Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.524
Filter
1.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
2.
J Manag Care Spec Pharm ; 30(6): 581-587, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824630

ABSTRACT

BACKGROUND: Larotrectinib is approved for patients with advanced NTRK gene fusion-positive solid tumors. Prior studies demonstrated promising results with larotrectinib compared with other systemic therapy. However, comparisons to checkpoint inhibitors, such as nivolumab or pembrolizumab, have not been done. OBJECTIVE: To estimate and compare expected life-years (LYs) and quality-adjusted LYs (QALYs) for patients with nonsmall cell lung cancer (NSCLC) eligible for larotrectinib vs patients with unknown NTRK gene fusion status on nivolumab or pembrolizumab. We also assessed patients with metastatic differentiated thyroid cancer (DTC), as pembrolizumab may be considered in certain circumstances. METHODS: We developed partitioned survival models to project long-term comparative effectiveness of larotrectinib vs nivolumab or pembrolizumab. Larotrectinib survival data were derived from an updated July 2021 analysis of 21 adult patients (≥18 years of age) with metastatic NTRK gene fusion-positive NSCLC and 21 with DTC. Survival inputs for nivolumab and pembrolizumab were obtained from published articles. Progression-free and overall survival were estimated using survival distributions (Exponential, Weibull, Log-logistic, and Log-normal). Exponential fits were chosen based on goodness-of-fit and clinical plausibility. RESULTS: In NSCLC, larotrectinib resulted in gains of 5.87 and 5.91 LYs compared to nivolumab and pembrolizumab, respectively, which translated to gains of 3.53 and 3.56 QALYs. In DTC, larotrectinib resulted in a gain of 5.23 LYs and 4.24 QALYs compared to pembrolizumab. CONCLUSIONS: In metastatic NSCLC and DTC, larotrectinib may produce substantial life expectancy and QALY gains compared to immune checkpoint inhibitors. Additional data with longer follow-up will further inform this comparison.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Nivolumab , Pyrazoles , Pyrimidines , Quality-Adjusted Life Years , Thyroid Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Nivolumab/therapeutic use , Pyrimidines/therapeutic use , Pyrazoles/therapeutic use , Male , Female , Antibodies, Monoclonal, Humanized/therapeutic use , Middle Aged , Adult , Aged , Treatment Outcome
3.
Cancer Med ; 13(11): e7283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826095

ABSTRACT

BACKGROUND: Lung cancer remains the foremost reason of cancer-related mortality, with invasion and metastasis profoundly influencing patient prognosis. N-acetyltransferase 10 (NAT10) catalyzes the exclusive N (4)-acetylcytidine (ac4C) modification in eukaryotic RNA. NAT10 dysregulation is linked to various diseases, yet its role in non-small cell lung cancer (NSCLC) invasion and metastasis remains unclear. Our study delves into the clinical significance and functional aspects of NAT10 in NSCLC. METHODS: We investigated NAT10's clinical relevance using The Cancer Genome Atlas (TCGA) and a group of 98 NSCLC patients. Employing WB, qRT-PCR, and IHC analyses, we assessed NAT10 expression in NSCLC tissues, bronchial epithelial cells (BECs), NSCLC cell lines, and mouse xenografts. Further, knockdown and overexpression techniques (siRNA, shRNA, and plasmid) were employed to evaluate NAT10's effects. A series of assays were carried out, including CCK-8, colony formation, wound healing, and transwell assays, to elucidate NAT10's role in proliferation, invasion, and metastasis. Additionally, we utilized lung cancer patient-derived 3D organoids, mouse xenograft models, and Remodelin (NAT10 inhibitor) to corroborate these findings. RESULTS: Our investigations revealed high NAT10 expression in NSCLC tissues, cell lines and mouse xenograft models. High NAT10 level correlated with advanced T stage, lymph node metastasis and poor overall survive. NAT10 knockdown curtailed proliferation, invasion, and migration, whereas NAT10 overexpression yielded contrary effects. Furthermore, diminished NAT10 levels correlated with increased E-cadherin level whereas decreased N-cadherin and vimentin expressions, while heightened NAT10 expression displayed contrasting results. Notably, Remodelin efficiently attenuated NSCLC proliferation, invasion, and migration by inhibiting NAT10 through the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS: Our data underscore NAT10 as a potential therapeutic target for NSCLC, presenting avenues for targeted intervention against lung cancer through NAT10 inhibition.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Epithelial-Mesenchymal Transition , Lung Neoplasms , N-Terminal Acetyltransferase E , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Animals , Mice , N-Terminal Acetyltransferase E/metabolism , N-Terminal Acetyltransferase E/genetics , Male , Female , Disease Progression , Cell Movement , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Nude , Middle Aged , N-Terminal Acetyltransferases
4.
Pan Afr Med J ; 47: 116, 2024.
Article in English | MEDLINE | ID: mdl-38828424

