Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.145
Filter
3.
N Engl J Med ; 390(20): 1849-1861, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38739079

ABSTRACT

BACKGROUND: One of the major determinants of exercise intolerance and limiting symptoms among patients with obstructive hypertrophic cardiomyopathy (HCM) is an elevated intracardiac pressure resulting from left ventricular outflow tract obstruction. Aficamten is an oral selective cardiac myosin inhibitor that reduces left ventricular outflow tract gradients by mitigating cardiac hypercontractility. METHODS: In this phase 3, double-blind trial, we randomly assigned adults with symptomatic obstructive HCM to receive aficamten (starting dose, 5 mg; maximum dose, 20 mg) or placebo for 24 weeks, with dose adjustment based on echocardiography results. The primary end point was the change from baseline to week 24 in the peak oxygen uptake as assessed by cardiopulmonary exercise testing. The 10 prespecified secondary end points (tested hierarchically) were change in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS), improvement in the New York Heart Association (NYHA) functional class, change in the pressure gradient after the Valsalva maneuver, occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver, and duration of eligibility for septal reduction therapy (all assessed at week 24); change in the KCCQ-CSS, improvement in the NYHA functional class, change in the pressure gradient after the Valsalva maneuver, and occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver (all assessed at week 12); and change in the total workload as assessed by cardiopulmonary exercise testing at week 24. RESULTS: A total of 282 patients underwent randomization: 142 to the aficamten group and 140 to the placebo group. The mean age was 59.1 years, 59.2% were men, the baseline mean resting left ventricular outflow tract gradient was 55.1 mm Hg, and the baseline mean left ventricular ejection fraction was 74.8%. At 24 weeks, the mean change in the peak oxygen uptake was 1.8 ml per kilogram per minute (95% confidence interval [CI], 1.2 to 2.3) in the aficamten group and 0.0 ml per kilogram per minute (95% CI, -0.5 to 0.5) in the placebo group (least-squares mean between-group difference, 1.7 ml per kilogram per minute; 95% CI, 1.0 to 2.4; P<0.001). The results for all 10 secondary end points were significantly improved with aficamten as compared with placebo. The incidence of adverse events appeared to be similar in the two groups. CONCLUSIONS: Among patients with symptomatic obstructive HCM, treatment with aficamten resulted in a significantly greater improvement in peak oxygen uptake than placebo. (Funded by Cytokinetics; SEQUOIA-HCM ClinicalTrials.gov number, NCT05186818.).


Subject(s)
Cardiomyopathy, Hypertrophic , Exercise Test , Humans , Double-Blind Method , Male , Middle Aged , Female , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/physiopathology , Aged , Oxygen Consumption/drug effects , Ventricular Outflow Obstruction/drug therapy , Ventricular Outflow Obstruction/physiopathology , Ventricular Outflow Obstruction/etiology , Adult , Cardiac Myosins/antagonists & inhibitors , Exercise Tolerance/drug effects , Valsalva Maneuver , Benzylamines , Uracil/analogs & derivatives
4.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690729

ABSTRACT

The myosin inhibitor mavacamten has transformed the management of obstructive hypertrophic cardiomyopathy (HCM) by targeting myosin ATPase activity to mitigate cardiac hypercontractility. This therapeutic mechanism has proven effective for patients with HCM independent of having a primary gene mutation in myosin. In this issue of the JCI, Buvoli et al. report that muscle hypercontractility is a mechanism of pathogenesis underlying muscle dysfunction in Laing distal myopathy, a disorder characterized by mutations altering the rod domain of ß myosin heavy chain. The authors performed detailed physiological, molecular, and biomechanical analyses and demonstrated that myosin ATPase inhibition can correct a large extent of muscle abnormalities. The findings offer a therapeutic avenue for Laing distal myopathy and potentially other myopathies. This Commentary underscores the importance of reevaluating myosin activity's role across myopathies in general for the potential development of targeted myosin inhibitors to treat skeletal muscle disorders.


