Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.005
Filter
2.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690729

ABSTRACT

The myosin inhibitor mavacamten has transformed the management of obstructive hypertrophic cardiomyopathy (HCM) by targeting myosin ATPase activity to mitigate cardiac hypercontractility. This therapeutic mechanism has proven effective for patients with HCM independent of having a primary gene mutation in myosin. In this issue of the JCI, Buvoli et al. report that muscle hypercontractility is a mechanism of pathogenesis underlying muscle dysfunction in Laing distal myopathy, a disorder characterized by mutations altering the rod domain of ß myosin heavy chain. The authors performed detailed physiological, molecular, and biomechanical analyses and demonstrated that myosin ATPase inhibition can correct a large extent of muscle abnormalities. The findings offer a therapeutic avenue for Laing distal myopathy and potentially other myopathies. This Commentary underscores the importance of reevaluating myosin activity's role across myopathies in general for the potential development of targeted myosin inhibitors to treat skeletal muscle disorders.


Subject(s)
Benzylamines , Muscle, Skeletal , Uracil/analogs & derivatives , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/genetics , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Distal Myopathies/genetics , Distal Myopathies/drug therapy , Distal Myopathies/metabolism , Distal Myopathies/pathology , Animals , Mutation , Myosins/metabolism , Myosins/genetics
3.
BMC Cardiovasc Disord ; 24(1): 282, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811883

ABSTRACT

Sudden cardiac death (SCD) is a major public health issue worldwide. In the young (< 40 years of age), genetic cardiomyopathies and viral myocarditis, sometimes in combination, are the most frequent, but underestimated, causes of SCD. Molecular autopsy is essential for prevention. Several studies have shown an association between genetic cardiomyopathies and viral myocarditis, which is probably underestimated due to insufficient post-mortem investigations. We report on four autopsy cases illustrating the pathogenesis of these combined pathologies. In two cases, a genetic hypertrophic cardiomyopathy was diagnosed in combination with Herpes Virus Type 6 (HHV6) and/or Parvovirus-B19 (PVB19) in the heart. In the third case, autopsy revealed a dilated cardiomyopathy and virological analyses revealed acute myocarditis caused by three viruses: PVB19, HHV6 and Epstein-Barr virus. Genetic analyses revealed a mutation in the gene coding for desmin. The fourth case illustrated a channelopathy and a PVB19/HHV6 coinfection. Our four cases illustrate the highly probable deleterious role of cardiotropic viruses in the occurrence of SCD in subjects with genetic cardiomyopathies. We discuss the pathogenetic link between viral myocarditis and genetic cardiomyopathy. Molecular autopsy is essential in prevention of these SCD, and a close collaboration between cardiologists, pathologists, microbiologists and geneticians is mandatory.


Subject(s)
Autopsy , Death, Sudden, Cardiac , Herpesvirus 6, Human , Myocarditis , Parvovirus B19, Human , Humans , Myocarditis/virology , Myocarditis/pathology , Myocarditis/genetics , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Death, Sudden, Cardiac/prevention & control , Male , Adult , Female , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Parvovirus B19, Human/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/virology , Cardiomyopathy, Dilated/pathology , Roseolovirus Infections/complications , Roseolovirus Infections/virology , Roseolovirus Infections/diagnosis , Roseolovirus Infections/pathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Parvoviridae Infections/complications , Young Adult , Genetic Predisposition to Disease , Fatal Outcome , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/genetics , Coinfection , Cause of Death , Mutation , Middle Aged
4.
Int J Cardiol ; 408: 132117, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710232

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is believed to have low overall mortality rate, that could be influenced by gender, particularly among probands. We aimed to evaluate the survival rates and possible gender differences in a homogeneous cohort of HCM proband patients, referred for genetic testing, from the same geographical area, without differences in medical care access nor clinical referral pathways. METHODS: we compared the mortality rates of a cohort of consecutive HCM probands referred for genetic testing (2000-2022), from a Spanish region (xxx1) with a centralized genetic testing pathway, with its control reference population by Ederer II method. Gender differences were analyzed. RESULTS: Among the 649 HCM probands included in this study, there were significantly more men than women (61.3% vs 38.7, p < 0.05), with an earlier diagnosis (53.5 vs 61.1 years old, p < 0.05). Clinical evolution or arrhythmogenic HCM profile did no show no significant gender differences. Mean follow up was 9,8 years ±6,6 SD (9,9 ± 7 vs 9,6 ± 6,1, p = 0.59). No statistically significant differences in observed mortality, expected survival and excess mortality were found in the general HCM proband cohort. However, we found a significant excess mortality in female probands with HCM. No additional differences in analysis by genetic status were identified. CONCLUSION: Expected survival in our HCM probands did not differ from its reference population. However, despite no gender differences in phenotype severity were identified, proband HCM women did present a diagnosis delay and worse mortality outcomes.


