Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.888
Filter
1.
Sci Rep ; 14(1): 15023, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951593

ABSTRACT

Proline 4-hydroxylase 2 (P4HA2) is known for its hydroxylase activity, primarily involved in hydroxylating collagen precursors and promoting collagen cross-linking under physiological conditions. Although its overexpression influences a wide variety of malignant tumors' occurrence and development, its specific effects and mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. This study focused on investigating the expression patterns, carcinogenic functions, and underlying mechanisms of P4HA2 in OSCC cells. Various databases, including TCGA, TIMER, UALCAN, GEPIA, and K-M plotter, along with paraffin-embedded samples, were used to ascertain P4HA2 expression in cancer and its correlation with clinicopathological features. P4HA2 knockdown and overexpression cell models were developed to assess its oncogenic roles and mechanisms. The results indicated that P4HA2 was overexpressed in OSCC and inversely correlated with patient survival. Knockdown of P4HA2 suppressed invasion, migration, and proliferation of OSCC cells both in vitro and in vivo, whereas overexpression of P4HA2 had the opposite effects. Mechanistically, the phosphorylation levels of the PI3K/AKT pathway were reduced following P4HA2 silencing. The study reveals that P4HA2 acts as a promising biomarker for predicting prognosis in OSCC and significantly affects metastasis, invasion, and proliferation of OSCC cells through the regulation of the PI3K/AKT signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Mouth Neoplasms , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Procollagen-Proline Dioxygenase , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/genetics , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Animals , Mice , Female , Male , Neoplasm Metastasis , Middle Aged , Mice, Nude
2.
Sci Rep ; 14(1): 15007, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951654

ABSTRACT

Salivary gland squamous cell carcinomas (SG-SCCs) constitute a rare type of head and neck cancer which is linked to poor prognosis. Due to their low frequency, the molecular mechanisms responsible for their aggressiveness are poorly understood. In this work we studied the role of the phosphatase DUSP1, a negative regulator of MAPK activity, in controlling SG-SCC progression. We generated DUSP1 KO clones in A253 human cells. These clones showed a reduced ability to grow in 2D, self-renew in ECM matrices and to form tumors in immunodeficient mice. This was caused by an overactivation of the stress and apoptosis kinase JNK1/2 in DUSP1-/+ clones. Interestingly, RNAseq analysis revealed that the expression of SOX2, a well-known self-renewal gene was decreased at the mRNA and protein levels in DUSP1-/+ cells. Unexpectedly, CRISPR-KO of SOX2 did not recapitulate DUSP1-/+ phenotype, and SOX2-null cells had an enhanced ability to self-renew and to form tumors in mice. Gene expression analysis demonstrated that SOX2-null cells have a decreased squamous differentiation profile -losing TP63 expression- and an increased migratory phenotype, with an enhanced epithelial to mesenchymal transition signature. In summary, our data indicates that DUSP1 and SOX2 have opposite functions in SG-SCC, being DUSP1 necessary for tumor growth and SOX2 dispensable showing a tumor suppressor function. Our data suggest that the combined expression of SOX2 and DUSP1 could be a useful biomarker to predict progression in patients with SG-SCCs.


Subject(s)
Carcinoma, Squamous Cell , Disease Progression , Dual Specificity Phosphatase 1 , SOXB1 Transcription Factors , Salivary Gland Neoplasms , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Humans , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Mice , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
3.
PeerJ ; 12: e17444, 2024.
Article in English | MEDLINE | ID: mdl-38952985

