Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.282
Filter
1.
Pediatr Transplant ; 28(4): e14742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702926

ABSTRACT

BACKGROUND: As more pediatric patients become candidates for heart transplantation (HT), understanding pathological predictors of outcome and the accuracy of the pretransplantation evaluation are important to optimize utilization of scarce donor organs and improve outcomes. The authors aimed to investigate explanted heart specimens to identify pathologic predictors that may affect cardiac allograft survival after HT. METHODS: Explanted pediatric hearts obtained over an 11-year period were analyzed to understand the patient demographics, indications for transplant, and the clinical-pathological factors. RESULTS: In this study, 149 explanted hearts, 46% congenital heart defects (CHD), were studied. CHD patients were younger and mean pulmonary artery pressure and resistance were significantly lower than in cardiomyopathy patients. Twenty-one died or underwent retransplantation (14.1%). Survival was significantly higher in the cardiomyopathy group at all follow-up intervals. There were more deaths and the 1-, 5- and 7-year survival was lower in patients ≤10 years of age at HT. Early rejection was significantly higher in CHD patients exposed to homograft tissue, but not late rejection. Mortality/retransplantation rate was significantly higher and allograft survival lower in CHD hearts with excessive fibrosis of one or both ventricles. Anatomic diagnosis at pathologic examination differed from the clinical diagnosis in eight cases. CONCLUSIONS: Survival was better for the cardiomyopathy group and patients >10 years at HT. Prior homograft use was associated with a higher prevalence of early rejection. Ventricular fibrosis (of explant) was a strong predictor of outcome in the CHD group. We presented several pathologic findings in explanted pediatric hearts.


Subject(s)
Graft Rejection , Graft Survival , Heart Defects, Congenital , Heart Transplantation , Humans , Child , Male , Female , Child, Preschool , Infant , Adolescent , Heart Defects, Congenital/surgery , Heart Defects, Congenital/pathology , Graft Rejection/pathology , Graft Rejection/epidemiology , Retrospective Studies , Treatment Outcome , Follow-Up Studies , Cardiomyopathies/surgery , Cardiomyopathies/pathology , Reoperation , Infant, Newborn , Survival Analysis
2.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747296

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Subject(s)
Desmoglein 2 , Macrophages , Receptors, CCR2 , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Desmoglein 2/genetics , Desmoglein 2/metabolism , Desmoglein 2/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/immunology , Cardiomyopathies/metabolism
3.
Int J Med Sci ; 21(6): 983-993, 2024.
Article in English | MEDLINE | ID: mdl-38774750

ABSTRACT

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Subject(s)
Cardiomyopathies , Mice, Knockout , Mitochondria, Heart , Myocytes, Cardiac , Prohibitins , Pyruvate Kinase , Sepsis , Animals , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/etiology , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sepsis/metabolism , Sepsis/pathology , Sepsis/genetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Humans , Organelle Biogenesis , Lipopolysaccharides/toxicity , Male , Disease Models, Animal
4.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38770680

ABSTRACT

Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.


Subject(s)
Dystrophin , Mice, Inbred mdx , Mice, Knockout , Receptors, Glucocorticoid , Animals , Receptors, Glucocorticoid/metabolism , Dystrophin/metabolism , Dystrophin/genetics , Dystrophin/deficiency , Myocardium/pathology , Myocardium/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Mice , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Mice, Inbred C57BL , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Animal/metabolism , Phenotype , Systole/drug effects
5.
Sci Adv ; 10(19): eadh0798, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718107

ABSTRACT

Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.


