Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.808
Filter
1.
Food Res Int ; 186: 114372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729730

ABSTRACT

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Subject(s)
Gas Chromatography-Mass Spectrometry , Hot Temperature , Oxidation-Reduction , Aldehydes/chemistry , Aldehydes/analysis , Palmitates/chemistry , Palmitic Acid/chemistry , Ketones/chemistry , Carboxylic Acids/chemistry
2.
Environ Int ; 187: 108717, 2024 May.
Article in English | MEDLINE | ID: mdl-38728818

ABSTRACT

BACKGROUND: Exposure to environmental pollutants is suspected to be one of the potential causes accounting for the increase in thyroid cancer (TC) incidence worldwide. Among the ubiquitous pollutants, per-polyfluoroalkyl substances (PFASs), were demonstrated to exert thyroid disrupting effects. Perfluoroalkyl carboxylates (PFCAs) represent a subgroup of PFAS and include perfluoro carboxylic acids (PFOA and PFHxA) and perfluoropolyether carboxylic acid (C6O4). The potential relationship between exposure to PFCAs and TC was not yet fully elucidated. This in vitro study investigated whether certain PFCAs (C6O4, PFOA, and PFHxA) can influence the composition of TC microenvironment. METHODS: Two models of normal thyroid cells in primary cultures: Adherent (A-NHT) and Spheroids (S-NHT) were employed. A-NHT and S-NHT were exposed to C6O4, PFOA or PFHxA (0; 0.01; 0.1, 1; 10; 100; 1000 ng/mL) to assess viability (WST-1 and AV/PI assay), evaluate spherification index (SI) and volume specifically in S-NHT. CXCL8 and CCL2 (mRNA and protein), and EMT-related genes were assessed in both models after exposure to PFCAs. RESULTS: PFHxA reduced the viability of both A-NHT and S-NHT. None of the PFCAs interfered with the volume or spherification process in S-NHT. CXCL8 and CCL2 mRNA and protein levels were differently up-regulated by each PFCAs, being PFOA and PFHxA the stronger inducers. Moreover, among the tested PFCAs, PFHxA induced a more consistent increase in the mRNA levels of EMT-related genes. CONCLUSIONS: This is the first evaluation of the effects of exposure to PFCAs on factors potentially involved in establishing the TC microenvironment. PFHxA modulated the TC microenvironment at three levels: cell viability, pro-tumorigenic chemokines, and EMT-genes. The results provide further evidence of the pro-tumorigenic effect of PFOA. On the other hand, a marginal effect was observed for C6O4 on pro-tumorigenic chemokines.


Subject(s)
Fluorocarbons , Thyroid Gland , Thyroid Neoplasms , Tumor Microenvironment , Humans , Fluorocarbons/toxicity , Tumor Microenvironment/drug effects , Thyroid Neoplasms/pathology , Thyroid Gland/drug effects , Thyroid Gland/pathology , Caprylates/toxicity , Environmental Pollutants/toxicity , Cells, Cultured , Cell Survival/drug effects , Carboxylic Acids/toxicity
3.
Environ Sci Technol ; 58(20): 8857-8866, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718183

ABSTRACT

Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na]+ adducts. The method is validated and characterized using standard compounds. A proof-of-concept application to α-pinene secondary organic aerosol (SOA) shows the ability to identify carboxylic acids even in complex mixtures. The real-time capability of the method allows for the observation of the production of carboxylic acids, likely formed in the particle phase on short time scales (<120 min). Our research explains previous findings of carboxylic acids being a significant component of SOA and a quick decrease in peroxide functionalization following SOA formation. We show that the formation of these acids is commensurate with the increase of dimers in the particle phase. Our results imply that SOA is in constant evolution through condensed-phase processes, which lower the volatility of the aerosol components and increase the available condensed mass for SOA growth and, therefore, aerosol mass loading in the atmosphere. Further work could aim to quantify the effect of particle-phase acid formation on the aerosol volatility distributions.


Subject(s)
Aerosols , Carboxylic Acids , Spectrometry, Mass, Electrospray Ionization
4.
Inorg Chem ; 63(21): 9801-9808, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38743640

ABSTRACT

Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.