ABSTRACT

Background: Cervical cancer remains a prevalent cancer among women, and reliance on surgical and radio-chemical therapies can irreversibly affect patients' life span and quality of life. Thus, early diagnosis and further exploration into the pathogenesis of cervical cancer are crucial. Mass spectrometry technology is widely applied in clinical practice and can be used to further investigate the protein alterations during the onset of cervical cancer. Methods: Employing labeled-free quantitative proteomics technology and bioinformatics tools, we analyzed and compared the differential protein expression profiles between normal cervical squamous cell tissues and cervical squamous cell cancer tissues. GEPIA is an online website for analyzing the RNA sequencing expression data of tumor and normal tissue data from the TCGA and the GTEx databases. This approach aided in identifying qualitative and quantitative changes in key proteins related to the progression of cervical cancer. Results: Compared to normal samples, a total of 562 differentially expressed proteins were identified in cervical cancer samples, including 340 up-regulated and 222 down-regulated proteins. Gene ontology functional annotation, and KEGG pathway, and enrichment analysis revealed that the differentially expressed proteins mainly participated in metabolic pathways, spliceosomes, regulation of the actin cytoskeleton, and focal adhesion signaling pathways. Specifically, desmoplakin (DSP), protein phosphatase 1, regulatory (inhibitor) subunit 13 like (PPP1R13L) and ANXA8 may be involved in cervical tumorigenesis by inhibiting apoptotic signal transmission. Moreover, we used GEPIA database to validate the expression of DSP, PPP1R13L and ANXA8 in human cancers and normal cervix. Conclusion: In this study, we identified 562 differentially expressed proteins, and there were three proteins expressed higher in the cervical cancer tissues. The functions and signaling pathways of these differentially expressed proteins lay a theoretical foundation for elucidating the molecular mechanisms of cervical cancer.


Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Proteomics , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Proteomics/methods , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Computational Biology/methods
4.
Skin Res Technol ; 30(7): e13774, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953214

ABSTRACT

OBJECTIVE: Observational studies have identified a dual effect of circulating inflammatory proteins and immune cells on cancer progression. However, the specific mechanisms of action have not been clarified in the exacerbation of cutaneous-origin tumors. Therefore, this study aims to investigate whether the causal relationship between circulating inflammatory factors and basal cell carcinoma (BCC), cutaneous malignant melanoma (SKCM), and cutaneous squamous cell carcinoma (cSCC) is regulated by immune cells. METHODS: This study employed the Two-Sample Mendelian Randomization (TSMR) approach to investigate the causal relationships between 91 circulating inflammatory factors and three prevalent types of skin cancer from a genetic perspective. Bayesian Weighted Mendelian Randomization (BWMR) was also used to validate correlation and reverse MR to assess inverse relationships. Subsequent sensitivity analyses were conducted to limit the impact of heterogeneity and pleiotropy. Finally, the two-step Mendelian Randomization (two-step MR) method was utilized to ascertain the mediating effects of specific immune cell traits in the causal pathways linking circulating inflammatory factors with BCC, SKCM, and cSCC. RESULTS: The Inverse Variance Weighted (IVW) method and the Bayesian Weighted Algorithm collectively identified nine inflammatory factors causally associated with BCC, SKCM, and cSCC. The results from Cochran's Q test, mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger intercept were not statistically significant (p < 0.05). Additionally, the proportions mediated by CD4+ CD8dim T cell %leukocyte, CD4-CD8-Natural Killer T %T cell, and CD20 on IgD-CD38-B cell for FIt3L, CCL4, and OSM were 9.26%, 8.96%, and 10.16%, respectively. CONCLUSION: Immune cell levels potentially play a role in the modulation process between circulating inflammatory proteins and cutaneous-origin exacerbated tumors. This finding offers a new perspective for the in-depth exploration of cutaneous malignancies.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Melanoma , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Melanoma/genetics , Melanoma/immunology , Melanoma/blood , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/immunology , Carcinoma, Basal Cell/blood , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Bayes Theorem , Melanoma, Cutaneous Malignant
5.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928307