Subject(s)
Cardiomyopathy, Hypertrophic , Genetic Testing , Humans , Male , Female , Middle Aged , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/mortality , Cardiomyopathy, Hypertrophic/diagnosis , Genetic Testing/methods , Adult , Aged , Survival Analysis , Cohort Studies , Follow-Up Studies , Survival Rate/trends , Referral and Consultation , Spain/epidemiology , Sex Factors , Sex Characteristics
5.
J Phys Chem B ; 128(19): 4716-4727, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38708944

ABSTRACT

Hypertrophic cardiomyopathy is one of the most common forms of genetic cardiomyopathy. Mavacamten is a first-in-class myosin modulator that was identified via activity screening on the wild type, and it is FDA-approved for the treatment of obstructive hypertrophic cardiomyopathy (HCM). The drug selectively binds to the cardiac ß-myosin, inhibiting myosin function to decrease cardiac contractility. Though the drug is thought to affect multiple steps of the myosin cross-bridge cycle, its detailed mechanism of action is still under investigation. Individual steps in the overall cross-bridge cycle must be queried to elucidate the full mechanism of action. In this study, we utilize the rare-event method of transition path sampling to generate reactive trajectories to gain insights into the action of the drug on the dynamics and rate of the ATP hydrolysis step for human cardiac ß-myosin. We study three known HCM causative myosin mutations: R453C, P710R, and R712L to observe the effect of the drug on the alterations caused by these mutations in the chemical step. Since the crystal structure of the drug-bound myosin was not available at the time of this work, we created a model of the drug-bound system utilizing a molecular docking approach. We find a significant effect of the drug in one case, where the actual mechanism of the reaction is altered from the wild type by mutation. The drug restores both the rate of hydrolysis to the wildtype level and the mechanism of the reaction. This is a way to check the effect of the drug on untested mutations.


Subject(s)
Adenosine Triphosphate , Cardiomyopathy, Hypertrophic , Mutation , Humans , Hydrolysis , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/drug therapy , Biocatalysis , Molecular Dynamics Simulation , Myosins/chemistry , Myosins/metabolism , Myosins/genetics , Benzylamines , Uracil/analogs & derivatives
6.
J Am Heart Assoc ; 13(10): e033565, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38757491

ABSTRACT

BACKGROUND: The genetic basis of hypertrophic cardiomyopathy (HCM) is complex, and the relationship between genotype status and clinical outcome is incompletely resolved. METHODS AND RESULTS: We assessed a large international HCM cohort to define in contemporary terms natural history and clinical consequences of genotype. Consecutive patients (n=1468) with established HCM diagnosis underwent genetic testing. Patients with pathogenic (or likely pathogenic) variants were considered genotype positive (G+; n=312; 21%); those without definite disease-causing mutations (n=651; 44%) or variants of uncertain significance (n=505; 35%) were considered genotype negative (G-). Patients were followed up for a median of 7.8 years (interquartile range, 3.5-13.4 years); HCM end points were examined by cumulative event incidence. Over follow-up, 135 (9%) patients died, 33 from a variety of HCM-related causes. After adjusting for age, all-cause and HCM-related mortality did not differ between G- versus G+ patients (hazard ratio [HR], 0.78 [95% CI, 0.46-1.31]; P=0.37; HR, 0.93 [95% CI, 0.38-2.30]; P=0.87, respectively). Adverse event rates, including heart failure progression to class III/IV, heart transplant, or heart failure death, did not differ (G- versus G+) when adjusted for age (HR, 1.20 [95% CI, 0.63-2.26]; P=0.58), nor was genotype independently associated with sudden death event risk (HR, 1.39 [95% CI, 0.88-2.21]; P=0.16). In multivariable analysis, age was the only independent predictor of all-cause and HCM-related mortality, heart failure progression, and sudden death events. CONCLUSIONS: In this large consecutive cohort of patients with HCM, genotype (G+ or G-) was not a predictor of clinical course, including all-cause and HCM-related mortality and risk for heart failure progression or sudden death. G+ status should not be used to dictate clinical management or predict outcome in HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Genotype , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/mortality , Cardiomyopathy, Hypertrophic/diagnosis , Male , Female , Middle Aged , Adult , Mutation , Phenotype , Disease Progression , Risk Factors , Genetic Predisposition to Disease , Aged , Genetic Testing/methods , Prognosis , Time Factors , Heart Failure/genetics , Heart Failure/mortality , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/epidemiology , Heart Transplantation
8.
Circ Cardiovasc Imaging ; 17(4): e016042, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563190