Subject(s)
Carboxylic Acids , Crystallization , Metal-Organic Frameworks , Temperature , Water , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/chemical synthesis , Carboxylic Acids/chemistry , Water/chemistry , Phthalic Acids/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/chemical synthesis , Molecular Structure , Zinc/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Amines/chemistry , Catalysis
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731940

ABSTRACT

Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.


Subject(s)
Carboxylic Acids , Muramidase , Muramidase/chemistry , Humans , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Animals , A549 Cells , Amyloid/chemistry , Amyloid/metabolism , Amyloid/antagonists & inhibitors , Protein Binding , Phenols/chemistry , Phenols/pharmacology , Calixarenes/chemistry , Calixarenes/pharmacology , Sulfides
6.
Org Lett ; 26(21): 4497-4501, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38768369

ABSTRACT

Despite numerous optimizations in peptide synthesis, the formation of aspartimide remains a significant side reaction that needs to be addressed. Herein, we introduce an approach that utilizes hydrazide as a carboxylic-acid-protecting group to reduce the formation of aspartimide. The aspartic acid hydrazide effectively suppressed the formation of aspartimide, even under microwave conditions, and was readily converted to native aspartic acid using CuSO4 in an aqueous medium.


Subject(s)
Aspartic Acid , Carboxylic Acids , Peptides , Solid-Phase Synthesis Techniques , Carboxylic Acids/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Peptides/pharmacology , Molecular Structure , Aspartic Acid/chemistry , Aspartic Acid/analogs & derivatives , Microwaves , Hydrazines/chemistry
7.
ESMO Open ; 9(5): 103448, 2024 May.
Article in English | MEDLINE | ID: mdl-38718704

ABSTRACT

BACKGROUND: The early identification of responsive and resistant patients to androgen receptor-targeting agents (ARTA) in metastatic castration-resistant prostate cancer (mCRPC) is not completely possible with prostate-specific antigen (PSA) assessment and conventional imaging. Considering its ability to determine metabolic activity of lesions, positron emission tomography (PET) assessment might be a promising tool. PATIENTS AND METHODS: We carried out a monocentric prospective study in patients with mCRPC treated with ARTA to evaluate the role of different PET radiotracers: 49 patients were randomized to receive 11C-Choline, Fluorine 18 fluciclovine (anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid - FACBC) (18F-FACBC), or Gallium-68-prostate-specific-membrane-antigen (68Ga-PSMA) PET, one scan before therapy and one 2 months later. The primary aim was to investigate the performance of three novel PET radiotracers for the early evaluation of response to ARTA in metastatic CRPC patients; the outcome evaluated was biochemical response (PSA reduction ≥50%). The secondary aim was to investigate the prognostic role of several semiquantitative PET parameters and their variations with the different radiotracers in terms of biochemical progression-free survival (bPFS) and overall survival (OS). The study was promoted by the Italian Department of Health (code RF-2016-02364809). RESULTS: Regarding the primary endpoint, at log-rank test a statistically significant correlation was found between metabolic tumor volume (MTV) (P = 0.018) and total lesion activity (TLA) (P = 0.025) percentage variation among the two scans with 68Ga-PSMA PET and biochemical response. As for the secondary endpoints, significant correlations with bPFS were found for 68Ga-PSMA total MTV and TLA at the first scan (P = 0.001 and P = 0.025, respectively), and MTV percentage variation (P = 0.031). For OS, statistically significant correlations were found for different 68Ga-PSMA and 18F-FACBC parameters and for major maximum standardized uptake value at the first 11C-Choline PET scan. CONCLUSIONS: Our study highlighted that 11C-Choline, 68Ga-PSMA, and 18F-FACBC semiquantitative PET parameters and their variations present a prognostic value in terms of OS and bPFS, and MTV and TLA variations with 68Ga-PSMA PET a correlation with biochemical response, which could help to assess the response to ARTA.


