug effects , Spores, Fungal/genetics , Gene Expression Regulation, Fungal , MAP Kinase Signaling System
10.
Microb Cell Fact ; 23(1): 69, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419048

ABSTRACT

We are interested in converting second generation feedstocks into styrene, a valuable chemical compound, using the solvent-tolerant Pseudomonas putida DOT-T1E as a chassis. Styrene biosynthesis takes place from L-phenylalanine in two steps: firstly, L-phenylalanine is converted into trans-cinnamic acid (tCA) by PAL enzymes and secondly, a decarboxylase yields styrene. This study focuses on designing and synthesizing a functional trans-cinnamic acid decarboxylase in Pseudomonas putida. To achieve this, we utilized the "wholesale" method, involving deriving two consensus sequences from multi-alignments of homologous yeast ferulate decarboxylase FDC1 sequences with > 60% and > 50% identity, respectively. These consensus sequences were used to design Pseudomonas codon-optimized genes named psc1 and psd1 and assays were conducted to test the activity in P. putida. Our results show that the PSC1 enzyme effectively decarboxylates tCA into styrene, whilst the PSD1 enzyme does not. The optimal conditions for the PSC1 enzyme, including pH and temperature were determined. The L-phenylalanine DOT-T1E derivative Pseudomonas putida CM12-5 that overproduces L-phenylalanine was used as the host for expression of pal/psc1 genes to efficiently convert L-phenylalanine into tCA, and the aromatic carboxylic acid into styrene. The highest styrene production was achieved when the pal and psc1 genes were co-expressed as an operon in P. putida CM12-5. This construction yielded styrene production exceeding 220 mg L-1. This study serves as a successful demonstration of our strategy to tailor functional enzymes for novel host organisms, thereby broadening their metabolic capabilities. This breakthrough opens the doors to the synthesis of aromatic hydrocarbons using Pseudomonas putida as a versatile biofactory.


Subject(s)
Carboxy-Lyases , Cinnamates , Pseudomonas putida , Styrene/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Pseudomonas putida/metabolism , Phenylalanine/metabolism
11.
Folia Microbiol (Praha) ; 69(2): 423-432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217756

ABSTRACT

Oxalate degradation is one of lactic acid bacteria's desirable activities. It is achieved by two enzymes, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). The current study aimed to screen 15 locally isolated lactic acid bacteria to select those with the highest oxalate degradation ability. It also aimed to amplify the genes involved in degradation. MRS broth supplemented with 20 mM sodium oxalate was used to culture the tested isolates for 72 h. This was followed by an enzymatic assay to detect remaining oxalate. All isolates showed oxalate degradation activity to variable degrees. Five isolates demonstrated high oxalate degradation, 78 to 88%. To investigate the oxalate-degradation potential of the selected isolates, they have been further tested for the presence of genes that encode for enzymes involved in oxalate catabolism, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). Three strains showed bands with the specific OXC and FRC forward and reverse primers designated as (SA-5, 9 and 37). Species-level identification revealed Loigolactobacillus bifermentans, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum. Preliminary results revealed that the tested probiotic strains harbored both oxc and frc whose products are putatively involved in oxalate catabolism. The probiotic potential of the selected strains was evaluated, and they showed high survival rates to both simulated gastric and intestinal fluids and variable degrees of antagonism against the tested Gram-positive and negative pathogens and were sensitive to clarithromycin but resistant to both metronidazole and ceftazidime. Finally, these strains could be exploited as an innovative approach to establish oxalate homeostasis in humans and prevent kidney stone formation.


Subject(s)
Acyl Coenzyme A , Carboxy-Lyases , Probiotics , Humans , Coenzyme A-Transferases/genetics , Coenzyme A-Transferases/metabolism , Carboxy-Lyases/genetics , Oxalates/metabolism
12.
World J Microbiol Biotechnol ; 40(2): 64, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189984