ABSTRACT

In oral squamous cell carcinoma (OSCC) tissues, an immunotolerant situation triggered by immune checkpoints (ICPs) can be observed. Immune checkpoint inhibitors (ICIs) against the PD1/PD-L axis are used with impressive success. However, the response rate is low and the development of acquired resistance to ICI treatment can be observed. Therefore, new treatment strategies especially involving immunological combination therapies need to be developed. The novel negative immune checkpoint BTLA has been suggested as a potential biomarker and target for antibody-based immunotherapy. Moreover, improved response rates could be displayed for tumor patients when antibodies directed against BTLA were used in combination with anti-PD1/PD-L1 therapies. The aim of the study was to check whether the immune checkpoint BTLA is overexpressed in OSCC tissues compared to healthy oral mucosa (NOM) and could be a potential diagnostic biomarker and immunological target in OSCC. In addition, correlation analyses with the expression of other checkpoints should clarify more precisely whether combination therapies are potentially useful for the treatment of OSCC. A total of 207 tissue samples divided into 2 groups were included in the study. The test group comprised 102 tissue samples of OSCC. Oral mucosal tissue from 105 healthy volunteers (NOM) served as the control group. The expression of two isoforms of BTLA (BTLA-1/2), as well as PD1, PD-L1/2 and CD96 was analyzed by RT-qPCR. Additionally, BTLA and CD96 proteins were detected by IHC. Expression levels were compared between the two groups, the relative differences were calculated, and statistical relevance was determined. Furthermore, the expression rates of the immune checkpoints were correlated to each other. BTLA expression was significantly increased in OSCC compared to NOM (pBTLA_1 = 0.003; pBTLA_2 = 0.0001, pIHC = 0.003). The expression of PD1, its ligands PD-L1 and PD-L2, as well as CD96, were also significantly increased in OSCC (p ≤ 0.001). There was a strong positive correlation between BTLA expression and that of the other checkpoints (p < 0.001; ρ ≥ 0.5). BTLA is overexpressed in OSCC and appears to be a relevant local immune checkpoint in OSCC. Thus, antibodies directed against BTLA could be potential candidates for immunotherapies, especially in combination with ICI against the PD1/PD-L axis and CD96.


Subject(s)
Biomarkers, Tumor , Mouth Neoplasms , Receptors, Immunologic , Humans , Mouth Neoplasms/immunology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Male , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Female , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Aged , Adult , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/drug therapy , Immune Checkpoint Proteins/metabolism , Immune Checkpoint Proteins/genetics
6.
Crit Rev Eukaryot Gene Expr ; 34(6): 71-78, 2024.
Article in English | MEDLINE | ID: mdl-38912964

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a common malignancy of the gastrointestinal tract with a single therapeutic option and a lack of effective clinical therapeutic biomarkers. Extracellular matrix (ECM) remodeling plays a pro-carcinogenic role in a variety of malignancies, but its role in esophageal squamous carcinoma remains to be elucidated. In this study, we examined the expression levels of ECM remodeling markers in 71 pairs of esophageal squamous carcinoma tissues and normal tissues adjacent to the carcinoma using immunohistochemical staining, and analyzed their relationship with clinicopathological features and prognosis. The results suggested that extracellular matrix remodeling markers (integrin αV, fibronectin, MMP9) were abnormally highly expressed in esophageal squamous carcinoma tissues. There was a statistically significant difference between the positive expression of ECM remodeling and the TNM stage of esophageal squamous carcinoma, and there was no statistically significant correlation with age, gender and carcinoembryonic antigen expression, differentiation degree, T stage, and lymph node metastasis. Overall survival rate and overall survival time were significantly lower in patients with positive ECM remodeling expression, which was an independent risk factor for poor prognosisof esophageal squamous carcinoma.


Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Extracellular Matrix , Fibronectins , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Male , Female , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Extracellular Matrix/metabolism , Prognosis , Middle Aged , Fibronectins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Aged , Matrix Metalloproteinase 9/metabolism , Integrin alphaV/metabolism , Integrin alphaV/genetics , Neoplasm Staging , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , Adult
7.
Skin Res Technol ; 30(7): e13781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38932454