Subject(s)
Carbon Radioisotopes , Carboxylic Acids , Choline , Cyclobutanes , Gallium Radioisotopes , Positron-Emission Tomography , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prospective Studies , Aged , Carboxylic Acids/pharmacology , Carboxylic Acids/therapeutic use , Gallium Radioisotopes/pharmacology , Choline/pharmacology , Cyclobutanes/pharmacology , Cyclobutanes/therapeutic use , Carbon Radioisotopes/pharmacology , Positron-Emission Tomography/methods , Middle Aged , Gallium Isotopes , Radiopharmaceuticals/pharmacology , Aged, 80 and over , Receptors, Androgen/metabolism
8.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792182

ABSTRACT

This review presents an overview of the biological applications of coordinative compounds based on unsaturated carboxylates accompanied by other ligands, usually N-based heterocyclic species. The interest in these compounds arises from the valuable antimicrobial and antitumor activities evidenced by some species, as well as from their ability to generate metal-containing polymers suitable for various medical purposes. Therefore, we describe the recently discovered aspects related to the synthesis, structure, and biological activity of a wide range of unsaturated carboxylate-containing species and metal ions, originating mostly from 3d series. The unsaturated carboxylates encountered in coordinative compounds are acrylate, methacrylate, fumarate, maleate, cinnamate, ferulate, coumarate, and itaconate. Regarding the properties of the investigated compounds, it is worth mentioning the good ability of some to inhibit the development of resistant strains or microbial biofilms on inert surfaces or, even more, exert antitumor activity against resistant cells. The ability of some species to intercalate into DNA strands as well as to scavenge ROS species is also addressed.


Subject(s)
Antineoplastic Agents , Carboxylic Acids , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biofilms/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Animals
9.
Waste Manag ; 184: 37-51, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795539

ABSTRACT

Nanobubble water promotes the degradation of difficult-to-degrade organic matter, improves the activity of electron transfer systems during anaerobic digestion, and optimizes the composition of anaerobic microbial communities. Therefore, this study proposes the use of nanobubble water to improve the yield of medium chain carboxylic acids produced from cow manure by chain elongation. The experiment was divided into two stages: the first stage involved the acidification of cow manure to produce volatile acidic fatty acids as electron acceptors, and the second phase involved the addition of lactic acid as an electron donor for the chain elongation. Three experimental groups were established, and air, H2, and N2 nanobubble water were added in the second stage. Equal amounts of deionized water were added in the control group. The results showed that nanobubble water supplemented with air significantly increased the caproic acid concentration to 15.10 g/L, which was 55.03 % greater than that of the control group. The relative abundances of Bacillus and Caproiciproducens, which are involved in chain elongation, and Syntrophomonas, which is involved in electron transfer, increased. The unique ability of air nanobubble water supplemented to break down the cellulose matrix resulted in further decomposition of the recalcitrant material in cow manure. This effect subsequently increased the number of microorganisms associated with lignocellulose degradation, increasing carbohydrate metabolism and ATP-binding cassette transporter protein activity and enhancing fatty acid cycling pathways during chain elongation. Ultimately, this approach enabled the efficient production of medium chain carboxylic acids.


Subject(s)
Biodegradation, Environmental , Manure , Carboxylic Acids/chemistry , Anaerobiosis , Animals , Cattle , Nanostructures , Water/chemistry , Air , Nitrogen/chemistry , Hydrogen/chemistry , Electron Transport , Fatty Acids, Volatile/chemistry , Clostridiales
10.
Chemosphere ; 359: 142311, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735500

ABSTRACT

Plastic is widely used in agricultural applications, but its waste has an adverse environmental impact and a long-term detrimental effect. The development of biodegradable plastics for agricultural use is increasing to mitigate plastic waste. The most commonly used biodegradable plastic is poly(butylene adipate co-terephthalate)/poly(lactic acid) (PBAT/PLA) polymer. In this study, an analytical procedure based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) in combination with chemometrics has been optimized to assess the degradation level of PBAT/PLA films by monitoring their characteristic degradation products. Carboxylic acids (benzoic, phthalic, adipic, heptanoic, and octadecanoic acids) and 1,4-butanediol have been found to be potential markers of PBAT/PLA degradation. The DLLME-GC-MS analytical approach has been applied for the first time to assess the degradation efficiency of several microorganisms used as degradation accelerators of PBAT/PLA based on the assigned potential markers. This analytical strategy has shown higher sensitivity and precision than standard techniques, such as elemental analysis, allowing us to detect low degradation levels.