ABSTRACT

We report here the structural and functional properties of an oxalate decarboxylase (OxDC)-like cupin domain-containing protein of Bacillus amyloliquefaciens MBNC and its role in imparting tolerance to acid stress conditions. Quantitative real-time PCR (qPCR) analysis revealed 32-fold and 20-fold upregulation of the target gene [(OxDC')cupin] under acetic acid stress and hydrochloric acid stress, respectively, indicating its association with the acid stress response. Bacterial cells with targeted inactivation of the (OxDC')cupin gene using the pMUTIN4 vector system showed decreased growth and survival rate in acidic pH, with drastically reduced exopolysaccharide production. In Silico protein-protein interaction studies revealed seven genes (viz. glmS, nagA, nagB, tuaF, tuaF, gcvT, and ykgA) related to cell wall biosynthesis and biofilm production to interact with OxDC-like cupin domain containing protein. While all these seven genes were upregulated in B. amyloliquefaciens MBNC after 6 h of exposure to pH 4.5, the mutant cells containing the inactivated (OxDC')cupin gene displayed significantly lower expression (RQ: 0.001-0.02) (compared to the wild-type cells) in both neutral and acidic pH. Our results indicate that the OxDC-like cupin domain containing protein is necessary for cell wall biosynthesis and biofilm production in Bacillus amyloliquefaciens MBNC for survival in acid-stress conditions.


Subject(s)
Bacillus amyloliquefaciens , Carboxy-Lyases , Bacillus amyloliquefaciens/genetics , Carboxy-Lyases/genetics , Acetic Acid , Biofilms
13.
J Biol Chem ; 300(2): 105653, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224946

ABSTRACT

The UbiD enzyme family of prenylated flavin (prFMN)-dependent reversible decarboxylases is near ubiquitously present in microbes. For some UbiD family members, enzyme activation through prFMNH2 binding and subsequent oxidative maturation of the cofactor readily occurs, both in vivo in a heterologous host and through in vitro reconstitution. However, isolation of the active holo-enzyme has proven intractable for others, notably the canonical Escherichia coli UbiD. We show that E. coli heterologous expression of the small protein LpdD-associated with the UbiD-like gallate decarboxylase LpdC from Lactobacillus plantarum-unexpectedly leads to 3,4-dihydroxybenzoic acid decarboxylation whole-cell activity. This activity was shown to be linked to endogenous E. coli ubiD expression levels. The crystal structure of the purified LpdD reveals a dimeric protein with structural similarity to the eukaryotic heterodimeric proteasome assembly chaperone Pba3/4. Solution studies demonstrate that LpdD protein specifically binds to reduced prFMN species only. The addition of the LpdD-prFMNH2 complex supports reconstitution and activation of the purified E. coli apo-UbiD in vitro, leading to modest 3,4-dihydroxybenzoic acid decarboxylation. These observations suggest that LpdD acts as a prFMNH2-binding chaperone, enabling apo-UbiD activation through enhanced prFMNH2 incorporation and subsequent oxidative maturation. Hence, while a single highly conserved flavin prenyltransferase UbiX is found associated with UbiD enzymes, our observations suggest considerable diversity in UbiD maturation, ranging from robust autocatalytic to chaperone-mediated processes. Unlocking the full (de)carboxylation scope of the UbiD-enzyme family will thus require more than UbiX coexpression.


Subject(s)
Carboxy-Lyases , Hydroxybenzoates , Lactobacillaceae , Carboxy-Lyases/genetics , Carboxy-Lyases/chemistry , Escherichia coli/metabolism , Flavins/metabolism , Oxidation-Reduction , Lactobacillaceae/genetics , Lactobacillaceae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Binding
14.
Int J Biol Macromol ; 255: 128303, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992939

ABSTRACT

Efficient synthetic routes for biomanufacturing chemicals often require the overcoming of pathway bottlenecks by tailoring enzymes to improve the catalytic efficiency or even implement non-native activities. 1,2,4-butanetriol (BTO), a valuable commodity chemical, is currently biosynthesized from D-xylose via a four-enzyme reaction cascade, with the ThDP-dependent α-keto acid decarboxylase (KdcA) identified as the potential bottleneck. Here, to further enhance the catalytic activity of KdcA toward the non-native substrate α-keto-3-deoxy-xylonate (KDX), in silico screening and structure-guided evolution were performed. The best mutants, S286L/G402P and V461K, exhibited a 1.8- and 2.5-fold higher enzymatic activity in the conversion of KDX to 3,4-dihydroxybutanal when compared to KdcA, respectively. MD simulations revealed that the two sets of mutations reshaped the substrate binding pocket, thereby increasing the binding affinity for KDX and promoting interactions between KDX and cofactor ThDP. Then, when the V461K mutant instead of wild type KdcA was integrated into the enzyme cascade, a 1.9-fold increase in BTO titer was observed. After optimization of the reaction conditions, the enzyme cocktail contained V461K converted 60 g/L D-xylose to 22.1 g/L BTO with a yield of 52.1 %. This work illustrated that protein engineering is a powerful tool for modifying the output of metabolic pathway.