Subject(s)
Cardiomyopathies , Lamin Type A , Myocytes, Cardiac , Nuclear Envelope , Animals , Lamin Type A/metabolism , Lamin Type A/genetics , Mice , Nuclear Envelope/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Cardiomyopathies/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Autophagy , Stress, Physiological , Disease Models, Animal , Endoplasmic Reticulum Stress , Golgi Apparatus/metabolism , Mice, Knockout
6.
Front Biosci (Landmark Ed) ; 29(5): 200, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38812311

ABSTRACT

AIMS: Changes in myocardial mitochondrial morphology and function in premature ventricular contractions (PVCs)-induced cardiomyopathy (PVCCM) remain poorly studied. Here, we investigated the effects of PVCs with different coupling intervals (CIs) on myocardial mitochondrial remodelling in a canine model of PVCCM. METHODS AND RESULTS: Twenty-one beagles underwent pacemaker implantation and were randomised into the sham (n = 7), short-coupled PVCs (SCP, n = 7), and long-coupled PVCs (LCP, n = 7) groups. Right ventricular (RV) apical bigeminy was produced for 12-week to induce PVCCM in the SCP (CI, 250 ms) and LCP (CI, 350 ms) groups. Echocardiography was performed at baseline and biweekly thereafter to evaluate cardiac function. Masson's trichrome staining measured ventricular interstitial fibrosis. The ultrastructural morphology of the myocardial mitochondria was analysed using transmission electron microscopy. Mitochondrial Ca2+ concentration, reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) content, membrane potential, and electron transport chain (ETC) complex activity were measured to assess myocardial mitochondrial function. Twelve-week-PVCs led to left ventricular (LV) enlargement with systolic dysfunction, disrupted mitochondrial morphology, increased mitochondrial Ca2+ concentration and ROS levels, decreased mitochondrial ATP content and membrane potential, and impaired ETC complex activity in both the SCP and LCP groups (all p < 0.01 vs the sham group). Ventricular fibrosis was observed only in canines with LCP. Worse cardiac function and more pronounced abnormalities in mitochondrial morphology and function were observed in the LCP group than to the SCP group (all p < 0.05). CONCLUSION: We demonstrated myocardial mitochondrial abnormalities in dogs with PVCCM, characterised by abnormal mitochondrial morphology, mitochondrial Ca2+ overload, oxidative stress, and impaired mitochondrial energy metabolism. Compared to SCP, long-term LCP exposure resulted in more severe mitochondrial remodelling and cardiac dysfunction in dogs.


Subject(s)
Calcium , Cardiomyopathies , Disease Models, Animal , Mitochondria, Heart , Reactive Oxygen Species , Ventricular Premature Complexes , Animals , Dogs , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mitochondria, Heart/pathology , Cardiomyopathies/physiopathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/etiology , Ventricular Premature Complexes/physiopathology , Ventricular Premature Complexes/metabolism , Reactive Oxygen Species/metabolism , Calcium/metabolism , Male , Adenosine Triphosphate/metabolism , Membrane Potential, Mitochondrial , Echocardiography
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701956

ABSTRACT

OBJECTIVE: This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS: Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS: Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.


Subject(s)
Cardiomyopathies , Electroacupuncture , Exosomes , Lipopolysaccharides , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Exosomes/genetics , Electroacupuncture/methods , Mice , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/therapy , Cardiomyopathies/pathology , Cardiomyopathies/genetics , Cardiomyopathies/prevention & control , Lipopolysaccharides/toxicity , Male , Mice, Inbred C57BL , Disease Models, Animal
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731929

ABSTRACT

Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt ß-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.


Subject(s)
Cardiomyopathies , Sepsis , Sepsis/complications , Sepsis/metabolism , Humans , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Animals , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitophagy , Energy Metabolism , Mitochondria/metabolism , Mitochondria/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis , Adenosine Triphosphate/metabolism
9.
Sci Rep ; 14(1): 7825, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570621