ABSTRACT

BACKGROUND: Assessing myocardial strain by cardiac magnetic resonance feature tracking (FT) has been found to be useful in patients with overt hypertrophic cardiomyopathy (HCM). Little is known, however, of its role in sarcomere gene mutation carriers without overt left ventricular hypertrophy (subclinical HCM). METHODS: Thirty-eight subclinical HCM subjects and 42 healthy volunteers were enrolled in this multicenter case-control study. They underwent a comprehensive cardiac magnetic resonance study. Two-dimensional global radial, circumferential, and longitudinal strain of the left ventricle (LV) were evaluated by FT analysis. RESULTS: The subclinical HCM sample was 41 (22-51) years old and 32% were men. FT analysis revealed a reduction in global radial strain (29±7.2 versus 47.9±7.4; P<0.0001), global circumferential strain (-17.3±2.6 -versus -20.8±7.4; P<0.0001) and global longitudinal strain (-16.9±2.4 versus -20.5±2.6; P<0.0001) in subclinical HCM compared with control subjects. The significant differences persisted when considering the 23 individuals free of all the structural and functional ECG and cardiac magnetic resonance abnormalities previously described. Receiver operating characteristic curve analyses showed that the differential diagnostic performances of FT in discriminating subclinical HCM from normal subjects were good to excellent (global radial strain with optimal cut-off value of 40.43%: AUC, 0.946 [95% CI, 0.93-1.00]; sensitivity 90.48%, specificity 94.44%; global circumferential strain with cut-off, -18.54%: AUC, 0.849 [95% CI, 0.76-0.94]; sensitivity, 88.10%; specificity, 72.22%; global longitudinal strain with cut-off, -19.06%: AUC, 0.843 [95% CI, 0.76-0.93]; sensitivity, 78.57%; specificity, 78.95%). Similar values were found for discriminating those subclinical HCM subjects without other phenotypic abnormalities from healthy volunteers (global radial strain with optimal cut-off 40.43%: AUC, 0.966 [95% CI, 0.92-1.00]; sensitivity, 90.48%; specificity, 95.45%; global circumferential strain with cut-off, -18.44%: AUC, 0.866 [95% CI, 0.76-0.96]; sensitivity, 92.86%; specificity, 77.27%; global longitudinal strain with cut-off, -17.32%: AUC, 0.838 [95% CI, 0.73-0.94]; sensitivity, 90.48%; specificity, 65.22%). CONCLUSIONS: Cardiac magnetic resonance FT-derived parameters are consistently lower in subclinical patients with HCM, and they could emerge as a good tool for discovering the disease during a preclinical phase.


Subject(s)
Cardiomyopathy, Hypertrophic , Sarcomeres , Male , Humans , Young Adult , Adult , Middle Aged , Female , Case-Control Studies , Sarcomeres/genetics , Sarcomeres/pathology , Magnetic Resonance Imaging, Cine/methods , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Magnetic Resonance Spectroscopy , Mutation
9.
J Mol Cell Cardiol ; 191: 27-39, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648963