Subject(s)
Carboxy-Lyases , Xylose , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Xylose/metabolism , Butanols , Carboxy-Lyases/genetics , Metabolic Engineering
15.
J Bacteriol ; 206(1): e0020223, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38047707

ABSTRACT

YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.


Subject(s)
Bacillus subtilis , Carboxy-Lyases , Humans , Bacillus subtilis/metabolism , Carboxy-Lyases/genetics , Pyruvic Acid , Oxaloacetates , Hydrolases/genetics
16.
J Biosci Bioeng ; 137(2): 108-114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102023

ABSTRACT

Isoamyl alcohol is a precursor of isoamyl acetate, an aromatic compound that imparts the ginjo aroma to sake. The isoamyl alcohol biosynthesis pathway in yeasts involves the genes PDC1, PDC5, PDC6, ARO10, and THI3 encoding enzymes that decarboxylate α-ketoisocaproic acid to isovaleraldehyde. Among these genes, THI3 is the main gene involved in isoamyl alcohol biosynthesis. Decreased production of isoamyl alcohol has been reported in yeast strains with disrupted THI3 (Δthi3). However, it has also been reported that high THI3 expression did not enhance decarboxylase activity. Therefore, the involvement of THI3 in isoamyl alcohol biosynthesis remains unclear. In this study, we investigated the role of THI3 in isoamyl alcohol biosynthesis. While reproducing previous reports of reduced isoamyl alcohol production by the Δthi3 strain, we observed that the decrease in isoamyl alcohol production occurred only at low yeast nitrogen base concentrations in the medium. Upon investigating individual yeast nitrogen base components, we found that the isoamyl alcohol production by the Δthi3 strain reduced when thiamine concentrations in the medium were low. Under low-thiamine conditions, both thiamine and thiamine diphosphate (TPP) levels decreased in Δthi3 cells. We also found that the decarboxylase activity of cell-free extracts of the Δthi3 strain cultured in a low-thiamine medium was lower than that of the wild-type strain, but was restored to the level of the wild-type strain when TPP was added. These results indicate that the loss of THI3 lowers the supply of TPP, a cofactor for decarboxylases, resulting in decreased isoamyl alcohol production.


Subject(s)
Carboxy-Lyases , Pentanols , Thiamine Pyrophosphate , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Homeostasis , Nitrogen/metabolism , Saccharomyces cerevisiae/metabolism , Thiamine/metabolism
17.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958553

ABSTRACT

The biosynthesis of C27-29 sterols from their C30 precursor squalene involves C24-alkylation and the removal of three methyl groups, including two at the C4 position. The two C4 demethylation reactions require a bifunctional enzyme known as 3ß-hydroxysteroid dehydrogenase/C4-decarboxylase (3ßHSD/D), which removes an oxidized methyl (carboxylic) group at C4 while simultaneously catalyzing the 3ß-hydroxyl→3-keto oxidation. Its loss-of-function mutations cause ergosterol-dependent growth in yeast and congenital hemidysplasia with ichthyosiform erythroderma and limb defect (CHILD) syndrome in humans. Although plant 3ßHSD/D enzymes were well studied enzymatically, their developmental functions remain unknown. Here we employed a CRISPR/Cas9-based genome-editing approach to generate knockout mutants for two Arabidopsis 3ßHSD/D genes, HSD1 and HSD2, and discovered the male gametophytic lethality for the hsd1 hsd2 double mutation. Pollen-specific expression of HSD2 in the heterozygous hsd1 hsd2/+ mutant not only rescued the pollen lethality but also revealed the critical roles of the two HSD genes in embryogenesis. Our study thus demonstrated the essential functions of the two Arabidopsis 3ßHSD/D genes in male gametogenesis and embryogenesis.


Subject(s)
Arabidopsis , Carboxy-Lyases , Humans , Arabidopsis/metabolism , 3-Hydroxysteroid Dehydrogenases/genetics , Pollen/genetics , Pollen/metabolism , Carboxy-Lyases/genetics , Embryonic Development
18.
BMC Plant Biol ; 23(1): 551, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37936064