ABSTRACT

BACKGROUND: Reports suggest that lipid profiles may be linked to the likelihood of developing skin cancer, yet the exact causal relationship is still unknown. OBJECTIVE: This study aimed to examine the connection between lipidome and skin cancers, as well as investigate any possible mediators. METHODS: A two-sample Mendelian randomization (MR) analysis was conducted on 179 lipidomes and each skin cancer based on a genome-wide association study (GWAS), including melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Then, Bayesian weighted MR was performed to verify the analysis results of two-sample MR. Moreover, a two-step MR was employed to investigate the impact of TNF-like weak inducer of apoptosis (TWEAK)-mediated lipidome on skin cancer rates. RESULTS: MR analysis identified higher genetically predicted phosphatidylcholine (PC) (17:0_18:2) could reduce the risk of skin tumors, including BCC (OR = 0.9149, 95% CI: 0.8667-0.9658), SCC (OR = 0.9343, 95% CI: 0.9087-0.9606) and melanoma (OR = 0.9982, 95% CI: 0.9966-0.9997). The proportion of PC (17:0_18:2) predicted by TWEAK-mediated genetic prediction was 6.6 % in BCC and 7.6% in SCC. The causal relationship between PC (17:0_18:2) and melanoma was not mediated by TWEAK. CONCLUSION: This study identified a negative causal relationship between PC (17:0_18:2) and keratinocyte carcinomas, a small part of which was mediated by TWEAK, and most of the remaining mediating factors are still unclear. Further research on other risk factors is needed in the future.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Cytokine TWEAK , Keratinocytes , Lipidomics , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Cytokine TWEAK/genetics , Cytokine TWEAK/metabolism , Keratinocytes/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Genome-Wide Association Study , Melanoma/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease/genetics , Bayes Theorem
8.
Proc Natl Acad Sci U S A ; 121(26): e2320835121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900797

ABSTRACT

Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.


Subject(s)
Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Large Neutral Amino Acid-Transporter 1 , Methionine , Methionine/metabolism , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Cell Line, Tumor , Epigenesis, Genetic , Epigenomics/methods , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Mice , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Cell Proliferation , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cellular Reprogramming/genetics
9.
Arch Oral Biol ; 165: 106028, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908074

ABSTRACT

OBJECTIVE: This study was designed to investigate the biological role and the reaction mechanism of Tweety family member 3 (TTYH3) in oral squamous cell carcinoma (OSCC). DESIGN: The mRNA and protein expressions of TTYH3 were assessed with RT-qPCR and western blot. After silencing TTYH3 expression, the proliferation of OSCC cells were detected using cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining and colony formation assay. Cell migration and invasion were detected using wound healing and transwell. Gelatin zymography protease assay was used to detect matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-2 (MMP9) activity and western blot was used to detect the expressions of proteins associated with proliferation and epithelial-mesenchymal transition (EMT). The mRNA expression of TTYH3 in THP-1-derived macrophage was detected using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). The number of CD86-positive cells and CD206-positive cells was detected using immunofluorescence assay. RT-qPCR was used to detect the expressions of M2 markers arginase 1 (ARG1), chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1). RESULTS: In this study, it was found that TTYH3 expression was upregulated in OSCC cell lines and TTYH3 knockdown could inhibit the proliferation, migration, invasion and EMT process in OSCC via suppressing M2 polarization of tumor-associated macrophages. CONCLUSIONS: Collectively, TTYH3 facilitated the progression of OSCC through the regulation of tumor-associated macrophages polarization.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Mouth Neoplasms , Tumor-Associated Macrophages , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Tumor-Associated Macrophages/metabolism , Disease Progression , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Blotting, Western , Real-Time Polymerase Chain Reaction
11.
Front Biosci (Landmark Ed) ; 29(6): 220, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38940026