Subject(s)
Benzylamines , Muscle, Skeletal , Uracil/analogs & derivatives , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/genetics , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Distal Myopathies/genetics , Distal Myopathies/drug therapy , Distal Myopathies/metabolism , Distal Myopathies/pathology , Animals , Mutation , Myosins/metabolism , Myosins/genetics
5.
J Phys Chem B ; 128(19): 4716-4727, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38708944

ABSTRACT

Hypertrophic cardiomyopathy is one of the most common forms of genetic cardiomyopathy. Mavacamten is a first-in-class myosin modulator that was identified via activity screening on the wild type, and it is FDA-approved for the treatment of obstructive hypertrophic cardiomyopathy (HCM). The drug selectively binds to the cardiac ß-myosin, inhibiting myosin function to decrease cardiac contractility. Though the drug is thought to affect multiple steps of the myosin cross-bridge cycle, its detailed mechanism of action is still under investigation. Individual steps in the overall cross-bridge cycle must be queried to elucidate the full mechanism of action. In this study, we utilize the rare-event method of transition path sampling to generate reactive trajectories to gain insights into the action of the drug on the dynamics and rate of the ATP hydrolysis step for human cardiac ß-myosin. We study three known HCM causative myosin mutations: R453C, P710R, and R712L to observe the effect of the drug on the alterations caused by these mutations in the chemical step. Since the crystal structure of the drug-bound myosin was not available at the time of this work, we created a model of the drug-bound system utilizing a molecular docking approach. We find a significant effect of the drug in one case, where the actual mechanism of the reaction is altered from the wild type by mutation. The drug restores both the rate of hydrolysis to the wildtype level and the mechanism of the reaction. This is a way to check the effect of the drug on untested mutations.


Subject(s)
Adenosine Triphosphate , Cardiomyopathy, Hypertrophic , Mutation , Humans , Hydrolysis , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/drug therapy , Biocatalysis , Molecular Dynamics Simulation , Myosins/chemistry , Myosins/metabolism , Myosins/genetics , Benzylamines , Uracil/analogs & derivatives
6.
Sci Rep ; 14(1): 12038, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802475

ABSTRACT

Hypertrophic cardiomyopathy (HCM) remains the most common cardiomyopathy in humans and cats with few preclinical pharmacologic interventional studies. Small-molecule sarcomere inhibitors are promising novel therapeutics for the management of obstructive HCM (oHCM) patients and have shown efficacy in left ventricular outflow tract obstruction (LVOTO) relief. The objective of this study was to explore the 6-, 24-, and 48-hour (h) pharmacodynamic effects of the cardiac myosin inhibitor, CK-586, in six purpose-bred cats with naturally occurring oHCM. A blinded, randomized, five-treatment group, crossover preclinical trial was conducted to assess the pharmacodynamic effects of CK-586 in this oHCM model. Dose assessments and select echocardiographic variables were assessed five times over a 48-h period. Treatment with oral CK-586 safely ameliorated LVOTO in oHCM cats. CK-586 treatment dose-dependently eliminated obstruction (reduced LVOTOmaxPG), increased measures of systolic chamber size (LVIDs Sx), and decreased select measures of heart function (LV FS% and LV EF%) in the absence of impact on heart rate. At all tested doses, a single oral CK-586 dose resulted in improved or resolved LVOTO with well-tolerated, dose-dependent, reductions in LV systolic function. The results from this study pave the way for the potential use of CK-586 in both the veterinary and human clinical setting.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Animals , Cats , Cardiomyopathy, Hypertrophic/drug therapy , Cardiac Myosins/metabolism , Cat Diseases/drug therapy , Male , Female , Ventricular Outflow Obstruction/drug therapy , Systole/drug effects , Echocardiography , Cross-Over Studies
7.
J Cardiovasc Med (Hagerstown) ; 25(7): 491-498, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38814051

ABSTRACT

AIMS: We aimed to comprehensively assess the safety and efficacy of mavacamten in hypertrophic cardiomyopathy (HCM) patients. METHODS: A systematic review and meta-analysis was conducted, and efficacy [changes in postexercise left ventricular outflow tract (LVOT) gradient, left ventricular ejection fraction (LVEF), peak oxygen consumption (pVO 2 ), Kansas City Cardiomyopathy Questionnaire Clinical Summary Score (KCCQ CSS), and the proportion of patients exhibiting an improvement of at least one New York Heart Association (NYHA) functional class from baseline)], safety (total count of treatment-emergent adverse events and SAEs, as well as the proportion of patients experiencing at least one adverse event or SAE), and cardiac biomarkers (NT-proBNP and cTnI) outcomes were evaluated. RESULTS: We incorporated data from four randomized controlled trials, namely EXPLORER-HCM, VALOR-HCM, MAVERICK-HCM, and EXPLORER-CN. Mavacamten demonstrated significant efficacy in reducing the postexercise LVOT gradient by 49.44 mmHg ( P  = 0.0001) and LVEF by 3.84 ( P  < 0.0001) and improving pVO 2 by 0.69 ml/kg/min ( P  = 0.4547), KCCQ CSS by 8.11 points ( P  < 0.0001), and patients with at least one NYHA functional class improvement from baseline by 2.20 times ( P  < 0.0001). Importantly, mavacamten increased 1.11-fold adverse events ( P  = 0.0184) 4.24-fold reduced LVEF to less than 50% ( P  = 0.0233) and 1.06-fold SAEs ( P  = 0.8631). Additionally, mavacamten decreased NT-proBNP by 528.62 ng/l ( P  < 0.0001) and cTnI by 8.28 ng/l ( P  < 0.0001). CONCLUSION: Mavacamten demonstrates both safety and efficacy in patients with HCM, suggesting its potential as a promising therapeutic strategy for this condition. Further research is warranted to confirm these results and explore its long-term effects.