ABSTRACT

Non-small cell lung cancer (NSCLC) is a significant global health issue with diverse molecular profiles affecting treatment responses. Yet, NSCLC's molecular epidemiology in Morocco is largely unexplored. This study focuses on NSCLC genetic mutations, specifically in adenocarcinoma, among Moroccan patients to contribute to understanding NSCLC in this population. Ninety-four patients diagnosed with lung adenocarcinoma were analyzed. Formalin-fixed paraffin-embedded tissue samples were processed, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) was extracted using standardized protocols. Mutations were detected using the AmoyDx Pan Lung Cancer Polymerase Chain Reaction (PCR) Panel kit, and their frequencies were assessed through statistical analysis. Epidermal Growth Factor Receptor (EGFR) mutations were detected in 22.34% of patients, predominantly exon 19 deletions (66.66%) and exon 21 L858R mutations (23.80%). Anaplastic lymphoma kinase (ALK) gene fusion was observed in 3.19% of patients, and KRAS mutations in 1.06%. No mutations were found in other tested genes. A slightly higher mutation rate was noted in females (54.16%) compared to males (45.84%). The study reveals a distinct mutation profile in Moroccan NSCLC patients, with a notable prevalence of EGFR mutations, albeit lower than in some Asian populations. The significance of EGFR mutations in treatment response aligns with global findings, highlighting the importance of understanding regional molecular variations for personalized therapy. Despite limitations in sample size and clinical data, this study sheds light on the genetic landscape of NSCLC in Morocco. The observed mutation rates, particularly in EGFR, underscore the potential for targeted therapies in Moroccan NSCLC patients, emphasizing the need for further research to refine treatment strategies tailored to this population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Mutation , Proto-Oncogene Proteins p21(ras) , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Morocco , Male , Female , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Middle Aged , ErbB Receptors/genetics , Aged , Adult , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Anaplastic Lymphoma Kinase/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Polymerase Chain Reaction , Aged, 80 and over , Mutation Rate , Sex Factors
5.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830868

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , NF-E2-Related Factor 2 , Protein Stability , Ubiquitination , NF-E2-Related Factor 2/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , Cell Line, Tumor , Disease Progression , Proteolysis , Mice, Nude , Female , NIMA-Interacting Peptidylprolyl Isomerase
6.
JCO Precis Oncol ; 8: e2300463, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38691812

ABSTRACT

PURPOSE: Previous studies document underuse of next-generation sequencing (NGS). We examined the impact to oncology care for veterans of incorporating NGS ordering into the Veterans Affairs (VA) electronic medical record (EMR) at two New York City VA Medical Centers. METHODS: We identified patients with non-small cell lung cancer and prostate cancer with oncology clinic visits and NGS testing indications between January and December 2021. Patients were divided into external ordering (EO) with visits before we implemented an EMR ordering system for NGS in July 2021, and internal ordering (IO) with visits after this date. The primary outcome was proportion of NGS testing performed in EO versus IO groups. Secondary outcomes were time between metastatic disease diagnosis to receipt of test by vendor, time of metastatic diagnosis to result, and proportion of testing by race. RESULTS: A total of 168 patients were identified, 116 EO and 52 IO patients. Between IO and EO periods, testing significantly increased from 52% to 87% (P ≤ .01); it was conducted more quickly, with time from metastatic diagnosis to sample receipt by the NGS vendor improving to median 37 days from 299 days (P = .03); and the time from documented metastatic disease to a test result improved to median 56 days from 309 days (P = .03). The proportion of tissue received by the vendor was not significantly different between the two groups. There were no significant differences in testing according to self-reported race. CONCLUSION: Integration of NGS ordering in the EMR led to increased proportion and speed of testing for a vulnerable patient population served by the country's largest health system.