ABSTRACT

BACKGROUND: The incidence rate of oropharyngeal squamous cell carcinoma (OPSCC) worldwide is alarming. In the clinical community, there is a pressing necessity to comprehend the etiology of the OPSCC to facilitate the administration of effective treatments. METHODS: This study confers an integrative genomics approach for identifying key oncogenic drivers involved in the OPSCC pathogenesis. The dataset contains RNA-Sequencing (RNA-Seq) samples of 46 Human papillomavirus-positive head and neck squamous cell carcinoma and 25 normal Uvulopalatopharyngoplasty cases. The differential marker selection is performed between the groups with a log2FoldChange (FC) score of 2, adjusted p-value < 0.01, and screened 714 genes. The Particle Swarm Optimization (PSO) algorithm selects the candidate gene subset, reducing the size to 73. The state-of-the-art machine learning algorithms are trained with the differentially expressed genes and candidate subsets of PSO. RESULTS: The analysis of predictive models using Shapley Additive exPlanations revealed that seven genes significantly contribute to the model's performance. These include ECT2, LAMC2, and DSG2, which predominantly influence differentiating between sample groups. They were followed in importance by FAT1, PLOD2, COL1A1, and PLAU. The Random Forest and Bayes Net algorithms also achieved perfect validation scores when using PSO features. Furthermore, gene set enrichment analysis, protein-protein interactions, and disease ontology mining revealed a significant association between these genes and the target condition. As indicated by Shapley Additive exPlanations (SHAPs), the survival analysis of three key genes unveiled strong over-expression in the samples from "The Cancer Genome Atlas". CONCLUSIONS: Our findings elucidate critical oncogenic drivers in OPSCC, offering vital insights for developing targeted therapies and enhancing understanding its pathogenesis.


Subject(s)
Biomarkers, Tumor , Oropharyngeal Neoplasms , Humans , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/virology , Biomarkers, Tumor/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Artificial Intelligence , Gene Expression Regulation, Neoplastic , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/virology , Algorithms , Sequence Analysis, RNA/methods , Machine Learning , Papillomaviridae/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology
12.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920684

ABSTRACT

Exposure to inorganic arsenic (As) is recognized as a risk factor for non-melanoma skin cancer (NMSC). We followed up with 7000 adults for 6 years who were exposed to As. During follow-up, 2.2% of the males and 1.3% of the females developed basal cell carcinoma (BCC), while 0.4% of the male and 0.2% of the female participants developed squamous cell carcinoma (SCC). Using a panel of more than 400 cancer-related genes, we detected somatic mutations (SMs) in the first 32 NMSC samples (BCC = 26 and SCC = 6) by comparing paired (tissue-blood) samples from the same individual and then comparing them to the SM in healthy skin tissue from 16 participants. We identified (a) a list of NMSC-associated SMs, (b) SMs present in both NMSC and healthy skin, and (c) SMs found only in healthy skin. We also demonstrate that the presence of non-synonymous SMs in the top mutated genes (like PTCH1, NOTCH1, SYNE1, PKHD1 in BCC and TP53 in SCC) significantly affects the magnitude of differential expressions of major genes and gene pathways (basal cell carcinoma pathways, NOTCH signaling, IL-17 signaling, p53 signaling, Wnt signaling pathway). These findings may help select groups of patients for targeted therapy, like hedgehog signaling inhibitors, IL17 inhibitors, etc., in the future.


Subject(s)
Arsenic , Mutation , Skin Neoplasms , Transcriptome , Humans , Skin Neoplasms/genetics , Arsenic/toxicity , Female , Mutation/genetics , Male , Transcriptome/genetics , Transcriptome/drug effects , Middle Aged , Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/genetics , Adult , Gene Expression Profiling , Aged , Gene Expression Regulation, Neoplastic/drug effects
13.
Exp Dermatol ; 33(6): e15112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840385