Subject(s)
Cardiomyopathy, Hypertrophic , Randomized Controlled Trials as Topic , Ventricular Function, Left , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/physiopathology , Treatment Outcome , Ventricular Function, Left/drug effects , Stroke Volume/drug effects , Middle Aged , Male , Female , Natriuretic Peptide, Brain/blood , Pyrimidines/adverse effects , Pyrimidines/therapeutic use , Exercise Tolerance/drug effects , Biomarkers/blood , Adult , Recovery of Function , Oxygen Consumption/drug effects , Aged , Benzylamines , Uracil/analogs & derivatives
8.
J Am Coll Cardiol ; 83(21): 2037-2048, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38599256

ABSTRACT

BACKGROUND: In nonobstructive hypertrophic cardiomyopathy (nHCM), there are no approved medical therapies. Impaired myocardial energetics is a potential cause of symptoms and exercise limitation. Ninerafaxstat, a novel cardiac mitotrope, enhances cardiac energetics. OBJECTIVES: This study sought to evaluate the safety and efficacy of ninerafaxstat in nHCM. METHODS: Patients with hypertrophic cardiomyopathy and left ventricular outflow tract gradient <30 mm Hg, ejection fraction ≥50%, and peak oxygen consumption <80% predicted were randomized to ninerafaxstat 200 mg twice daily or placebo (1:1) for 12 weeks. The primary endpoint was safety and tolerability, with efficacy outcomes also assessed as secondary endpoints. RESULTS: A total of 67 patients with nHCM were enrolled at 12 centers (57 ± 11.8 years of age; 55% women). Serious adverse events occurred in 11.8% (n = 4 of 34) in the ninerafaxstat group and 6.1% (n = 2 of 33) of patients in the placebo group. From baseline to 12 weeks, ninerafaxstat was associated with significantly better VE/Vco2 (ventilatory efficiency) slope compared with placebo with a least-squares (LS) mean difference between the groups of -2.1 (95% CI: -3.6 to -0.6; P = 0.006), with no significant difference in peak VO2 (P = 0.90). The Kansas City Cardiomyopathy Questionnaire Clinical Summary Score was directionally, though not significantly, improved with ninerafaxstat vs placebo (LS mean 3.2; 95% CI: -2.9 to 9.2; P = 0.30); however, it was statistically significant when analyzed post hoc in the 35 patients with baseline Kansas City Cardiomyopathy Questionnaire Clinical Summary Score ≤80 (LS mean 9.4; 95% CI: 0.3-18.5; P = 0.04). CONCLUSIONS: In symptomatic nHCM, novel drug therapy targeting myocardial energetics was safe and well tolerated and associated with better exercise performance and health status among those most symptomatically limited. The findings support assessing ninerafaxstat in a phase 3 study.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Female , Male , Middle Aged , Double-Blind Method , Treatment Outcome , Aged , Oxygen Consumption/drug effects
9.
J Am Heart Assoc ; 13(8): e030607, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38591260

