Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.042
Filter
1.
Med Oncol ; 41(6): 155, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744773

ABSTRACT

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Subject(s)
Carcinoma, Ovarian Epithelial , Epithelial-Mesenchymal Transition , Hypoxia-Inducible Factor 1, alpha Subunit , Interleukin-6 , MicroRNAs , Neoplasm Invasiveness , Ovarian Neoplasms , STAT3 Transcription Factor , Signal Transduction , MicroRNAs/genetics , Humans , Epithelial-Mesenchymal Transition/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Animals , Neoplasm Invasiveness/genetics , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Metastasis , Mice, Inbred BALB C
2.
Cancer Med ; 13(10): e7217, 2024 May.
Article in English | MEDLINE | ID: mdl-38752472

ABSTRACT

Our previous studies have shown that upregulation of SLC7A1 in epithelial ovarian cancer (EOC) tumor cells significantly increases cancer cell proliferation, migration, and cisplatin resistance; however, the molecular mechanism by which SLC7A1 functions in EOC remains unknown. In later studies, we found that SLC7A1 is also highly expressed in the interstitial portion of high-grade serous ovarian cancer (HGSOC), but the significance of this high expression in the interstitial remains unclear. Here, we showed the Interstitial high expression of SLC7A1 in HGSOC by immunohistochemistry. SLC7A1 enriched in cancer-associated fibroblasts (CAFs) was upregulated by TGF-ß1. Transwell assay, scratch assay, cck8 assay and cell adhesion assay showed that SLC7A1 highly expressed in CAFs promoted tumor cells invasion, migration and metastasis in vitro. The effect of SLC7A1 on MAPK and EMT pathway proteins in ovarian cancer (OC) was verified by RNA sequencing and western blotting. Overexpression of SLC7A1 in OC is involved in MAPK/ ERK pathway and EMT. In general, in HGSOC, CAFs overexpressing SLC7A1 supported the migration and invasion of tumor cells; SLC7A1 is highly expressed in ovarian cancer and is involved in ERK phosphorylation and EMT signaling in MAPK signaling pathway. This suggests that SLC7A1 may be a potential therapeutic target for OC metastasis.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , MAP Kinase Signaling System , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Cell Line, Tumor , Disease Progression , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cell Proliferation , Neoplasm Invasiveness , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/genetics , Transforming Growth Factor beta1/metabolism , Neoplasm Grading
3.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785992

ABSTRACT

Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. However, and despite achieving initial remission, a significant portion of patients will relapse because of innate and acquired resistance, at which point the disease is considered incurable. In view of this, novel detection strategies and therapeutic approaches are needed to improve outcomes and survival of OC patients. In this review, we summarize our current knowledge of the genetic landscape and molecular pathways underpinning OC and its many subtypes. By examining therapeutic strategies explored in preclinical and clinical settings, we highlight the importance of decoding how single and convergent genetic alterations co-exist and drive OC progression and resistance to current treatments. We also propose that core signalling pathways such as the PI3K and MAPK pathways play critical roles in the origin of diverse OC subtypes and can become new targets in combination with known DNA damage repair pathways for the development of tailored and more effective anti-cancer treatments.


Subject(s)
Molecular Targeted Therapy , Ovarian Neoplasms , Signal Transduction , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Signal Transduction/drug effects , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/therapy , Carcinoma, Ovarian Epithelial/metabolism , Antineoplastic Agents/therapeutic use , Animals
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732044

ABSTRACT

High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features of aneuploidy and their underlying molecular patterns, as well as the relationship between CNV and aneuploidy in EOC, remain unclear. In this study, we employed single-cell sequencing data along with The Cancer Genome Atlas (TCGA) to investigate aneuploidy and CNV in EOC. The technique of fluorescence in situ hybridization (FISH) was employed using specific probes. The copy number variation within the genomic region of chromosome 8 (42754568-47889815) was assessed and utilized as a representative measure for the ploidy status of individual cells in chromosome 8. Differential expression analysis was performed between different subgroups based on chromosome 8 ploidy. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), and hub-gene analyses were subsequently utilized to identify crucial genes involved. By classifying enriched tumor cells into distinct subtypes based on chromosome 8 ploidy combined with TCGA data integration, we identified key genes driving chromosome 8 aneuploidy in EOC, revealing that PRKDC gene involvement through the mediated non-homologous end-joining pathway may play a pivotal role in disease progression. Further validation through analysis of the GEO and TCGA database and survival assessment, considering both mRNA expression levels and CNV status of PRKDC, has confirmed its involvement in the progression of EOC. Further functional analysis revealed an upregulation of PRKDC in both ovarian EOC cells and tissues, with its expression showing a significant correlation with the extent of copy number variation (CNV) on chromosome 8. Taken together, CNV amplification and aneuploidy of chromosome 8 are important characteristics of EOC. PRKDC and the mediated NHEJ pathway may play a crucial role in driving aneuploidy on chromosome 8 during the progression of EOC.