ABSTRACT

Diagnosing cardiac sarcoidosis (CS), especially in isolated cases, is challenging, particularly due to the limitations of endomyocardial biopsy, leading to potential undiagnosed cases in pacemaker-implanted patients. This study aims to provide real world findings to support new guideline for CS using 18F-fluoro-deoxyglucose positron-emission tomography computed tomography (FDG-PET/CT) which give a definite diagnosis of isolated CS (iCS) without histological findings. We examined consecutive patients with cardiac pacemakers for atrioventricular block (AV-b) attending our outpatient pacemaker clinic. The patients underwent periodical follow-up echocardiography and were divided into two groups according to echocardiographic findings: those with suspected CS and those without suspected CS. Patients suspected of having nonischemic cardiomyopathy underwent FDG-PET/CT for CS diagnosis. We investigated the utility of the new guideline for CS using FDG-PET/CT. Among the 272 patients enrolled, 97 patients were implanted with cardiac pacemakers for AV-b. Twenty-two patients were suspected of having CS during a median observation period of 5.4 years after pacemaker implantation. Of these, one did not consent, and nine of 21 cases (43%) were diagnosed with definite CS according to the new guidelines. Five of these nine patients were diagnosed with iCS using FDG-PET/CT. The number of patients diagnosed with definite CS using the new guidelines tended to be approximately 2.3 times that of the conventional criteria (p = 0.074). Three of the nine patients underwent steroid treatment. The composite outcome, comprising all-cause death, heart failure hospitalization, and a substantial reduction in left ventricular ejection fraction, were significantly lower in patients receiving steroid treatment compared to those without steroid treatment (p = 0.048). The utilization of FDG-PET/CT in accordance with the new guidelines facilitates the diagnosis of CS, including iCS, resulting in approximately 2.3 times as many diagnoses of CS compared to the conventional criteria. This guideline has the potential to support the early identification of iCS and may contribute to enhancing patient clinical outcomes.


Subject(s)
Atrioventricular Block , Cardiomyopathies , Myocarditis , Sarcoidosis , Humans , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Atrioventricular Block/diagnostic imaging , Atrioventricular Block/therapy , Stroke Volume , Radiopharmaceuticals , Positron-Emission Tomography/methods , Ventricular Function, Left , Cardiomyopathies/pathology , Sarcoidosis/diagnostic imaging , Sarcoidosis/pathology , Steroids , Retrospective Studies
10.
Circ Heart Fail ; 17(4): e011110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38567527

ABSTRACT

BACKGROUND: Mutations in LMNA encoding nuclear envelope proteins lamin A/C cause dilated cardiomyopathy. Activation of the AKT/mTOR (RAC-α serine/threonine-protein kinase/mammalian target of rapamycin) pathway is implicated as a potential pathophysiologic mechanism. The aim of this study was to assess whether pharmacological inhibition of mTOR signaling has beneficial effects on heart function and prolongs survival in a mouse model of the disease, after onset of heart failure. METHODS: We treated male LmnaH222P/H222P mice, after the onset of heart failure, with placebo or either of 2 orally bioavailable mTOR inhibitors: everolimus or NV-20494, a rapamycin analog highly selective against mTORC1. We examined left ventricular remodeling, and the cell biological, biochemical, and histopathologic features of cardiomyopathy, potential drug toxicity, and survival. RESULTS: Everolimus treatment (n=17) significantly reduced left ventricular dilatation and increased contractility on echocardiography, with a 7% (P=0.018) reduction in left ventricular end-diastolic diameter and a 39% (P=0.0159) increase fractional shortening compared with placebo (n=17) after 6 weeks of treatment. NV-20494 treatment (n=15) yielded similar but more modest and nonsignificant changes. Neither drug prevented the development of cardiac fibrosis. Drug treatment reactivated suppressed autophagy and inhibited mTORC1 signaling in the heart, although everolimus was more potent. With regards to drug toxicity, everolimus alone led to a modest degree of glucose intolerance during glucose challenge. Everolimus (n=20) and NV-20494 (n=20) significantly prolonged median survival in LmnaH222P/H222P mice, by 9% (P=0.0348) and 11% (P=0.0206), respectively, compared with placebo (n=20). CONCLUSIONS: These results suggest that mTOR inhibitors may be beneficial in patients with cardiomyopathy caused by LMNA mutations and that further study is warranted.