Subject(s)
Electronic Health Records , High-Throughput Nucleotide Sequencing , United States Department of Veterans Affairs , Humans , Male , United States , Aged , Middle Aged , Female , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy
7.
Surg Pathol Clin ; 17(2): 307-320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692813

ABSTRACT

Adoption of molecular testing in lung cancer is increasing. Molecular testing for staging and prediction of response for targeted therapy remain the main indications, and although utilization of blood-based testing for tumor is growing, the use of the diagnostic cytology and tissue specimens is equally important. The pathologist needs to optimize reflex testing, incorporate stage-based algorithms, and understand types of tests for timely and complete assessment in the majority of cases. When tissue is limited, testing should capture the most frequent alterations to maximize the yield of what are largely mutually exclusive alterations, avoiding the need for repeat biopsy.


Subject(s)
Biomarkers, Tumor , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Molecular Diagnostic Techniques , Neoplasm Staging , Practice Guidelines as Topic , Mutation , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnosis
8.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726826

ABSTRACT

Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis in vitro and in vivo in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis.SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers in vivo through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chemokine CXCL12 , Chemotaxis , Lung Neoplasms , Megakaryocytes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, CXCR4 , Signal Transduction , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Mice , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Cell Line, Tumor , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Neoplasm Metastasis , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
9.
Sci Rep ; 14(1): 10317, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705930

ABSTRACT

Lung cancer is still the leading cause of cancer-related mortality. Over the past two decades, the management of non-small cell lung cancer (NSCLC) has undergone a significant revolution. Since the first identification of activating mutations in the epidermal growth factor receptor (EGFR) gene in 2004, several genetic aberrations, such as anaplastic lymphoma kinase rearrangements (ALK), neurotrophic tropomyosin receptor kinase (NTRK) and hepatocyte growth factor receptor (MET), have been found. With the development of gene sequencing technology, the development of targeted drugs for rare mutations, such as multikinase inhibitors, has provided new strategies for treating lung cancer patients with rare mutations. Patients who harbor this type of oncologic driver might acquire a greater survival benefit from the use of targeted therapy than from the use of chemotherapy and immunotherapy. To date, more new agents and regimens can achieve satisfactory results in patients with NSCLC. In this review, we focus on recent advances and highlight the new approval of molecular targeted therapy for NSCLC patients with rare oncologic drivers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Molecular Targeted Therapy , Mutation , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/therapeutic use
10.
J Transl Med ; 22(1): 427, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711144

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs), one of the major contents of exosomes, have been shown to participate in the occurrence and progression of cancers. The role and the diagnostic potential of exosome-transported circRNAs in non-small-cell lung cancer (NSCLC) remain largely unknown. METHODS: The NSCLC-associated exosomal circ_0061407 and circ_0008103 were screened by circRNA microarray. The role of circ_0061407 and circ_0008103 in NSCLC was examined in vitro and in vivo. The encapsulation of the two circRNAs into exosomes and the transport to recipient cells were observed by confocal microscopy. The effects of exosome-transported circ_0061407 and circ_0008103 on recipient cells were investigated using a co-culture device. Bioinformatics analyses were performed to predict the mechanisms by which circ_0061407 and circ_0008103 affected NSCLC. The quantitative polymerase chain reaction was used to quantify the exosome-containing circ_0061407 and circ_0008103 in the serum samples of healthy, pneumonia, benign lung tumours, and NSCLC. The diagnostic efficacy was evaluated using receiver operating characteristic curves. RESULTS: The levels of circ_0061407 and circ_0008103 within exosomes were down-regulated in the serum of patients with NSCLC. The up-regulation of circ_0061407 and circ_0008103 inhibited the proliferation, migration/invasion, cloning formation of NSCLC cells in vitro and inhibited lung tumour growth in vivo. Circ_0061407 and circ_0008103 were observed to be packaged in exosomes and transported to recipient cells, where they inhibited the proliferation, migration/invasion, and cloning formation abilities of the recipient cells. Moreover, circ_0061407 and circ_0008103 might be involved in the progression of NSCLC by interacting with microRNAs and proteins. Additionally, lower serum exosomal circ_0061407 and circ_0008103 levels were associated with advanced pathological staging and distant metastasis. CONCLUSIONS: This study identified two novel exosome-transported circRNAs (circ_0061407 and circ_0008103) associated with NSCLC. These findings may provide additional insights into the development of NSCLC and potential diagnostic biomarkers for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , RNA, Circular , Exosomes/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , RNA, Circular/genetics , RNA, Circular/blood , RNA, Circular/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/blood , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Male , Gene Expression Regulation, Neoplastic , Female , Mice, Nude , Middle Aged , Mice, Inbred BALB C , ROC Curve , Mice
11.
Mol Cancer ; 23(1): 93, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720314