Subject(s)
Aneuploidy , Chromosomes, Human, Pair 8 , DNA Copy Number Variations , Disease Progression , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Chromosomes, Human, Pair 8/genetics , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence
5.
Adv Exp Med Biol ; 1452: 65-96, 2024.
Article in English | MEDLINE | ID: mdl-38805125

ABSTRACT

Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.


Subject(s)
Carcinoma, Ovarian Epithelial , Drug Resistance, Neoplasm , Ovarian Neoplasms , Humans , Drug Resistance, Neoplasm/genetics , Female , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/therapy , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects
6.
Cell Death Dis ; 15(5): 362, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796478

ABSTRACT

Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.


Subject(s)
Carcinoma, Ovarian Epithelial , Hyaluronic Acid , Interleukin-1 Receptor-Associated Kinases , Neoplastic Stem Cells , Ovarian Neoplasms , STAT3 Transcription Factor , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Humans , STAT3 Transcription Factor/metabolism , Female , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Hyaluronic Acid/metabolism , Hyaluronic Acid/pharmacology , Animals , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Mice , Cisplatin/pharmacology , Mice, Nude , Phosphorylation/drug effects , Cell Proliferation/drug effects , Molecular Weight , Xenograft Model Antitumor Assays
7.
Clin Lab Med ; 44(2): 199-219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821641

ABSTRACT

This review focuses on the diagnostic, prognostic, and predictive molecular biomarkers in ovarian epithelial neoplasms in the context of their morphologic classifications. Currently, most clinically actionable molecular findings are reported in high-grade serous carcinomas; however, the data on less common tumor types are rapidly accelerating. Overall, the advances in genomic knowledge over the last decade highlight the significance of integrating molecular findings with morphology in ovarian epithelial tumors for a wide-range of clinical applications, from assistance in diagnosis to predicting response to therapy.


Subject(s)
Biomarkers, Tumor , Carcinoma, Ovarian Epithelial , Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Female , Humans , Biomarkers, Tumor/genetics , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Neoplasms, Glandular and Epithelial/diagnosis , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Prognosis , Ovary/pathology
8.
J Biochem Mol Toxicol ; 38(4): e23676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561971

ABSTRACT

Although the treatment of ovarian cancer has made great progress, there are still many patients who are not timely detected and given targeted therapy due to unknown pathogenesis. Recent studies have found that hsa_circ_0015326 is upregulated in ovarian cancer and is involved in the proliferation, invasion, and migration of ovarian cancer cells. However, whether hsa_circ_0015326 can be used as a new target of ovarian cancer needs further investigation. Therefore, the effect of hsa_circ_0015326 on epithelial ovarian cancer was investigated in this study. At first, si-hsa_circ_0015326 lentivirus was transfected into epithelial ovarian cancer cells. Then real-time fluorescence quantitative PCR (qRT-PCR) was used to detect hsa_circ_0015326 level. The proliferation of ovarian cancer cells was detected by CCK-8 assay. The horizontal and vertical migration abilities of the cells were detected by wound-healing assay and Transwell assay, respectively. Transwell assay was also used to determine the invasion rate. As for the apoptosis rate, it was assessed by flow cytometry. As a result, the expression level of hsa_circ_0015326 in A2780 and SKOV3 was found to be higher than that in IOSE-80. However, after transfecting si-hsa_circ_0015326 and si-NC into the cells, the proliferation, migration, and invasion abilities of A2780 and SKOV3 cells in the si-hsa_circ_0015326 group were significantly reduced in comparison to those in the si-NC and mock groups, while their apoptosis rates were elevated. Collectively, silencing hsa_circ_0015326 bears the capability of inhibiting the proliferation, migration, and invasion of ovarian cancer cells while increasing apoptosis rate. It can be concluded that hsa_circ_0015326 promotes the malignant biological activities of epithelial ovarian cancer cells.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , RNA/metabolism , Carcinoma, Ovarian Epithelial/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Line, Tumor , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Cell Proliferation , Apoptosis , MicroRNAs/metabolism , Cell Movement
9.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38580393