Subject(s)
Cardiomyopathies , Drug-Related Side Effects and Adverse Reactions , Heart Failure , Mice , Humans , Male , Animals , Everolimus/pharmacology , Everolimus/therapeutic use , Lamin Type A/genetics , Lamin Type A/metabolism , MTOR Inhibitors , Cardiomyopathies/drug therapy , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Mutation , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 1/genetics , Mammals/metabolism
11.
Biomed Pharmacother ; 174: 116534, 2024 May.
Article in English | MEDLINE | ID: mdl-38565062

ABSTRACT

The isoproterenol (ISO)-induced myocardial fibrosis is considered a reliable and repeatable experimental model characterized by a relatively low mortality rate. Although is well-known that ISO stimulates the ß1 adrenergic receptors at the myocardial level, a high degree of heterogeneity emerges around the doses and duration of the treatment generating unclear results. Therefore, we propose to gain insights into the progression of ISO-induced myocardial fibrosis, in order to critically analyze and optimize the experimental model. Male Wistar rats (12-14-week-old) were submitted to subcutaneous injection of ISO, in particular, two doses were selected: the commonly used dose of 5 mg/kg and a lower dose of 1 mg/kg, administered for 3 and 6 days. Biochemical and histological examinations were conducted either immediately after the last administration or after a recovering period of 7 or 14 days from the initial administration. Noteworthy, from our investigation emerged that even the lower dose of ISO was able to induce the maximal biochemical and histological alterations, suggesting that lower doses should be considered to control the progression of the damage more precisely and to identify a prodromic phase in which intervention with pharmacological or nutraceutical tools can be effectively attempted.


Subject(s)
Fibrosis , Isoproterenol , Myocardium , Rats, Wistar , Animals , Male , Myocardium/pathology , Myocardium/metabolism , Rats , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/prevention & control , Dose-Response Relationship, Drug , Disease Models, Animal
12.
Am J Physiol Heart Circ Physiol ; 326(6): H1424-H1445, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38639742

ABSTRACT

Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.


Subject(s)
Aging , Mice, Inbred C57BL , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Animals , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Aging/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Female , Phosphorylation , Male , Mice , Action Potentials , Serine/metabolism , Mutation , Ventricular Function, Left , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/genetics , Age Factors , Calcium Signaling , Myocardial Contraction , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Cardiomyopathies/genetics , Cardiomyopathies/pathology
13.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564291

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Subject(s)
Cardiomyopathies , Dystrophin , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins , Muscular Dystrophy, Duchenne , Proteolipids , Utrophin , Animals , Male , Mice , Calcium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mitochondria, Heart/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteolipids/metabolism , Proteolipids/genetics , Utrophin/genetics , Utrophin/metabolism
14.
Toxicol Lett ; 396: 81-93, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38670245

ABSTRACT

PURPOSE: Uremic cardiomyopathy (UCM) is the leading cause of chronic kidney disease (CKD) related mortality. Uremic toxins including indoxyl sulfate (IS) play important role during the progression of UCM. This study was to explore the underlying mechanism of IS related myocardial injury. METHODS: UCM rat model was established through five-sixths nephrectomy to evaluate its effects on blood pressure, cardiac impairment, and histological changes using echocardiography and histological analysis. Additionally, IS was administered to neonatal rat cardiomyocytes (NRCMs) and the human cardiomyocyte cell line AC16. DHE staining and peroxide-sensitive dye 2',7'-dichlorofluorescein diacetate (H2DCFDA) was conducted to assess the reactive oxygen species (ROS) production. Cardiomyocyte hypertrophy was estimated using wheat germ agglutinin (WGA) staining and immunofluorescence. Aryl hydrocarbon receptor (AhR) translocation was observed by immunofluorescence. The activation of AhR was evaluated by immunoblotting of cytochrome P450 1 s (CYP1s) and quantitative real-time PCR (RT-PCR) analysis of AHRR and PTGS2. Additionally, the pro-oxidative and pro-hypertrophic effects were evaluated using the AhR inhibitor CH-223191, the CYP1s inhibitor Alizarin and the ROS scavenger N-Acetylcysteine (NAC). RESULTS: UCM rat model was successfully established, and cardiac hypertrophy, accompanied by increased blood pressure, and myocardial fibrosis. Further research confirmed the activation of the AhR pathway in UCM rats including AhR translocation and downstream protein CYP1s expression, accompanied with increasing ROS production detected by DHE staining. In vitro experiment demonstrated a translocation of AhR triggered by IS, leading to significant increase of downstream gene expression. Subsequently study indicated a close relationship between the production of ROS and the activation of AhR/CYP1s, which was effectively blocked by applying AhR inhibitor, CYP1s inhibitor and siRNA against AhR. Moreover, the inhibition of AhR/CYP1s/ROS pathway collectively blocked the pro-hypertrophic effect of IS-mediated cardiomyopathy. CONCLUSION: This study provides evidence that the AhR/CYP1s pathway is activated in UCM rats, and this activation is correlated with the uremic toxin IS. In vitro studies indicate that IS can stimulate the AhR translocation in cardiomyocyte, triggering to the production of intracellular ROS via CYP1s. This process leads to prolonged oxidative stress stimulation and thus contributes to the progression of uremic toxin-mediated cardiomyopathy.