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA's full potential, this study introduces a novel approach for CTC enrichment from DLAs. METHODS: DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. RESULTS: Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. CONCLUSIONS: In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Leukapheresis , Lung Neoplasms , Neoplastic Cells, Circulating , Phenotype , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Single-Cell Analysis/methods , Transcriptome , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Cell Line, Tumor
12.
Pathol Res Pract ; 257: 155316, 2024 May.
Article in English | MEDLINE | ID: mdl-38692125

ABSTRACT

Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Phosphatidylinositol 3-Kinases , RNA, Circular , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic
13.
BMC Cancer ; 24(1): 569, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714983

ABSTRACT

BACKGROUND: No definite conclusion has yet to be reached for immunotherapy beyond progression(IBP) of first-line immunotherapy as the second-line treatment for advanced NSCLC patients with negative driver genes. Therefore a retrospective study was conducted to evaluate the efficacy of IBP in this population and investigated whether the cycles best response and progressive mode of first-line immunotherapy could affect the results. PATIENTS AND METHODS: The clinical data of patients with advanced NSCLC whose response was evaluated as progressive disease (PD) after receiving a PD-1/PD-L1 inhibitors as first-line therapy were retrospectively collected and the patients were assigned to the IBP and non-IBP groups. The overall survival (OS), progression-free survival (PFS) were evaluated between the two groups. The survival effects of cycles best response and progressive mode of first-line immunotherapy were also evaluated. RESULTS: Between January 2019 and January 2022, a total of 121 patients was evaluated as PD after first-line immunotherapy in our institution; 53 (43.8%) patients were included in the IBP group and 68 (56.2%) patients were included in the non-IBP group. The OS and PFS were no significantly different between the two groups in whole population. Further analysis revealed the OS was prolonged with the prolongation of first-line medication cycle. The median OS was 15.4m (15.4 vs 10.8 p=0.047) 16.1m (16.1 vs 10.8 p=0.039), 16.3m (16.3 vs 10.9 p=0.029) for patients with ≥4, ≥6, ≥8 cycles in first-line immunotherapy, respectively. The advantages of OS and PFS were also seen in the subgroup of PR (best response) and oligo progression of first-line immunotherapy. CONCLUSIONS: The clinical outcomes of IBP were similar to those of non-IBP in patients with PD after first-line immnuotherapy in advanced NSCLC. But more cycles, PR as best response and oligo progression in first-line was benefit.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Middle Aged , Retrospective Studies , Aged , Immunotherapy/methods , Disease Progression , Progression-Free Survival , Adult , Aged, 80 and over , B7-H1 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors
14.
Front Immunol ; 15: 1387896, 2024.
Article in English | MEDLINE | ID: mdl-38736875