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) ranks as the second most prevalent skin tumour (excluding melanoma). However, the molecular mechanisms driving cSCC progression remain elusive. This study aimed to investigate GBP1 expression in cSCC and elucidate its potential molecular mechanisms underlying cSCC development. GBP1 expression was assessed across public databases, cell lines and tissue samples. Various assays, including clone formation, CCK8 and EdU were employed to evaluate cell proliferation, while wound healing and transwell assays determined cell migration and invasion. Subcutaneous tumour assays were conducted to assess in vivo tumour proliferation, and molecular mechanisms were explored through western blotting, immunofluorescence and immunoprecipitation. Results identified GBP1 as an oncogene in cSCC, with elevated expression in both tumour tissues and cells, strongly correlating with tumour stage and grade. In vitro and in vivo investigations revealed that increased GBP1 expression significantly enhanced cSCC cell proliferation, migration and invasion. Mechanistically, GBP1 interaction with SP1 promoted STAT3 activation, contributing to malignant behaviours. In conclusion, the study highlights the crucial role of the GBP1/SP1/STAT3 signalling axis in regulating tumour progression in cSCC. These findings provide valuable insights into the molecular mechanisms of cSCC development and offer potential therapeutic targets for interventions against cSCC.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , GTP-Binding Proteins , Neoplasm Invasiveness , STAT3 Transcription Factor , Skin Neoplasms , Sp1 Transcription Factor , STAT3 Transcription Factor/metabolism , Humans , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Sp1 Transcription Factor/metabolism , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Cell Line, Tumor , Animals , Mice , Signal Transduction , Female , Mice, Nude
14.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 78-84, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836678

ABSTRACT

Macrophages in the tumor microenvironment can polarize into M1 or M2 forms, with M2 macrophages (M2φ) promoting tumor growth and metastasis in cervical squamous cell carcinoma (CESC). This study explored the effects of M2φ on CESC metabolic reprogramming both in vitro and in vivo. Results showed that M2φ secreted CXCL1, which significantly increased CESC migration and metabolic regulation. Further experiments revealed that CXCL1 upregulated KDM6B to enhance PFKFB2 transcriptional activity, thus regulating CESC glucose metabolism. Transcriptome sequencing screened 5 upregulated genes related to glycolysis, with PFKFB2 showing the most significant increase in cells treated with rCXCL1. Dual-luciferase reporter assay confirmed that rCXCL1 enhances PFKFB2 transcriptional activity. Bioinformatics analysis revealed a high correlation between expressions of KDM6B and PFKFB2 in CESC. Mechanistic experiments demonstrated that KDM6B inhibited H3K27me3 modification to activate PFKFB2 transcriptional expression. In conclusion, M2φ secreted CXCL1 to promote CESC cell migration and invasion, and CXCL1 activated KDM6B expression in CESC cells, inhibiting H3K27 protein methylation modification, and enhanced PFKFB2 transcriptional activity to regulate CESC glucose metabolism. These results provided new insights into the complex interplay between the immune system and cancer metabolism, which may have broader implications for understanding and treating other types of cancer.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Chemokine CXCL1 , Gene Expression Regulation, Neoplastic , Jumonji Domain-Containing Histone Demethylases , Macrophages , Phosphofructokinase-2 , Uterine Cervical Neoplasms , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Humans , Female , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Macrophages/metabolism , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Cell Movement/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Animals , Cell Line, Tumor , Mice , Tumor Microenvironment/genetics , Glucose/metabolism , Mice, Nude , Glycolysis/genetics , Metabolic Reprogramming
15.
Sci Rep ; 14(1): 13058, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844774

ABSTRACT

The incidence of vulvar carcinoma varies by race; however, it is a rare disease, and its genomic profiles remain largely unknown. This study examined the characteristics of vulvar squamous cell carcinoma (VSCC) in Japanese patients, focusing on genomic profiles and potential racial disparities. The study included two Japanese groups: the National Cancer Center Hospital (NCCH) group comprised 19 patients diagnosed between 2015 and 2023, and the Center for Cancer Genomics and Advanced Therapeutics group comprised 29 patients diagnosed between 2019 and 2022. Somatic mutations were identified by targeted or panel sequencing, and TP53 was identified as the most common mutation (52-81%), followed by HRAS (7-26%), CDKN2A (21-24%), and PIK3CA (5-10%). The mutation frequencies, except for TP53, were similar to those of Caucasian cohorts. In the NCCH group, 16 patients of HPV-independent tumors were identified by immunohistochemistry and genotyping. Univariate analysis revealed that TP53-mutated patients were associated with a poor prognosis (log-rank test, P = 0.089). Japanese VSCC mutations resembled those of Caucasian vulvar carcinomas, and TP53 mutations predicted prognosis regardless of ethnicity. The present findings suggest potential molecular-targeted therapies for select VSCC patients.