ABSTRACT

Epithelial ovarian cancer (EOC) is one of the leading causes of cancer-related death in women worldwide, and is characterized by a high rate of recurrence after surgery and chemotherapy. We sought to implement a circulating tumor DNA (ctDNA)-based blood test for more accurate post-operative surveillance of this disease. We analyzed 264 plasma samples collected between June 2016 and September 2021 from 63 EOC patients using tumor-guided plasma cell-free DNA analysis to detect residual disease after treatment. Assay specificity was verified using cross-patient analysis of 1,195 control samples. ctDNA was detected in 51 of 55 (93%) samples at diagnosis, and 18 of 18 (100%) samples at progression. Positive ctDNA in the last on-treatment sample was associated with rapid progression (median 1.02 versus 3.38 yr, HR = 5.63, P < 0.001) and reduced overall survival (median 2.31 versus NR yr, HR = 8.22, P < 0.001) in patients with high-grade serous cancer. In the case of 12 patients, ctDNA assays detected progression earlier than standard surveillance, with a median lead time of 5.9 mo. To approach the physical limits of ctDNA detection, five patients were analyzed using ultra-sensitive assays interrogating 479-1,856 tumor mutations, capable of tracking ctDNA fractions down to 0.0004%. Our results demonstrate that ctDNA assays achieve high sensitivity and specificity in detecting post-operative residual disease in EOC.


Subject(s)
Circulating Tumor DNA , Ovarian Neoplasms , Humans , Female , Circulating Tumor DNA/genetics , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/genetics , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics
10.
JAMA Netw Open ; 7(4): e245552, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38592722

ABSTRACT

Importance: Testing for homologous recombination deficiency is required for the optimal treatment of high-grade epithelial ovarian cancer. The search for accurate biomarkers is ongoing. Objective: To investigate whether progression-free survival (PFS) and overall survival (OS) of patients with high-grade epithelial ovarian cancer treated with maintenance olaparib or placebo differed between patients with a tumor BRCA-like genomic profile and patients without a tumor BRCA-like profile. Design, Setting, and Participants: This cohort study was a secondary analysis of the PAOLA-1 randomized clinical trial that compared olaparib plus bevacizumab with placebo plus bevacizumab as maintenance treatment in patients with advanced high-grade ovarian cancer after a good response to first-line platinum with taxane chemotherapy plus bevacizumab, irrespective of germline or tumor BRCA1/2 mutation status. All patients with available tumor DNA were included in the analysis. The current analysis tested for an interaction between BRCA-like status and olaparib treatment on survival outcomes. The original trial was conducted between July 2015 and September 2017; at the time of data extraction for analysis in March 2022, a median follow-up of 54.1 months (IQR, 28.5-62.2 months) and a total follow-up time of 21 711 months was available, with 336 PFS and 245 OS events. Exposures: Tumor homologous recombination deficiency was assessed using the BRCA-like copy number aberration profile classifier. Myriad MyChoice CDx was previously measured. The trial was randomized between the olaparib and bevacizumab and placebo plus bevacizumab groups. Main Outcomes and Measures: This secondary analysis assessed hazard ratios (HRs) of olaparib vs placebo among biomarker strata and tested for interaction between BRCA-like status and olaparib treatment on PFS and OS, using Cox proportional hazards regression. Results: A total of 469 patients (median age, 60 [range 26-80] years) were included in this study. The patient cohort consisted of women with International Federation of Gynaecology and Obstetrics stage III (76%) high-grade serous (95%) ovarian cancer who had no evaluable disease or complete remission at initial or interval debulking surgery (76%). Thirty-one percent of the tumor samples (n = 138) harbored a pathogenic BRCA mutation, and BRCA-like classification was performed for 442 patients. Patients with a BRCA-like tumor had a longer PFS after olaparib treatment than after placebo (36.4 vs 18.6 months; HR, 0.49; 95% CI, 0.37-0.65; P < .001). No association of olaparib with PFS was found in patients with a non-BRCA-like tumor (17.6 vs 16.6 months; HR, 1.02; 95% CI, 0.68-1.51; P = .93). The interaction was significant (P = .004), and HRs and P values (for interaction) were similar in the relevant subgroups, OS, and multivariable analyses. Conclusions and Relevance: In this secondary analysis of the PAOLA-1 randomized clinical trial, patients with a BRCA-like tumor, but not those with a non-BRCA-like tumor, had a significantly longer survival after olaparib plus bevacizumab treatment than placebo plus bevacizumab treatment. Thus, the BRCA1-like classifier could be used as a biomarker for olaparib plus bevacizumab as a maintenance treatment.