ABSTRACT

Background: Mutations in STK11 (STK11Mut) gene may present a negative impact on survival in Non-small Cell Lung Cancer (NSCLC) patients, however, its relationship with immune related genes remains unclear. This study is to unveil whether overexpressed- and mutated-STK11 impact survival in NSCLC and to explore whether immune related genes (IRGs) are involved in STK11 mutations. Methods: 188 NSCLC patients with intact formalin-fixed paraffin-embedded (FFPE) tissue available for detecting STK11 protein expression were included in the analysis. After immunohistochemical detection of STK11 protein, patients were divided into high STK11 expression group (STK11High) and low STK11 expression group (STK11Low), and then Kaplan-Meier survival analysis and COX proportional hazards model were used to compare the overall survival (OS) and progression-free survival (PFS) of the two groups of patients. In addition, the mutation data from the TCGA database was used to categorize the NSCLC population, namely STK11 Mutated (STK11Mut) and wild-type (STK11Wt) subgroups. The difference in OS between STK11Mut and STK11Wt was compared. Finally, bioinformatics analysis was used to compare the differences in IRGs expression between STK11Mut and STK11Wt populations. Results: The median follow-up time was 51.0 months (range 3.0 - 120.0 months) for real-life cohort. At the end of follow-up, 64.36% (121/188) of patients experienced recurrence or metastasis. 64.89% (122/188) of patients ended up in cancer-related death. High expression of STK11 was a significant protective factor for NSCLC patients, both in terms of PFS [HR=0.42, 95% CI= (0.29-0.61), P<0.001] and OS [HR=0.36, 95% CI= (0.25, 0.53), P<0.001], which was consistent with the finding in TCGA cohorts [HR=0.76, 95%CI= (0.65, 0.88), P<0.001 HR=0.76, 95%CI= (0.65, 0.88), P<0.001]. In TCGA cohort, STK11 mutation was a significant risk factor for NSCLC in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) histology in terms of OS [HR=6.81, 95%CI= (2.16, 21.53), P<0.001; HR=1.50, 95%CI= (1.00, 2.26), P=0.051, respectively]. Furthermore, 7 IRGs, namely CALCA, BMP6, S100P, THPO, CGA, PCSK1 and MUC5AC, were found significantly overexpressed in STK11-mutated NSCLC in both LUSC and LUAD histology. Conclusions: Low STK11 expression at protein level and presence of STK11 mutation were associated with poor prognosis in NSCLC, and mutated STK11 might probably alter the expression IRGs profiling.


Subject(s)
AMP-Activated Protein Kinase Kinases , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Protein Serine-Threonine Kinases , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Female , Male , Protein Serine-Threonine Kinases/genetics , Prognosis , Middle Aged , Aged , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Adult , Kaplan-Meier Estimate
15.
JCO Precis Oncol ; 8: e2400075, 2024 May.
Article in English | MEDLINE | ID: mdl-38754057

ABSTRACT

PURPOSE: Therapeutic decision making for patients with advanced non-small cell lung cancer (aNSCLC) includes a growing number of options for genomic, biomarker-guided, targeted therapies. We compared actionable biomarker detection, targeted therapy receipt, and real-world overall survival (rwOS) in patients with aNSCLC tested with comprehensive genomic profiling (CGP) versus small panel testing (SP) in real-world community health systems. METHODS: Patients older than 18 years diagnosed with aNSCLC between January 1, 2015, and December 31, 2020, who received biomarker testing were followed until death or study end (September 30, 2021), and categorized by most comprehensive testing during follow-up: SP (≤52 genes) or CGP (>52 genes). RESULTS: Among 3,884 patients (median age, 68 years; 50% female; 73% non-Hispanic White), 20% received CGP and 80% SP. The proportion of patients with ≥one actionable biomarker (actionability) was significantly higher in CGP than in SP (32% v 14%; P < .001). Of patients with actionability, 43% (CGP) and 38% (SP) received matched therapies (P = .20). Among treated patients, CGP before first-line treatment was associated with higher likelihood of matched therapy in any line (odds ratio, 3.2 [95% CI, 1.84 to 5.53]). CGP testing (hazard ratio [HR], 0.80 [95% CI, 0.72 to 0.89]) and actionability (HR, 0.84 [95% CI, 0.77 to 0.91]) were associated with reduced risk of mortality. Among treated patients with actionability, matched therapy receipt showed improved median rwOS in months in CGP (34 [95% CI, 21 to 49] matched v 14 [95% CI, 10 to 18] unmatched) and SP (27 [95% CI, 21 to 43] matched v 10 [95% CI, 8 to 14] unmatched). CONCLUSION: Patients who received CGP had improved detection of actionable biomarkers and greater use of matched therapies, both of which were associated with significant increases in survival.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/therapy , Female , Male , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Aged , Middle Aged , Biomarkers, Tumor/genetics , Genomics , Aged, 80 and over , Treatment Outcome
16.
J Natl Compr Canc Netw ; 22(4): 249-274, 2024 05.
Article in English | MEDLINE | ID: mdl-38754467