ABSTRACT

BACKGROUND: The phase 2 PIONEER-HCM (Phase 2 Open-label Pilot Study Evaluating Mavacamten in Subjects With Symptomatic Hypertrophic Cardiomyopathy and Left Ventricular Outflow Tract Obstruction) study showed that mavacamten improved left ventricular outflow tract gradients, exercise capacity, and symptoms in patients with obstructive hypertrophic cardiomyopathy (HCM), but the results of longer-term treatment are less well described. We report interim results from the PIONEER-OLE (PIONEER Open-Label Extension) study, the longest-term study of mavacamten in patients with symptomatic obstructive HCM. METHODS AND RESULTS: Patients who previously completed PIONEER-HCM (n=20) were eligible to enroll in PIONEER-OLE. Patients received oral mavacamten, 5 mg once daily (starting dose), with individualized dose titration at week 6. Evaluations included serial monitoring of safety, echocardiography, Kansas City Cardiomyopathy Questionnaire-Overall Summary Score, and serum NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels. Thirteen patients enrolled and received mavacamten (median study duration at data cutoff, 201 weeks). Most patients (92.3%) received ß-blockers concomitantly. Treatment-emergent adverse events were predominantly mild/moderate. One patient had an isolated reduction in left ventricular ejection fraction to 47%, which recovered and remained normal with continued treatment at a reduced dose. At week 180, mavacamten was associated with New York Heart Association class improvements from baseline (class II to I, n=9; class III to II, n=1; and unchanged, n=2), sustained reductions in left ventricular outflow tract gradients (mean [SD] change from baseline: resting, -50 [55] mm Hg; Valsalva, -70 [41] mm Hg), and serum NT-proBNP levels (median [interquartile range] change from baseline: -498 [-2184 to -76] ng/L), and improved Kansas City Cardiomyopathy Questionnaire-Overall Summary Score (mean [SD] change from baseline: +17 [16]). CONCLUSIONS: This long-term analysis supports the continued safety and effectiveness of mavacamten for >3 years in obstructive HCM. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03496168.


Subject(s)
Benzylamines , Cardiomyopathy, Hypertrophic , Uracil , Ventricular Function, Left , Humans , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/complications , Pilot Projects , Stroke Volume , Uracil/analogs & derivatives
10.
PLoS One ; 19(4): e0301704, 2024.
Article in English | MEDLINE | ID: mdl-38635724

ABSTRACT

BACKGROUND: Hypertrophic Cardiomyopathy (HCM) is a complex cardiac condition characterized by hypercontractility of cardiac muscle leading to a dynamic obstruction of left ventricular outlet tract (LVOT). Mavacamten, a first-in-class cardiac myosin inhibitor, is increasingly being studied in randomized controlled trials. In this meta-analysis, we aimed to analyse the efficacy and safety profile of Mavacamten compared to placebo in patients of HCM. METHOD: We carried out a comprehensive search in PubMed, Cochrane, and clinicaltrials.gov to analyze the efficacy and safety of mavacamten compared to placebo from 2010 to 2023. To calculate pooled odds ratio (OR) or risk ratio (RR) at 95% confidence interval (CI), the Mantel-Haenszel formula with random effect was used and Generic Inverse Variance method assessed pooled mean difference value at a 95% CI. RevMan was used for analysis. P<0.05 was considered significant. RESULTS: We analyzed five phase 3 RCTs including 609 patients to compare mavacamten with a placebo. New York Heart Association (NYHA) grade improvement and KCCQ score showed the odds ratio as 4.94 and 7.93 with p<0.00001 at random effect, respectively. Cardiac imaging which included LAVI, LVOT at rest, LVOT post valsalva, LVOT post-exercise, and reduction in LVEF showed the pooled mean differences for change as -5.29, -49.72, -57.45, -36.11, and -3.00 respectively. Changes in LVEDV and LVMI were not statistically significant. The pooled mean difference for change in NT-proBNP and Cardiac troponin-I showed 0.20 and 0.57 with p<0.00001. The efficacy was evaluated in 1) A composite score, which was defined as either 1·5 mL/kg per min or greater increase in peak oxygen consumption (pVO2) and at least one NYHA class reduction, or a 3·0 mL/kg per min or greater pVO2 increase without NYHA class worsening and 2) changes in pVO2, which was not statistically significant. Similarly, any treatment-associated emergent adverse effects (TEAE), treatment-associated serious adverse effects (TSAE), and cardiac-related adverse effects were not statistically significant. CONCLUSION: Mavacamten influences diverse facets of HCM comprehensively. Notably, our study delved into the drug's impact on the heart's structural and functional aspects, providing insights that complement prior findings. Further large-scale trials are needed to evaluate the safety profile of Mavacamten.