ABSTRACT

Approximately 40% of hypertrophic cardiomyopathy (HCM) mutations are linked to the sarcomere protein cardiac myosin binding protein-C (cMyBP-C). These mutations are either classified as missense mutations or truncation mutations. One mutation whose nature has been inconsistently reported in the literature is the MYBPC3-c.772G > A mutation. Using patient-derived human induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs), we have performed a mechanistic study of the structure-function relationship for this MYBPC3-c.772G > A mutation versus a mutation corrected, isogenic cell line. Our results confirm that this mutation leads to exon skipping and mRNA truncation that ultimately suggests ∼20% less cMyBP-C protein (i.e., haploinsufficiency). This, in turn, results in increased myosin recruitment and accelerated myofibril cycling kinetics. Our mechanistic studies suggest that faster ADP release from myosin is a primary cause of accelerated myofibril cross-bridge cycling due to this mutation. Additionally, the reduction in force generating heads expected from faster ADP release during isometric contractions is outweighed by a cMyBP-C phosphorylation mediated increase in myosin recruitment that leads to a net increase of myofibril force, primarily at submaximal calcium activations. These results match well with our previous report on contractile properties from myectomy samples of the patients from whom the hiPSC-CMs were generated, demonstrating that these cell lines are a good model to study this pathological mutation and extends our understanding of the mechanisms of altered contractile properties of this HCM MYBPC3-c.772G > A mutation.


Subject(s)
Cardiomyopathy, Hypertrophic , Carrier Proteins , Haploinsufficiency , Induced Pluripotent Stem Cells , Mutation , Myocytes, Cardiac , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Myocytes, Cardiac/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Myosins/metabolism , Myosins/genetics , Cell Differentiation/genetics , Kinetics
10.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 61-67, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678626

ABSTRACT

The purpose of this study was to explore the correlations of interleukin-1 (IL-1) and IL-6 gene polymorphisms with hypertrophic cardiomyopathy (HCM). A total of 200 patients with HCM were enrolled as disease group, and 200 healthy individuals were included as control group. Peripheral blood was collected from all subjects in both disease and control groups. Gene polymorphisms and serum expression levels of IL-1 and IL-6 were detected, and conjoint analysis was performed based on results of cardiac color Doppler ultrasound examination. The allele distribution of IL-1 rs1878320 showed a difference between disease and control groups (P=0.000). The frequency of the allele T was lower in disease group. The genotype distribution of IL-1 rs1878320 (P=0.001) and IL-6 rs1474347 (P=0.000) in disease group was different from that in control. The frequency of TC genotype of IL-1 rs1878320 was lower in disease group, and that of CA genotype of IL-6 rs1474347 was higher in disease group. There was a difference in the distribution of the dominant model of IL-6 rs1474347 between disease and control groups (P=0.021), and the frequency of CC + CA in the dominant model was 171 (0.855). The frequency of AC haplotype of IL-1 gene was overtly higher in disease group (P=0.000), while the frequency of AT haplotype was lower in disease group (P=0.000). The IL-1 rs1516792 polymorphism had an association with serum IL-1 level (P<0.05), the IL-1 level was notably increased in the patients with the genotype AA, and it was higher in disease group. The polymorphism of rs1878320 locus in IL-1 gene was correlated with interventricular septal (IVS) (P=0.047), and IVS was reduced in the patients with TC genotype. The polymorphism of rs1516792 locus in IL-1 gene was distinctly related to left ventricular outflow tract (LVOT) (P=0.041), and LVOT was lowered in the patients with GG genotype. The IL-6 rs2069831 polymorphism was associated with left ventricular ejection fraction (LVEF) (P=0.035), and LVEF declined in the patients with TT genotype. The IL-1 and IL-6 gene polymorphisms are correlated with the susceptibility and progression of HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Interleukin-1 , Interleukin-6 , Polymorphism, Single Nucleotide , Adult , Female , Humans , Male , Middle Aged , Alleles , Cardiomyopathy, Hypertrophic/genetics , Case-Control Studies , Gene Frequency/genetics , Genetic Predisposition to Disease , Genotype , Interleukin-1/blood , Interleukin-1/genetics , Interleukin-6/blood , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics
11.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683993

ABSTRACT

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Myocardial Contraction , Myocytes, Cardiac , Myosin Heavy Chains , Humans , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardial Contraction/genetics , Mutation , Mitochondria/metabolism , Mitochondria/genetics , Myofibrils/metabolism , Cell Respiration/genetics
12.
Comput Biol Med ; 175: 108499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677172

ABSTRACT

Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.