Subject(s)
Cardiomyopathies , Indican , Myocytes, Cardiac , Rats, Sprague-Dawley , Reactive Oxygen Species , Receptors, Aryl Hydrocarbon , Signal Transduction , Uremia , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Reactive Oxygen Species/metabolism , Uremia/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Indican/toxicity , Humans , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Rats , Male , Cell Line , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Oxidative Stress , Disease Models, Animal , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
15.
J Biol Chem ; 300(5): 107255, 2024 May.
Article in English | MEDLINE | ID: mdl-38579991

ABSTRACT

Myocardial failure is associated with adverse remodeling, including loss of cardiomyocytes, hypertrophy, and alterations in cell-cell contacts. Striatin-interacting phosphatase and kinase (STRIPAK) complexes and their mammalian STE20-like kinase 4 (Mst4) have been linked to development of different diseases. The role and targets of Mst4 in cardiomyocytes have not been investigated yet. Multitissue immunoblot experiments show highly enriched Mst4 expression in rodent hearts. Analyses of human biopsy samples from patients suffering from dilated cardiomyopathy revealed that Mst4 is upregulated (5- to 8-fold p < 0.001) compared with nonfailing controls. Increased abundance of Mst4 could also be detected in mouse models of cardiomyopathy. We confirmed that Mst4 interacts with STRIPAK components in neonatal rat ventricular cardiomyocytes, indicating that STRIPAK is present in the heart. Immunofluorescence stainings and molecular interaction studies revealed that Mst4 is localized to the intercalated disc and interacts with several intercalated disc proteins. Overexpression of Mst4 in cardiomyocytes results in hypertrophy compared with controls. In adult rat cardiomyocytes, Mst4 overexpression increases cellular and sarcomeric fractional shortening (p < 0.05), indicating enhanced contractility. Overexpression of Mst4 also inhibits apoptosis shown by reduction of cleaved caspase3 (-69%, p < 0.0001), caspase7 (-80%, p < 0.0001), and cleaved Parp1 (-27%, p < 0.001). To elucidate potential Mst4 targets, we performed phosphoproteomics analyses in neonatal rat cardiomyocytes after Mst4 overexpression and inhibition. The results revealed target candidates of Mst4 at the intercalated disc. We identified Mst4 as a novel cardiac kinase that is upregulated in cardiomyopathy-regulating cardiomyocyte growth and survival.


Subject(s)
Myocytes, Cardiac , Protein Serine-Threonine Kinases , Up-Regulation , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Rats , Mice , Cell Survival , Male , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Cell Proliferation , Apoptosis , Intracellular Signaling Peptides and Proteins
16.
Physiol Rep ; 12(8): e16020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658362

ABSTRACT

Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.