Subject(s)
Cardiomyopathy, Hypertrophic , Uracil/analogs & derivatives , Humans , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/drug therapy , Heart , Benzylamines , Biomarkers
12.
Cell Rep Med ; 5(5): 101520, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38642550

ABSTRACT

Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 (V606M; R453C), MYBPC3 (G148R) or digenic variants (MYBPC3 P955fs, TNNI3 A157V). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myosin Heavy Chains , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/pathology , Cardiomyopathy, Hypertrophic/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Child , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Genotype , Myosins/metabolism , Myosins/genetics , Male , Female , Sarcomeres/metabolism , Sarcomeres/genetics
15.
Clin Ther ; 46(4): 368-373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508915

ABSTRACT

PURPOSE: Hypertrophic cardiomyopathy (HCM) is an under-recognized genetic cardiac disorder affecting the muscles and contractility of the heart, which in turn can result in heart failure symptoms, arrhythmia, and sudden cardiac death. Previously, pharmacotherapy options for HCM were not disease-specific, often poorly tolerated, and overall inadequate for optimal management. This narrative review discusses the pharmacology of the novel drug mavacamten, the clinical trials supporting its use, and considerations for its use in clinical practice. METHODS: PubMed and ClinicalTrials.gov were searched for the key words mavacamten and Camzyos to identify currently active clinical trials and clinical trials published between January 2015 and March 2023. Data from EXPLORER-HCM were included, as EXPLORER-HCM led to approval by the US Food and Drug Administration of the use of mavacamten, along with data from VALOR-HCM, which provided additional evidence for use. Publications that were not randomized, controlled trials were not included in this review. FINDINGS: The findings from this review suggest that mavacamten is an effective treatment for patients with persistently symptomatic obstructive HCM and may decrease the need for septal reduction therapy. Mavacamten use was associated with improved exercise capacity, left ventricular outflow tract obstruction, and New York Heart Association functional class, and with a decreased frequency of septal reduction therapy. IMPLICATIONS: HCM is associated with significant morbidity and mortality, independent of other disease states. Mavacamten is a novel treatment option for patients with HCM and offers an additional option for patients with persistent symptoms who previously had limited treatment options. The use of mavacamten in patients with obstructive HCM may improve exercise capacity, and decrease symptoms and the need for septal reduction therapy. There is potential for mavacamten to be indicated for use in patients with nonobstructive HCM in the future, pending findings from Phase III trials in this population.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/physiopathology , Treatment Outcome , Clinical Trials as Topic , Benzylamines , Uracil/analogs & derivatives
16.
Can J Cardiol ; 40(5): 789-799, 2024 May.
Article in English | MEDLINE | ID: mdl-38432396

ABSTRACT

The term "RASopathies" designates a group of developmental syndromes that are caused by activating variants of the rat sarcoma virus protein (RAS)/mitogen-activated protein kinase (MAPK) cascade. The most prevalent clinical diagnosis is Noonan syndrome, and other, less prevalent conditions include Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, and others. Hypertrophic cardiomyopathy occurs in 10% of these patients and can be severe and life-threating. Recently, repurposing of medications inhibiting the RAS/MAPK on a compassionate use basis has emerged as a promising concept to improve the outcome of these patients. Herein, we specifically review the role of the RAS/MAPK pathway in RASopathy-associated cardiomyopathy, and discuss the role of small-molecule inhibition in the treatment of this condition. We describe how drug repurposing of trametinib (mitogen-activated protein/extracellular signal-regulated kinase inhibition) and sirolimus/everolimus (mammalian target of rapamycin inhibition) was performed, how genotype-specific therapies are chosen and followed, as well as initial outcomes from early case series. Finally, we lay out the challenges and opportunities for trials that aim to quantify the benefits of this approach.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/diagnosis , Pyrimidinones/therapeutic use , Pyrimidinones/pharmacology , Pyridones/therapeutic use , Pyridones/pharmacology , Drug Repositioning , Noonan Syndrome/drug therapy , Noonan Syndrome/genetics , Everolimus/therapeutic use , Everolimus/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Sirolimus/pharmacology , Sirolimus/therapeutic use , ras Proteins/genetics , ras Proteins/metabolism , Costello Syndrome/genetics , Costello Syndrome/diagnosis
18.
Rev Med Liege ; 79(2): 120-128, 2024 Feb.
Article in French | MEDLINE | ID: mdl-38356430