ABSTRACT

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Non-Small Cell Lung Cancer (NSCLC) provide recommendations for the treatment of patients with NSCLC, including diagnosis, primary disease management, surveillance for relapse, and subsequent treatment. The panel has updated the list of recommended targeted therapies based on recent FDA approvals and clinical data. This selection from the NCCN Guidelines for NSCLC focuses on treatment recommendations for advanced or metastatic NSCLC with actionable molecular biomarkers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Molecular Targeted Therapy/methods , Neoplasm Staging
17.
Int J Oncol ; 64(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38757341

ABSTRACT

Ferroptosis, a recently discovered type of programmed cell death triggered by excessive accumulation of iron­dependent lipid peroxidation, is linked to several malignancies, including non­small cell lung cancer. Long non­coding RNAs (lncRNAs) are involved in ferroptosis; however, data on their role and mechanism in cancer therapy remains limited. Therefore, the aim of the present study was to identify ferroptosis­associated mRNAs and lncRNAs in A549 lung cancer cells treated with RAS­selective lethal 3 (RSL3) and ferrostatin­1 (Fer­1) using RNA sequencing. The results demonstrated that lncRNA lung cancer­associated transcript 1 (LUCAT1) was significantly upregulated in lung adenocarcinoma and lung squamous cell carcinoma tissues. Co­expression analysis of differentially expressed mRNAs and lncRNAs suggested that LUCAT1 has a crucial role in ferroptosis. LUCAT1 expression was markedly elevated in A549 cells treated with RSL3, which was prevented by co­incubation with Fer­1. Functionally, overexpression of LUCAT1 facilitated cell proliferation and reduced the occurrence of ferroptosis induced by RSL3 and Erastin, while inhibition of LUCAT1 expression reduced cell proliferation and increased ferroptosis. Mechanistically, downregulation of LUCAT1 resulted in the downregulation of both GTP cyclohydrolase 1 (GCH1) and ferroptosis suppressor protein 1 (FSP1). Furthermore, inhibition of LUCAT1 expression upregulated microRNA (miR)­34a­5p and then downregulated GCH1. These results indicated that inhibition of LUCAT1 expression promoted ferroptosis by modulating the downregulation of GCH1, mediated by miR­34a­5p. Therefore, the combination of knocking down LUCAT1 expression with ferroptosis inducers may be a promising strategy for lung cancer treatment.


Subject(s)
Down-Regulation , Ferroptosis , GTP Cyclohydrolase , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Ferroptosis/genetics , MicroRNAs/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , A549 Cells , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Cell Proliferation , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Male , Cell Line, Tumor , Female , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism
18.
Medicine (Baltimore) ; 103(20): e38204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758858