Subject(s)
Carcinoma , Ovarian Neoplasms , Phthalazines , Piperazines , Pregnancy , Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Bevacizumab/therapeutic use , BRCA1 Protein/genetics , Cohort Studies , BRCA2 Protein/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Genomics , Biomarkers
11.
Cancer Genomics Proteomics ; 21(3): 213-237, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670587

ABSTRACT

Epithelial ovarian cancer (EOC) is associated with a dismal prognosis due to development of resistance to chemotherapy and metastasis in the peritoneal cavity and distant organs. In order to identify new targets and treatment modalities we searched the literature for up- and and down-regulated circRNAs with efficacy in preclinical EOC-related in vivo systems. Our search yielded circRNAs falling into the following categories: cisplatin and paclitaxel resistance, transmembrane receptors, secreted factors, transcription factors, RNA splicing and processing factors, RAS pathway-related components, proteolysis and cell-cycle regulation, signaling-related proteins, and circRNAs regulating proteins in additional categories. These findings can be potentially translated by validation and manipulation of the corresponding targets, inhibition of circRNAs with antisense oligonucleotides (ASO), small interfering RNAs (siRNA) or small hairpin RNA (shRNA) or by reconstituting their activity.


Subject(s)
Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/therapy , Carcinoma, Ovarian Epithelial/drug therapy , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Animals , Gene Expression Regulation, Neoplastic , Molecular Targeted Therapy/methods , Drug Resistance, Neoplasm/genetics , RNA/genetics , RNA/metabolism
12.
EMBO Mol Med ; 16(5): 1162-1192, 2024 May.
Article in English | MEDLINE | ID: mdl-38658801

ABSTRACT

Platinum (PT)-resistant Epithelial Ovarian Cancer (EOC) grows as a metastatic disease, disseminating in the abdomen and pelvis. Very few options are available for PT-resistant EOC patients, and little is known about how the acquisition of PT-resistance mediates the increased spreading capabilities of EOC. Here, using isogenic PT-resistant cells, genetic and pharmacological approaches, and patient-derived models, we report that Integrin α6 (ITGA6) is overexpressed by PT-resistant cells and is necessary to sustain EOC metastatic ability and adhesion-dependent PT-resistance. Using in vitro approaches, we showed that PT induces a positive loop that, by stimulating ITGA6 transcription and secretion, contributes to the formation of a pre-metastatic niche enabling EOC cells to disseminate. At molecular level, ITGA6 engagement regulates the production and availability of insulin-like growth factors (IGFs), over-stimulating the IGF1R pathway and upregulating Snail expression. In vitro data were recapitulated using in vivo models in which the targeting of ITGA6 prevents PT-resistant EOC dissemination and improves PT-activity, supporting ITGA6 as a promising druggable target for EOC patients.


Subject(s)
Drug Resistance, Neoplasm , Integrin alpha6 , Ovarian Neoplasms , Up-Regulation , Humans , Integrin alpha6/metabolism , Integrin alpha6/genetics , Female , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Up-Regulation/drug effects , Animals , Cell Line, Tumor , Platinum/pharmacology , Platinum/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects
13.
J Mol Histol ; 55(3): 241-251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613588