Subject(s)
Catechin , Leukocytes, Mononuclear , Mitochondria , Humans , Catechin/pharmacology , Catechin/administration & dosage , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Male , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/genetics , Adult , Female , Inflammation/metabolism , Inflammation/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/drug therapy , Desmin/metabolism , Desmin/genetics
18.
Echocardiography ; 41(3): e15777, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526991

ABSTRACT

INTRODUCTION: Cardiac sarcoidosis (CS) is commonly diagnosed based on clinical criteria and abnormalities in noninvasive imaging reported in patients with biopsy-proven extracardiac sarcoidosis. Electrocardiogram and two-dimensional echocardiography have a low sensitivity for CS detection. Cardiovascular magnetic resonance imaging (CMR) and positron emission tomography (PET) have limitations in terms of cost and availability. OBJECTIVES: This study aimed to assess the usefulness of left ventricular longitudinal strain, measured using two-dimensional speckle tracking echocardiography (STE), for the prediction of late gadolinium enhancement (LGE) presence in CMR in patients with biopsy-proven sarcoidosis. PATIENTS AND METHODS: A total of 119 patients with biopsy-proven extracardiac sarcoidosis were divided, according to the clinical criteria proposed by the 2014 Heart Rhythm Society expert consensus statement (HRS 2014), into two groups: 43 individuals with "probable cardiac sarcoidosis", CS(+) and 76 individuals without cardiac sarcoidosis, CS (-). Data from echocardiography, CMR, 12-lead ECG and 24 h Holter monitoring were analyzed. RESULTS: Left ventricular global longitudinal strain (LV-GLS) was slightly reduced in the entire sarcoidosis group (-18.61± 2.96), no difference between the CS (+) and CS (-) subgroups was found (-18.0% ± 3.2% and -18.9% ± 2.8%, respectively; p = .223). No cut-off value for LV-GLS was identified that could predict the presence of LGE. Segmental longitudinal strain impairment partially correlated with the presence of LGE on CMR. CONCLUSIONS: In our cohort of sarcoidosis patients, segmental longitudinal strain proved more helpful in the diagnostic process than LV-GLS. The ultimate role of STE in the diagnosis of CS remains to be established.


Subject(s)
Cardiomyopathies , Myocarditis , Sarcoidosis , Humans , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Contrast Media , Gadolinium , Echocardiography/methods , Sarcoidosis/diagnosis , Sarcoidosis/diagnostic imaging , Biopsy , Magnetic Resonance Imaging, Cine/methods
19.
Front Endocrinol (Lausanne) ; 15: 1335899, 2024.
Article in English | MEDLINE | ID: mdl-38510696

ABSTRACT

Objective: This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods: T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results: The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion: In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.


Subject(s)
Cardiomyopathies , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/pathology , Myocardium/pathology , Heart , Cardiomyopathies/pathology , Fibrosis , Magnetic Resonance Spectroscopy
20.
Sci Rep ; 14(1): 6581, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503845

ABSTRACT

The potential association between endurance exercise and myocardial fibrosis is controversial. Data on exercise exposure and diffuse myocardial fibrosis in endurance athletes are scarce and conflicting. We aimed to investigate the association between exercise exposure and markers of diffuse myocardial fibrosis by cardiovascular magnetic resonance imaging (CMR) in endurance athletes. We examined 27 healthy adult male competitive endurance athletes aged 41 ± 9 years and 16 healthy controls in a cross sectional study using 3 Tesla CMR including late gadolinium enhancement and T1 mapping. Athletes reported detailed exercise history from 12 years of age. Left ventricular total mass, cellular mass and extracellular mass were higher in athletes than controls (86 vs. 58 g/m2, 67 vs. 44 g/m2 and 19 vs. 13 g/m2, all p < 0.01). Extracellular volume (ECV) was lower (21.5% vs. 23.8%, p = 0.03) and native T1 time was shorter (1214 ms vs. 1268 ms, p < 0.01) in the athletes. Increasing exercise dose was independently associated with shorter native T1 time (regression coefficient - 24.1, p < 0.05), but expressed no association with ECV. Our results indicate that diffuse myocardial fibrosis has a low prevalence in healthy male endurance athletes and do not indicate an adverse dose-response relationship between exercise and diffuse myocardial fibrosis in healthy athletes.


Subject(s)
Cardiomyopathies , Contrast Media , Adult , Humans , Male , Child , Cross-Sectional Studies , Gadolinium , Myocardium/pathology , Cardiomyopathies/pathology , Fibrosis , Athletes , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Ventricular Function, Left , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...