Subject(s)
Biodegradation, Environmental , Gas Chromatography-Mass Spectrometry , Polyesters , Polyesters/chemistry , Liquid Phase Microextraction/methods , Biodegradable Plastics/chemistry , Polymers/chemistry , Carboxylic Acids/chemistry
11.
Med ; 5(5): 380-382, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733970

ABSTRACT

Wagenlehner and colleagues1 demonstrated non-inferiority and superiority with respect to a primary endpoint of composite success (microbiological plus clinical) of cefepime/taniborbactam vs. meropenem in treating complicated urinary tract infections and acute pyelonephritis caused by carbapenem-susceptible gram-negative bacteria in adults. A major area of interest in real-world application of cefepime/taniborbactam is its potential role in treating carbapenem-resistant infections, which deserves further investigation.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Cefepime , Urinary Tract Infections , Cefepime/therapeutic use , Cefepime/pharmacology , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Cephalosporins/therapeutic use , Cephalosporins/pharmacology , Pyelonephritis/drug therapy , Pyelonephritis/microbiology , Drug Combinations , Gram-Negative Bacterial Infections/drug therapy , Meropenem/therapeutic use , Meropenem/pharmacology , Borinic Acids , Carboxylic Acids
12.
Eur J Med Chem ; 271: 116443, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691887

ABSTRACT

Xanthine oxidase (XO) is a key enzyme for the production of uric acid in the human body. XO inhibitors (XOIs) are clinically used for the treatment of hyperuricemia and gout, as they can effectively inhibit the production of uric acid. Previous studies indicated that both indole and isoxazole derivatives have good inhibitory effects against XO. Here, we designed and synthesized a novel series of N-5-(1H-indol-5-yl)isoxazole-3-carboxylic acids according to bioisosteric replacement and hybridization strategies. Among the obtained target compounds, compound 6c showed the best inhibitory activity against XO with an IC50 value of 0.13 µM, which was 22-fold higher than that of the classical antigout drug allopurinol (IC50 = 2.93 µM). Structure-activity relationship analysis indicated that the hydrophobic group on the nitrogen atom of the indole ring is essential for the inhibitory potencies of target compounds against XO. Enzyme kinetic studies proved that compound 6c acted as a mixed-type XOI. Molecular docking studies showed that the target compound 6c could not only retain the key interactions similar to febuxostat at the XO binding site but also generate some new interactions, such as two hydrogen bonds between the oxygen atom of the isoxazole ring and the amino acid residues Ser876 and Thr1010. These results indicated that 5-(1H-indol-5-yl)isoxazole-3-carboxylic acid might be an efficacious scaffold for designing novel XOIs and compound 6c has the potential to be used as a lead for further the development of novel anti-gout candidates.


Subject(s)
Carboxylic Acids , Drug Design , Enzyme Inhibitors , Isoxazoles , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Isoxazoles/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemical synthesis , Carboxylic Acids/pharmacology , Carboxylic Acids/chemistry , Carboxylic Acids/chemical synthesis , Molecular Structure , Humans , Molecular Docking Simulation , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Dose-Response Relationship, Drug
13.
PLoS One ; 19(4): e0299218, 2024.
Article in English | MEDLINE | ID: mdl-38662654

ABSTRACT

To enhance the yield of the one-step synthesis of terpinyl acetate from α-pinene and acetic acid, this study evaluated α-hydroxycarboxylic acid (HCA)-boric acid composite catalysts based on orthogonal experimental design. The most important factor affecting the terpinyl acetate content in the product was the HCA content. The catalytic performance of the composite catalyst was related to the pKa1 of HCA. The tartaric acid-boric acid composite catalyst showed the highest catalytic activity. The α-pinene conversion reached 91.8%, and the terpinyl acetate selectivity reached 45.6%. When boric acid was replaced with B2O3, the HCA composite catalyst activity was enhanced, which reduced the use of HCA. When the lactic acid and B2O3 content accounted for 10% and 4% of the α-pinene mass content, respectively, the α-pinene conversion reached 93.2%, and the terpinyl acetate selectivity reached up to 47.1%. In addition, the presence of water was unfavorable to HCA-boric acid composite catalyst. However, a water content less than 1% of the α-pinene mass content improved the catalytic activity of HCA-B2O3. When the tartaric acid-B2O3 was used as catalyst, and the water content was 1% of the α-pinene mass content, the α-pinene conversion was 89.6%, and the terpinyl acetate selectivity was 47.5%.