ABSTRACT

Mavacamten (Camzyos®) is a myosin modulator which reduces the interactions between myosin and actin. These are overly activated in hypertrophic cardiomyopathy (HCM), a source of exaggerated ventricular contractility, energy loss, and impairment of diastolic function (relaxation). The Food and Drug Administration (FDA) and the European Medication Agency (EMA) approved mavacamten for the treatment of symptomatic obstructive HCM (NYHA class II or III) in adult patients in 2022 and 2023, respectively. The medication is not yet reimbursed in Belgium. As seen in its clinical development studies, mavacamten reduces the intraventricular gradient, improves functional capacity and reduces symptoms. It also seems to be an innovative alternative to septal reduction. Mavacamten is usually very well tolerated knowing that, through its mechanism of action, it causes a dose-dependent and reversible reduction in left ventricular ejection fraction, which must therefore be closely monitored. The good tolerance and the effectiveness of mavacamten seem to be maintained over time. Consequently, the recent European Society of Cardiology Updated Guidelines on cardiomyopathy (ESC 09/2023) already recommend mavacamten in the pharmacological management of obstructive HCM.


Le mavacamten (Camzyos®) est un modulateur de la myosine qui diminue les interactions entre la myosine et l'actine. En effet, celles-ci sont trop activées dans la cardiomyopathie hypertrophique (CMH), source de contractilité ventriculaire exagérée, de déperdition énergétique et de troubles de la fonction diastolique (relaxation). Le mavacamten est approuvé par la Food and Drug Administration (FDA 2022) et l'European Medication Agency (EMA 2023) pour le traitement de la CMH obstructive (CMHO) symptomatique (classe NYHA II ou III) chez les patients adultes. Il n'est pas encore remboursé en Belgique. Les études pivots de son développement clinique ont montré que le mavacamten réduit le gradient intraventriculaire, améliore la capacité fonctionnelle et diminue les symptômes. Il semble aussi représenter une alternative innovante à la réduction septale. Le mavacamten est généralement très bien toléré, sachant que, par son mécanisme d'action, il entraîne une diminution dose-dépendante et réversible de la fraction d'éjection ventriculaire gauche, qui devra donc être surveillée étroitement. Sa bonne tolérance et son efficacité semblent se maintenir au cours du temps. En conséquence, les récentes recommandations de la Société Européenne de Cardiologie (ESC 2023) à propos des cardiomyopathies recommandent déjà le mavacamten dans l'arsenal pharmacologique de la prise en charge des CMHO.


Subject(s)
Cardiomyopathy, Hypertrophic , Uracil/analogs & derivatives , Ventricular Function, Left , United States , Adult , Humans , Stroke Volume , Cardiomyopathy, Hypertrophic/drug therapy , Benzylamines/adverse effects , Myosins
20.
Anatol J Cardiol ; 28(3): 150-157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38419512

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetically inherited cardiac disorder with diverse clinical presentations. Adrenergic activity, primarily mediated through beta-adrenoceptors, plays a central role in the clinical course of HCM. Adrenergic stimulation increases cardiac contractility and heart rate through beta-1 adrenoceptor activation. Beta-blocker drugs are recommended as the primary treatment for symptomatic HCM patients to mitigate these effects. METHODS: This prospective study aimed to investigate the impact of common ADRB-1 gene polymorphisms, specifically serine-glycine at position 49 and arginine-glycine at position 389, on the clinical and structural aspects of HCM. Additionally, the study explored the association between these genetic variations and the response to beta-blocker therapy in HCM patients. RESULTS: A cohort of 147 HCM patients was enrolled, and comprehensive assessments were performed. The findings revealed that the Ser49Gly polymorphism significantly influenced ventricular ectopic beats, with beta-blocker therapy effectively reducing them in Ser49 homozygous patients. Moreover, natriuretic peptide levels decreased, particularly in Ser49 homozygotes, indicating improved cardiac function. Left ventricular outflow obstruction, a hallmark of HCM, was also reduced following beta-blocker treatment in all patient groups. In contrast, the Arg389Gly polymorphism did not significantly impact baseline parameters or beta-blocker response. CONCLUSION: These results emphasize the role of the Ser49Gly polymorphism in the ADRB-1 gene in shaping the clinical course and response to beta-blocker therapy in HCM patients. This insight may enable a more personalized approach to managing HCM by considering genetic factors in treatment decisions. Further research with larger populations and longer follow-up periods is needed to confirm and expand upon these findings.


Subject(s)
Cardiomyopathy, Hypertrophic , Polymorphism, Genetic , Humans , Prospective Studies , Adrenergic beta-Antagonists/therapeutic use , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/genetics , Receptors, Adrenergic/genetics , Disease Progression , Glycine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...