ABSTRACT

BACKGROUND: UDP-glucuronate decarboxylase (also named UXS) converts UDP-glucuronic acid (UDP-GlcA) to UDP-xylose (UDP-Xyl) by decarboxylation of the C6-carboxylic acid of glucuronic acid. UDP-Xyl is an important sugar donor that is required for the synthesis of plant cell wall polysaccharides. RESULTS: In this study, we first carried out the genome-wide identification of NtUXS genes in tobacco. A total of 17 NtUXS genes were identified, which could be divided into two groups (Group I and II), and the Group II UXSs can be further divided into two subgroups (Group IIa and IIb). Furthermore, the protein structures, intrachromosomal distributions and gene structures were thoroughly analyzed. To experimentally verify the subcellular localization of NtUXS16 protein, we transformed tobacco BY-2 cells with NtUXS16 fused to the monomeric red fluorescence protein (mRFP) at the C terminus under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The fluorescent signals of NtUXS16-mRFP were localized to the medial-Golgi apparatus. Contrary to previous predictions, protease digestion analysis revealed that NtUXS16 is not a type II membrane protein. Overexpression of NtUXS16 in Arabidopsis seedling in darkness led to a significant increase in hypocotyl length and a reduction in root length compared with the wild type. In summary, these results suggest Golgi apparatus localized-NtUXS16 plays an important role in hypocotyl and root growth in the dark. CONCLUSION: Our findings facilitate our understanding of the novel functions of NtUXS16 and provide insights for further exploration of the biological roles of NtUXS genes in tobacco.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Carboxy-Lyases , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Golgi Apparatus , Uridine Diphosphate Xylose/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Glucuronic Acid/metabolism , Glucuronates/metabolism
19.
Int J Biol Macromol ; 253(Pt 7): 127385, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37848109

ABSTRACT

Tyrosol (2-(4-hydroxyphenyl) ethanol) is extensively used in the pharmaceutical industry as an important natural product from plants. In previous research, we constructed a recombinant Escherichia coli strain capable of de novo synthesis of tyrosol by integrating the phenylpyruvate decarboxylase ARO10 derived from Saccharomyces cerevisiae. Nevertheless, the insufficient catalytic efficiency of ARO10 required the insertion of multiple gene copies into the genome to attain enhanced tyrosol production. In this study, we constructed a mutation library of ARO10 based on a computer-aided semi-rational design strategy and developed a high-throughput screening method for selecting high-yield tyrosol mutants by introducing the heterologous hydroxylase complex HpaBC. Through multiple rounds of screening and site-saturation mutagenesis, we ultimately identified the two optimal ARO10 mutants, ARO10D331V and ARO10D331C, which respectively achieved a tyrosol titer of 2.02 g/L and 2.04 g/L in shake flasks, both representing more than 50 % improvement compared to the wild-type. Our study demonstrates the great potential of computer-based semi-rational enzyme design strategy in metabolic engineering. The high-throughput screening method for target compound derivative possesses a certain level of generality. Ultimately, we obtained promising mutants capable of achieving industrial-scale production of tyrosol, which also lays a solid foundation for the efficient synthesis of tyrosol derivatives.


Subject(s)
Carboxy-Lyases , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Saccharomyces cerevisiae , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Metabolic Engineering
20.
Article in English | MEDLINE | ID: mdl-37562582

ABSTRACT

In fishes, the availability of taurine is regulated during ontogenetic development, where its endogenous synthesis capacity is species dependent. Thus, different pathways and involved enzymes have been described: pathway I (cysteine sulfinate-dependent pathway), cysteine dioxygenase type 1 (cdo1) and cysteine sulfinic acid decarboxylase (csad); pathway II (cysteic acid pathway), cdo1 and glutamic acid decarboxylase (gad); and pathway III (cysteamine pathway), 2-aminoethanethiol dioxygenase (ado); whereas taurine transporter (taut) is responsible for taurine entry into cells on the cell membrane and the mitochondria. This study determined if the tropical gar (Atractosteus tropicus), an ancient holostean fish model, has the molecular mechanism to synthesize taurine through the identification and analysis expression of transcripts coding for proteins involved in its biosynthesis and transportation, at different embryo-larvae stages and in different organs of juveniles (31 dah). We observed a fluctuating expression of all transcripts involved in the three pathways at all analyzed stages. All transcripts are expressed during the beginning of larval development; however, ado and taut show a peak expression at 9 dah, and all transcripts but csad decreased at 23 dah, when the organism ended the larval period. Furthermore, at 31 dah, we observed taut expression in all examined organs. The transcripts involved in pathways I and III are expressed differently across all organs, whereas pathway II was only observed in the brain, eye, and skin. The results suggested that taurine biosynthesis in tropical gar is regulated during its early development before first feeding, and the pathway might also be organ-type dependent.


Subject(s)
Carboxy-Lyases , Fishes , Animals , Fishes/metabolism , Larva/genetics , Larva/metabolism , Taurine/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...