Subject(s)
Bicyclic Monoterpenes , Boric Acids , Monoterpenes , Catalysis , Bicyclic Monoterpenes/chemistry , Boric Acids/chemistry , Monoterpenes/chemistry , Tartrates/chemistry , Acetates/chemistry , Carboxylic Acids/chemistry , Terpenes/chemistry , Terpenes/chemical synthesis
14.
Bioorg Med Chem ; 104: 117653, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38579492

ABSTRACT

Carboxylic acids are key pharmacophoric elements in many molecules. They can be seen as a problem by some, due to perceived permeability challenges, potential for high plasma protein binding and the risk of forming reactive metabolites due to acyl-glucuronidation. By others they are viewed more favorably as they can decrease lipophilicity by adding an ionizable center which can be beneficial for solubility, and can add enthalpic interactions with the target protein. However, there are many instances where the replacement of a carboxylic acid with a bioisosteric group is required. This has led to the development of a number of ionizable groups which sufficiently mimic the carboxylic acid functionality whilst improving, for example, the metabolic profile of the molecule in question. An alternative strategy involves replacement of the carboxylate by neutral functional groups. This review initially details carefully selected examples whereby tetrazoles, acyl sulfonamides or isoxazolols have been beneficially utilized as carboxylic acid bioisosteres altering physicohemical properties, interactions with the target and metabolism and/or pharmacokinetics, before delving further into the binding mode of carboxylic acid derivatives with their target proteins. This analysis highlights new ways to consider the replacement of carboxylic acids by neutral bioisosteric groups which either rely on hydrogen bonds or cation-π interactions. It should serve as a useful guide for scientists working in drug discovery.


Subject(s)
Carboxylic Acids , Carboxylic Acids/chemistry , Drug Discovery , Protein Binding , Sulfonamides/chemistry , Tetrazoles/chemistry
15.
Rapid Commun Mass Spectrom ; 38(11): e9738, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38572671

ABSTRACT

RATIONALE: Accurate identification of old rice samples from new ones benefits their market circulation and consumers. However, the current detection methods are still not satisfactory because of their insufficient accuracy or (and) time-consuming process. METHODS: Chelating carboxylic acids (CCAs) were selectively extracted from rice, by stirring with chelating resin and a dilute Na2CO3 solution. The green analytical chemistry guidelines for sample preparation were investigated by using the green chemistry calculator AGREE prep. The extractant was determined by liquid chromatography-mass spectrometry (LC/MS), and statistical analysis of the analytical data was carried out to evaluate the significance of the difference by ChiPlot. RESULTS: The limit of quantitation for the CCAs is in the range of 1 to 50 ng/mL, with a reasonable reproducibility. The CCAs in 23 rice samples were determined within a wide concentration range from 0.03 to 1174 µg/g. Intriguingly, the content of citric acid, malonic acid, α-ketoglutaric acid and cis-aconite acid in new rice was each found to be distinctively higher than that in old rice by several times. Even mixtures of old and new rice were found to show much difference in the concentration of citric acid and malic acid. CONCLUSION: A green analytical method has been developed for the simultaneous determination of CCAs by LC/MS analysis, and the identification of old rice samples from new ones was easily carried out according to their CCA content for the first time. The results indicated that the described method has powerful potential for the accurate identification of old rice samples from new ones.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Oryza , Chromatography, Liquid/methods , Carboxylic Acids , Oryza/chemistry , Tandem Mass Spectrometry/methods , Reproducibility of Results , Citric Acid , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction
16.
Biomolecules ; 14(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38672466

ABSTRACT

Inverted fatty acid ß-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid ß-oxidation by engineered E. coli strains. The notable accumulation of target compounds was achieved upon the strong constitutive expression of the genes atoB, fadA, fadB, fadE/fabI, and tesB, which code for the key enzymes catalysing reactions of aerobic fatty acid ß-oxidation and thioesterase II, in strains devoid of mixed-acid fermentation pathways and lacking nonspecific thioesterase YciA. The best performing recombinants were able to synthesise up to 14.5 mM of 3-hydroxycarboxylic acids from glucose with a total yield of 0.34 mol/mol and a C4/C6/C8 ratio averaging approximately 63/28/9. The results provide a framework for the development of highly efficient strains and processes for the bio-based production of valuable 3-hydroxycarboxylates from renewable raw materials.