ABSTRACT

Epithelial ovarian cancer (EOC) is one of the most common malignant gynecological tumors with rapid growth potential and poor prognosis, however, the molecular mechanism underlying its outgrowth remained elusive. Germ cell-specific gene 2 (GSG2) was previously reported to be highly expressed in ovarian cancer and was essential for the growth of EOC. In this study, GSG2-knockdown cells and GSG2-overexpress cells were established through lentivirus-mediated transfection with Human ovarian cancer cells HO8910 and SKOV3. Knockdown of GSG2 inhibited cell proliferation and induced G2/M phase arrest in EOC. Interestingly, the expression of p27, a well-known regulator of the cell cycle showed a most significant increase after GSG2 knockdown. Further phosphorylation-protein array demonstrated the phosphorylation of GSK3αSer21 decreased in GSG2-knockdown cells to the most extent. Notably, inhibiting GSK3α activity effectively rescued GSG2 knockdown's suppression on cell cycle as well as p27 expression in EOC. Our study substantiates that GSG2 is able to phosphorylate GSK3α at Ser21 and then leads to the reduction of p27 expression, resulting in cell cycle acceleration and cell proliferation promotion. Thus, GSG2 may have the potential to become a promising target in EOC.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27 , Glycogen Synthase Kinase 3 , Ovarian Neoplasms , Humans , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/metabolism , Female , Cell Line, Tumor , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cell Cycle/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/antagonists & inhibitors , Phosphorylation , Gene Knockdown Techniques , Gene Expression Regulation, Neoplastic , Signal Transduction
14.
Int J Gynecol Cancer ; 34(6): 906-918, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38658022

ABSTRACT

OBJECTIVES: Circulating tumor DNA (ctDNA) is emerging as a potential prognostic biomarker in multiple tumor types. However, despite the many studies available on small series of patients with ovarian cancer, a recent systematic review and meta-analysis is lacking. The objective of this study was to determine the association of ctDNA with progression-free-survival and overall survival in patients with epithelial ovarian cancer. METHODS: An electronic search was conducted using PubMed (MEDLINE), Embase, CENTRAL (Cochrane Library), and CINAHL-Complete from January 2000 to September 15, 2023. To be included in the analysis the studies had to meet the following pre-specified inclusion criteria: (1) evaluable ctDNA; (2) progression-free-survival and overall survival reported as hazard ratio (HR); and (3) the patient population had epithelial ovarian cancer at the time of ctDNA detection. We evaluated the association of ctDNA with progression-free survival and overall survival. Secondary outcomes focused on sub-group analysis of genomic alterations and international Federation of Gynecology and Obstetrics (FIGO) stage. RESULTS: A total of 26 studies reporting on 1696 patients with epithelial ovarian cancer were included. The overall concordance rate between plasma-based and tissue-based analyses was approximately 62%. We found that a high level of ctDNA in epithelial ovarian cancer was associated with worse progression-free survival (HR 5.31, 95% CI 2.14 to 13.17, p<0.001) and overall survival (HR 2.98, 95% CI 1.86 to 4.76, p<0.0001). The sub-group analysis showed a greater than threefold increase in the risk of relapse in patients with positive HOXA9 meth-ctDNA (HR 3.84, 95% CI 1.57 to 9.41, p=0.003). CONCLUSIONS: ctDNA was significantly associated with worse progression-free survival and overall survival in patients with epithelial ovarian cancer. Further prospective studies are needed. PROSPERO REGISTRATION NUMBER: CRD42023469390.


Subject(s)
Biomarkers, Tumor , Carcinoma, Ovarian Epithelial , Circulating Tumor DNA , Ovarian Neoplasms , Progression-Free Survival , Humans , Female , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/blood , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Ovarian Neoplasms/blood , Ovarian Neoplasms/mortality , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics
15.
Oncogene ; 43(22): 1688-1700, 2024 May.
Article in English | MEDLINE | ID: mdl-38594503

ABSTRACT

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America. Current therapeutic regimens are ineffective against advanced EOC. A better understanding of the molecular mechanisms that regulate the biology of EOC will be a critical step toward developing more efficacious therapies against EOC. Herein, we demonstrate that elevated expression of transcription factor ZIC2 was associated with lower survival of EOC patients. Knockout of endogenous ZIC2 in EOC cells attenuated the tumorigenic phenotypes associated with both bulk and cancer stem cells in vitro and in vivo, indicating a pro-tumorigenic role of ZIC2 in EOC. On the other hand, however, overexpression of ZIC2 in EOC cells that do not express endogenous ZIC2 promoted cell migration and sphere formation, but inhibited cell growth and colony formation in vitro and tumor growth in vivo, indicating that the role for ZIC2 in EOC is context dependent. Our transcriptomic analysis showed that ZIC2-regulated genes were involved in multiple biological processes and signaling pathways associated with tumor progression. In conclusion, our findings reveal a context-dependent role for ZIC2 in regulating tumorigenic phenotypes in EOC, providing evidence that ZIC2 can be a potential therapeutic target for EOCs that express a high level of ZIC2.