Subject(s)
Carcinoma, Squamous Cell , Mutation , Tumor Suppressor Protein p53 , Vulvar Neoplasms , Humans , Female , Vulvar Neoplasms/genetics , Vulvar Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Middle Aged , Aged , Tumor Suppressor Protein p53/genetics , Japan/epidemiology , Aged, 80 and over , Cyclin-Dependent Kinase Inhibitor p16/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Prognosis , Adult , Asian People/genetics , Genomics/methods , Proto-Oncogene Proteins p21(ras)/genetics , East Asian People
16.
Sci Rep ; 14(1): 13206, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851806

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is often associated with lung squamous cell carcinoma (LUSC), which has the same etiology (smoking, inflammation, oxidative stress, microenvironmental changes, and genetics). Smoking, inflammation, and airway remodeling are the most important and classical mechanisms of COPD comorbidity in LUSC patients. Cancer can occur during repeated airway damage and repair (airway remodeling). Changes in the inflammatory and immune microenvironments, which can cause malignant transformation of some cells, are currently being revealed in both LUSC and COPD patients. We obtained the GSE76925 dataset from the Gene Expression Omnibus database. Screening for possible COPD biomarkers was performed using the LASSO regression model and a random forest classifier. The compositional patterns of the immune cell fraction in COPD patients were determined using CIBERSORT. HTR2B expression was analyzed using validation datasets (GSE47460, GSE106986, and GSE1650). HTR2B expression in COPD cell models was determined via real-time quantitative PCR. Epithelial-mesenchymal transition (EMT) marker expression levels were determined after knocking down or overexpressing HTR2B. HTR2B function and mechanism in LUSC were analyzed with the Kaplan‒Meier plotter database. HTR2B expression was inhibited to detect changes in LUSC cell proliferation. A total of 1082 differentially expressed genes (DEGs) were identified in the GSE76925 dataset (371 genes were significantly upregulated, and 711 genes were significantly downregulated). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs were mainly enriched in the p53 signaling and ß-alanine metabolism pathways. Gene Ontology enrichment analysis indicated that the DEGs were largely related to transcription initiation from the RNA polymerase I promoter and to the regulation of mononuclear cell proliferation. The LASSO regression model and random forest classifier results revealed that HTR2B, DPYS, FRY, and CD19 were key COPD genes. Immune cell infiltration analysis indicated that these genes were closely associated with immune cells. Analysis of the validation sets suggested that HTR2B was upregulated in COPD patients. HTR2B was significantly upregulated in COPD cell models, and its upregulation was associated with increased EMT marker expression. Compared with that in bronchial epithelial cells, HTR2B expression was upregulated in LUSC cells, and inhibiting HTR2B expression led to the inhibition of LUSC cell proliferation. In conclusions, HTR2B might be a new biomarker and therapeutic target in COPD patients with LUSC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Epithelial-Mesenchymal Transition , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Epithelial-Mesenchymal Transition/genetics , Receptor, Serotonin, 5-HT2B/genetics , Receptor, Serotonin, 5-HT2B/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Cell Line, Tumor
17.
Sci Rep ; 14(1): 12732, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831004

ABSTRACT

Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.


Subject(s)
Lung Neoplasms , Mutation , Selection, Genetic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Mutation, Missense , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology
19.
Head Face Med ; 20(1): 37, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890650