Subject(s)
Carboxylic Acids , Escherichia coli , Fatty Acids , Glucose , Metabolic Engineering , Oxidation-Reduction , Escherichia coli/metabolism , Escherichia coli/genetics , Glucose/metabolism , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Carboxylic Acids/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
17.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675530

ABSTRACT

The diselenide bond has attracted intense interest in redox-responsive drug delivery systems (DDSs) in tumor chemotherapy, due to its higher sensitivity than the most investigated bond, namely the disulfide bond. Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was designed by coupling two doxorubicin molecules with a diselenodiacetic acid (DSeDAA) molecule via α-amidation, as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemotherapy. The drug release profiles indicated that the D-DOXSeSe could be cleaved to release the derivatives selenol (DOX-SeH) and seleninic acid (DOX-SeOOH) with the triggering of high GSH and H2O2, respectively, indicating the double-edged sword effect of the lower electronegativity of the selenide atom. The resultant solubility-controlled slow drug release performance makes it a promising candidate as a long-acting DSDS in future tumor chemotherapy. Moreover, the interaction between the conjugations in the design of self-immolation traceless linkers was also proposed for the first time as another key factor for a desired precise tumor-specific chemotherapy, besides the conjugations themselves.


Subject(s)
Carboxylic Acids , Doxorubicin , Drug Liberation , Oxidation-Reduction , Prodrugs , Prodrugs/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Drug Delivery Systems , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Selenium Compounds/chemical synthesis , Hydrogen Peroxide/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis
18.
Clin Nucl Med ; 49(6): 543-545, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598733

ABSTRACT

ABSTRACT: An 85-year-old man with prostate cancer and de novo bone metastases was treated with hormonal therapy with resolution of bone lesions, improved primary disease, and improved serum tumor markers. Although on hormonal therapy, biochemical recurrence prompted performance of 18 F-fluciclovine PET/CT. Fluciclovine PET/CT revealed primary prostate cancer progression with incidental note of avid foci in the colon for which colonoscopy was recommended. Colonoscopy with biopsy was performed with pathology revealing primary colon adenocarcinoma. Before reinitiation of prostate cancer therapy, segmental colon resection was performed with pathology positive for additional sites of colon cancer.


Subject(s)
Adenocarcinoma , Carboxylic Acids , Colonic Neoplasms , Cyclobutanes , Positron Emission Tomography Computed Tomography , Humans , Male , Adenocarcinoma/diagnostic imaging , Colonic Neoplasms/diagnostic imaging , Aged, 80 and over , Tomography, X-Ray Computed , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
19.
J Phys Chem B ; 128(16): 3870-3884, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38602496

ABSTRACT

The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.


Subject(s)
Carboxylic Acids , Mutation , Oxygen , Photosystem II Protein Complex , Calcium/metabolism , Calcium/chemistry , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Electron Spin Resonance Spectroscopy , Ligands , Manganese/chemistry , Manganese/metabolism , Models, Molecular , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Spectroscopy, Fourier Transform Infrared
20.
J Chem Theory Comput ; 20(9): 4045-4053, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38648670

ABSTRACT

pH-responsive nanoparticles are ideal vehicles for drug delivery and are widely used in cell imaging in targeted therapy of cancer, which usually has a weakly acidic microenvironment. In this work, we constructed a titratable molecular model for nanoparticles grafted with ligands of pH-sensitive carboxylic acids and investigated the interactions between the nanoparticles and the lipid bilayer in varying pH environments. We mainly examined the effect of the grafting density of the pH-sensitive ligands of the nanoparticles on the interactions of the nanoparticles with the lipid bilayer. The results show that the nanoparticles can penetrate the lipid bilayer only when the pH value is lower than a critical value, which can be readily modulated to the specific pH value of the tumor microenvironment by changing the ligand grafting density. This work provides some insights into modulating the interactions between the pH-sensitive nanoparticles and cellular membranes to realize targeted drug delivery to tumors based on their specific pH environment.


Subject(s)
Lipid Bilayers , Nanoparticles , Lipid Bilayers/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Humans , Molecular Dynamics Simulation , Carboxylic Acids/chemistry , Ligands , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...