Subject(s)
Carcinoma, Ovarian Epithelial , Neoplastic Stem Cells , Ovarian Neoplasms , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Animals , Cell Line, Tumor , Mice , Phenotype , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Proliferation/genetics , Cell Movement/genetics , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Nuclear Proteins
16.
J Ovarian Res ; 17(1): 83, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627856

ABSTRACT

Ovarian cancer, among all gynecologic malignancies, exhibits the highest incidence and mortality rate, primarily because it is often presents with non-specific or no symptoms during its early stages. For the advancement of Ovarian Cancer Diagnosis, it is crucial to identify the potential molecular signatures that could significantly differentiate between healthy and ovarian cancerous tissues and can be used further as a diagnostic biomarker for detecting ovarian cancer. In this study, we investigated the genome-wide methylation patterns in ovarian cancer patients using Methylated DNA Immunoprecipitation (MeDIP-Seq) followed by NGS. Identified differentially methylated regions (DMRs) were further validated by targeted bisulfite sequencing for CpG site-specific methylation profiles. Furthermore, expression validation of six genes by Quantitative Reverse Transcriptase-PCR was also performed. Out of total 120 differentially methylated genes (DMGs), 68 genes were hypermethylated, and 52 were hypomethylated in their promoter region. After analysis, we identified the top 6 hub genes, namely POLR3B, PLXND1, GIGYF2, STK4, BMP2 and CRKL. Interestingly we observed Non-CpG site methylation in the case of POLR3B and CRKL which was statistically significant in discriminating ovarian cancer samples from normal controls. The most significant pathways identified were focal adhesion, the MAPK signaling pathway, and the Ras signaling pathway. Expression analysis of hypermethylated genes was correlated with the downregulation of the genes. POLR3B and GIGYF2 turned out to be the novel genes associated with the carcinogenesis of EOC. Our study demonstrated that methylation profiling through MeDIP-sequencing has effectively identified six potential hub genes and pathways that might exacerbate our understanding of underlying molecular mechanisms of ovarian carcinogenesis.


Subject(s)
DNA Methylation , Ovarian Neoplasms , Humans , Female , DNA Methylation/genetics , Carcinoma, Ovarian Epithelial/genetics , CpG Islands , Ovarian Neoplasms/genetics , Carcinogenesis/genetics , RNA Polymerase III/genetics , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics
17.
Mol Biol Rep ; 51(1): 515, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622482

ABSTRACT

AIM: Epithelial ovarian cancer (EOC) is the most ominous tumor of gynecological cancers due to its poor early detection rate and unfavorable prognosis. To date, there is no reliable screening method for the diagnosis of ovarian cancer at an early stage. MiRNAs are small non-coding RNA molecules, and their main function is to regulate gene expression. The present study compared the serum miR-1181 and miR-4314 levels in patients with EOC and healthy controls to measure the diagnostic and prognostic value as candidate biomarkers. MATERIALS AND METHODS: We collected serum samples from a total of 135 participants (69 patients with EOC and 66 healthy controls). Relative expressions of miR-1181 and miR-4314 were measured by quantitative real-time polymerase chain reaction assay (qPCR). RESULTS: The present study revealed that both serum miR-1181 and miR-4314 levels in patients with EOC were significantly increased compared to healthy controls for each marker. In addition, there was a significant relationship between miR-1181 and miR-4314 overexpressions and the stage and prognosis of the disease. Finally, patients with high expression levels of miR-1181 and miR-4314 had significantly shorter survival rates than those with low expression levels. CONCLUSION: The current study proposed that serum miR-1181 and miR-4314 could discriminate the EOC patients from healthy controls. In addition, both miR-1181 and miR-4314 may be predictive biomarkers for ovarian cancer prognosis. Further studies are needed to confirm the findings of the present study.