ABSTRACT

To explore the potential mechanism of Chai Gui Zexie Decoction for non-small cell lung cancer (NSCLC) treatment using network pharmacology, bioinformatics, and molecular docking. The active ingredients of Chai Gui Zexie Decoction and the associated predicted targets were screened using the TCMSP database. NSCLC-related targets were obtained from GeneCards and OMIM. Potential action targets, which are intersecting drug-predicted targets and disease targets, were obtained from Venny 2.1. The protein-protein interaction network was constructed by importing potential action targets into the STRING database, and the core action targets and core ingredients were obtained via topological analysis. The core action targets were entered into the Metascape database, and Gene Ontology annotation analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed. Differentially expressed genes were screened using the Gene Expression Omnibus, and the key targets were obtained by validating the core action targets. The key targets were input into The Tumor IMmune Estimation Resource for immune cell infiltration analysis. Finally, the molecular docking of key targets and core ingredients was performed. We obtained 60 active ingredients, 251 drug prediction targets, and 2133 NSCLC-related targets. Meanwhile, 147 potential action targets were obtained, and 47 core action targets and 40 core ingredients were obtained via topological analysis. We detected 175 pathways related to NSCLC pharmaceutical therapy. In total, 1249 Gene Ontology items were evaluated. Additionally, 3102 differential genes were screened, and tumor protein P53, Jun proto-oncogene, interleukin-6, and mitogen-activated protein kinase 3 were identified as the key targets. The expression of these key targets in NSCLC was correlated with macrophage, CD4+ T, CD8+ T, dendritic cell, and neutrophil infiltration. The molecular docking results revealed that the core ingredients have a potent affinity for the key targets. Chai Gui Zexie Decoction might exert its therapeutic effect on NSCLC through multiple ingredients, targets, and signaling pathways.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Computational Biology , Drugs, Chinese Herbal , Lung Neoplasms , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Computational Biology/methods , Proto-Oncogene Mas , Gene Ontology
19.
Front Immunol ; 15: 1399975, 2024.
Article in English | MEDLINE | ID: mdl-38774882

ABSTRACT

Recently, targeted therapy and immunotherapy have emerged as effective treatment options for non-small cell lung cancer (NSCLC). This progress has been facilitated by the rapid development of diagnostic and therapeutic technologies and the continuous research and development of new drugs, leading to a new era in precision medicine for NSCLC. This is a breakthrough for patients with common mutations in the human epidermal growth factor receptor (EGFR) gene in NSCLC. Consequently, the use of targeted drugs has significantly improved survival. Nevertheless, certain rare genetic mutations are referred to as EGFR exon 20 insertion (ex20ins) mutations, which differ in structure from conventional EGFR gene mutations, namely, exon 19 deletion mutations (19-Del) and exon 21 point mutations. Owing to their distinct structural characteristics, patients harboring these EGFR ex20ins mutations are unresponsive to traditional tyrosine kinase inhibitor (TKI) therapy. This particular group of patients did not fall within the scope of their applicability. However, the activating A763_Y764insFQEA mutation elicits a more pronounced response than mutations in the near and far regions of the C-helix immediately following it and should, therefore, be treated differently. Currently, there is a lack of effective treatments for EGFR ex20ins mutations NSCLC. The efficacy of chemotherapy has been relatively favorable, whereas the effectiveness of immunotherapy remains ambiguous owing to inadequate clinical data. In addition, the efficacy of the first- and second-generation targeted drugs remains limited. However, third-generation and novel targeted drugs have proven to be effective. Although novel EGFR-TKIs are expected to treat EGFR ex20ins mutations in patients with NSCLC, they face many challenges. The main focus of this review is on emerging therapies that target NSCLC with EGFR ex20ins and highlight major ongoing clinical trials while also providing an overview of the associated challenges and research advancements in this area.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Exons/genetics , Protein Kinase Inhibitors/therapeutic use , Immunotherapy/methods , Mutagenesis, Insertional , Molecular Targeted Therapy , Mutation , Animals
20.
Am Soc Clin Oncol Educ Book ; 44(3): e432488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788188

ABSTRACT

Lung cancer has traditionally been associated with advanced age; however, its increasing incidence among young adults raises concerning questions regarding its etiology and unique considerations for this population. In contrast to the older population, the onset of lung cancer at younger age may be attributed to a complex interplay of incompletely understood individual susceptibility and prevalent environmental risk factors beyond tobacco smoke exposure, such as radon gas and air pollution, which are widespread globally. Consequently, this leads to distinct clinical and molecular profiles, requiring a tailored approach. Furthermore, a diagnosis of cancer represents a threatening event during the prime years of a young person's life, prompting concern about career development, social aspects, fertility aspirations, and physical independence. This poses significant additional challenges for health care professionals in a field that remains underexplored. This comprehensive review recognizes lung cancer in young adults as a distinct entity, exploring its clinical and molecular characteristics, diverse predisposing factors, and priorities in terms of quality of life, with the aim of providing practical support to oncologists and enhancing our understanding of this under-researched population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Genetic Predisposition to Disease , Lung Neoplasms , Humans , Risk Factors , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Young Adult , Adult , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...