ABSTRACT

BACKGROUND: The treatment of oral squamous cell carcinoma (OSCC) remains challenging and survival rates have not been improved significantly over the past decades. Integrins have been recognized driving the cancer progression and high expression levels cause poor outcomes in patients afflicted with OSCC. Integrin αvß6 and its subunit integrin beta 6 (ITGB6) were discovered to enhance the invasiveness by providing beneficial effects on downstream pathways promoting the cancer progression. The objective of this study was to establish a CRISPR/Cas9-mediated knock out of ITGB6 in the human OSCC cell line HN and investigate the effects on the migration and proliferation ability. METHODS: ITGB6 knock out was performed using the CRISPR/Cas9-system, RNPs, and lipofection. Monoclonal cell clones were achieved by limiting dilution and knock out verification was carried out by sanger sequencing and FACS on protein level. The effects of the knock out on the proliferation and migration ability were evaluated by using MTT and scratch assays. In addition, in silico TCGA analysis was utilized regarding the effects of ITGB6 on overall survival and perineural invasion. RESULTS: In silico analysis revealed a significant impact of ITGB6 mRNA expression levels on the overall survival of patients afflicted with OSCC. Additionally, a significantly higher rate of perineural invasion was discovered. CRISPR/Cas9-mediated knock out of ITGB6 was performed in the OSCC cell line HN, resulting in the generation of a monoclonal knock out clone. The knock out clone exhibited a significantly reduced migration and proliferation ability when compared to the wildtype. CONCLUSIONS: ITGB6 is a relevant factor in the progression of OSCC and can be used for the development of novel treatment strategies. The present study is the first to establish a monoclonal CRISPR/Cas9-mediated ITGB6 knockout cell clone derived from an OSCC cell line. It suggests that ITGB6 has a significant impact on the proliferative and migratory capacity in vitro.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Integrin beta Chains , Mouth Neoplasms , Humans , Cell Movement/genetics , Cell Proliferation/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Integrin beta Chains/genetics , Gene Knockout Techniques , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Neoplasm Invasiveness/genetics , Gene Expression Regulation, Neoplastic
20.
Zhongguo Fei Ai Za Zhi ; 27(5): 330-336, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38880920

ABSTRACT

BACKGROUND: Targeted therapies are ineffective in lung squamous cancer (LUSC), and the low response rate of immunotherapy hampers its application in LUSC, so it is urgent to explore new strategies for LUSC treatment. Ferroptosis plays an important role in tumour suppression. The aim of this study was to investigate the role and mechanism of targeting 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating ferroptosis in LUSC cells, in order to provide a new research direction for LUSC therapy. METHODS: The expression of HMGCS1 in LUSC was analysed by The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) online databases; the relationship between HMGCS1 and survival time of lung cancer was analysed by the Kaplan-Meier Plotter online survival database; the expression level of HMGCS1 in LUSC tissues was verified by immunohistochemistry. After interfering with HMGCS1 expression by small interfering RNA (siRNA), cell activity and cell migration ability were detected by CCK8 and Transwell assay; apoptosis was detected by flow cytometry after interfering with HMGCS1 or after treatment with the HMGCS1 inhibitor of hymeglusin; Fe2+, reactive oxygen species (ROS) and lipid peroxidation levels were detected by flow cytometry and high-content confocal fluorescence imaging systems, respectively in SKMES cells after inhibition of HMGCS1; and Western blot was performed to detect the expression of ACSL4, GPX4 and SLC7A11, which are markers of the ferroptosis pathway after inhibition of HMGCS1. RESULTS: HMGCS1 mRNA and protein levels were significantly high in LUSC; siRNA interference with HMGCS1 expression inhibited the proliferative activity and migration ability of LUSC cells, but had no significant effect on apoptosis. Interference with HMGCS1 or treatment with the HMGCS1 inhibitor of hymeglusin significantly promoted intracellular Fe2+, ROS and lipid peroxidation levels in SKMES cells, and induced ferroptosis in LUSC cells; Western blot assay showed that inhibition of HMGCS1 significantly promoted the expression of ACSL4. CONCLUSIONS: Inhibition of HMGCS1, a target of LUSC, promotes ferroptosis in lung cancer cells and provides a research basis for screening new therapeutic targets for LUSC.


Subject(s)
Ferroptosis , Lung Neoplasms , Ferroptosis/genetics , Ferroptosis/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Line, Tumor , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Reactive Oxygen Species/metabolism , Cell Movement/drug effects , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...