Subject(s)
MicroRNAs , Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Biomarkers, Tumor/genetics , Real-Time Polymerase Chain Reaction , Gene Expression Regulation, Neoplastic/genetics , Neoplasms, Glandular and Epithelial/diagnosis , Neoplasms, Glandular and Epithelial/genetics
18.
Nat Commun ; 15(1): 2805, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555285

ABSTRACT

The multi-cohort phase 2 trial NCT02203513 was designed to evaluate the clinical activity of the CHK1 inhibitor (CHK1i) prexasertib in patients with breast or ovarian cancer. Here we report the activity of CHK1i in platinum-resistant high-grade serous ovarian carcinoma (HGSOC) with measurable and biopsiable disease (cohort 5), or without biopsiable disease (cohort 6). The primary endpoint was objective response rate (ORR). Secondary outcomes were safety and progression-free survival (PFS). 49 heavily pretreated patients were enrolled (24 in cohort 5, 25 in cohort 6). Among the 39 RECISTv1.1-evaluable patients, ORR was 33.3% in cohort 5 and 28.6% in cohort 6. Primary endpoint was not evaluable due to early stop of the trial. The median PFS was 4 months in cohort 5 and 6 months in cohort 6. Toxicity was manageable. Translational research was an exploratory endpoint. Potential biomarkers were investigated using pre-treatment fresh biopsies and serial blood samples. Transcriptomic analysis revealed high levels of DNA replication-related genes (POLA1, POLE, GINS3) associated with lack of clinical benefit [defined post-hoc as PFS < 6 months]. Subsequent preclinical experiments demonstrated significant cytotoxicity of POLA1 silencing in combination with CHK1i in platinum-resistant HGSOC cell line models. Therefore, POLA1 expression may be predictive for CHK1i resistance, and the concurrent POLA1 inhibition may improve the efficacy of CHK1i monotherapy in this hard-to-treat population, deserving further investigation.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Pyrazines , Female , Humans , BRCA1 Protein/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromosomal Proteins, Non-Histone
19.
Int J Gynecol Cancer ; 34(4): 627-630, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38453176

ABSTRACT

BACKGROUND: Low-grade serous and endometrioid ovarian cancers and adult-type granulosa cell tumors are rare ovarian malignancies that show high estrogen receptor positivity. Recurrences of these subtypes of ovarian cancer are often treated with conventional chemotherapy, although response rates are disappointing. PRIMARY OBJECTIVE: To determine the overall response rate of the combination therapy of abemaciclib and letrozole in patients with estrogen receptor-positive rare ovarian cancers. STUDY HYPOTHESIS: The combination therapy of abemaciclib and letrozole will provide a clinically meaningful therapeutic benefit, with an overall response rate of >25%. TRIAL DESIGN: This is a phase II, international, multicenter, open-label, single-arm study to evaluate the efficacy and safety of abemaciclib and letrozole in patients with advanced, recurrent, and/or metastatic estrogen receptor-positive, rare ovarian cancer. The study will follow a tandem two-stage design. MAJOR INCLUSION/EXCLUSION CRITERIA: Patients must have histologically confirmed low-grade serous/endometrioid ovarian cancer or adult-type granulosa cell tumor with estrogen receptor positivity on immunohistochemistry. Patients need to have recurrent and measurable disease according to Radiologic Evaluation Criteria in Solid Tumors (RECIST) version 1.1. A maximum of two prior lines of endocrine therapy are allowed, and patients cannot have previously received a cyclin-dependent kinase inhibitor. Patients with platinum-refractory disease are not allowed in any stage of the study. PRIMARY ENDPOINT: Investigator-assessed confirmed overall response rate, defined as the proportion of patients with a complete or partial response according to RECIST v1.1. SAMPLE SIZE: 40 to 100 patients will be included, depending on the results of the interim analysis. Patients will be included in Belgium, France and the Netherlands. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS: Patient recruitment will be completed by the end of 2025 and reporting of the final study results will be done by the end of 2027. TRIAL REGISTRATION NUMBER: NCT05872204.


Subject(s)
Benzimidazoles , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Adult , Female , Humans , Aminopyridines/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Letrozole/therapeutic use , Ovarian Neoplasms/pathology , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
20.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513918

ABSTRACT

Snail transcription factors play essential roles in embryonic development and participate in many physiological processes. However, these genes have been implicated in the development and progression of various types of cancer. In epithelial ovarian cancer, high expression of these transcription factors is usually associated with the acquisition of a more aggressive phenotype and thus, considered to be a poor prognostic factor. Numerous molecular signals create a complex network of signaling pathways regulating the expression and stability of Snails, which in turn control genes involved in vital cellular functions of ovarian cancer cells, such as invasion, survival, proliferation and chemoresistance.


Subject(s)
Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Snail Family Transcription Factors , Humans , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Signal Transduction , Cell Proliferation , Animals , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Drug Resistance, Neoplasm/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...