Subject(s)
Cardiomyopathy, Hypertrophic , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Animals , Mice , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Signal Transduction , Models, Cardiovascular , Phenotype , Genotype
13.
Cell Rep Med ; 5(5): 101520, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38642550

ABSTRACT

Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 (V606M; R453C), MYBPC3 (G148R) or digenic variants (MYBPC3 P955fs, TNNI3 A157V). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myosin Heavy Chains , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/pathology , Cardiomyopathy, Hypertrophic/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Child , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Genotype , Myosins/metabolism , Myosins/genetics , Male , Female , Sarcomeres/metabolism , Sarcomeres/genetics
14.
Cell Mol Life Sci ; 81(1): 158, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556571

ABSTRACT

Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line. We discovered that csrp3 is specifically expressed in larval ventricular cardiomyocytes (CMs) and that csrp3 deficiency leads to excessive trabeculation, a common feature of CSRP3-related HCM and DCM. We further revealed that csrp3 expression increased in response to different cardiac injuries and was regulated by several signaling pathways vital for heart regeneration. Csrp3 deficiency impeded zebrafish heart regeneration by impairing CM dedifferentiation, hindering sarcomere reassembly, and reducing CM proliferation while aggravating apoptosis. Csrp3 overexpression promoted CM proliferation after injury and ameliorated the impairment of ventricle regeneration caused by pharmacological inhibition of multiple signaling pathways. Our study highlights the critical role of Csrp3 in both zebrafish heart development and regeneration, and provides a valuable animal model for further functional exploration that will shed light on the molecular pathogenesis of CSRP3-related human cardiac diseases.


Subject(s)
Cardiomyopathy, Hypertrophic , LIM Domain Proteins , Zebrafish , Animals , Humans , Zebrafish/genetics , Zebrafish/metabolism , Cysteine/genetics , Cysteine/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Myocytes, Cardiac/metabolism
15.
Circ Heart Fail ; 17(3): e010970, 2024 03.
Article in English | MEDLINE | ID: mdl-38456273

ABSTRACT

BACKGROUND: Aotearoa/New Zealand has a multiethnic population. Patients with hypertrophic cardiomyopathy (HCM) are enrolled in the national Cardiac Inherited Diseases Registry New Zealand. Here, we report the characteristics of Cardiac Inherited Diseases Registry New Zealand HCM probands with and without pathogenic or likely pathogenic (P/LP) genetic variants for HCM, and assess genetic testing yield and variant spectrum by self-identified ethnicity. METHODS: Probands with HCM and enrolled in Cardiac Inherited Diseases Registry New Zealand who have undergone clinical genetic testing over a 17-year period were included. Clinical data, family history, and genetic test results were analyzed. RESULTS: Of 336 probands, 121 (36%) were women, 220 (66%) were European ethnicity, 41 (12%) were Maori, 26 (8%) were Pacific people, and 49 (15%) were other ethnicities. Thirteen probands (4%) presented with sudden death and 19 (6%) with cardiac arrest. A total of 134 (40%) had a P/LP variant identified; most commonly in the MYBPC3 gene (60%) followed by the MYH7 gene (24%). A P/LP variant was identified in 27% of Maori or Pacific probands versus 43% European or other ethnicity probands (P=0.022); 16% of Maori or Pacific probands had a variant of uncertain significance identified, compared with 9% of European or other ethnicity probands (P=0.092). Women more often had a P/LP variant identified than men (48% versus 35%; P=0.032), and variant-positive probands were younger at clinical diagnosis than variant of uncertain significance/variant-negative probands (39±17 versus 50±17 years; P<0.001) and more likely to have experienced cardiac arrest or sudden death events over their lifetime (P=0.002). CONCLUSIONS: Carriage of a P/LP variant in HCM probands is associated with presentation at younger age, and cardiac arrest or sudden death events. Maori or Pacific probands were less likely to have a P/LP variant identified than European or other ethnicity probands.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Arrest , Heart Diseases , Heart Failure , Female , Humans , Male , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Death, Sudden , Ethnicity/genetics , Genetic Testing , Heart Failure/genetics , Maori People , New Zealand/epidemiology , Pacific Island People , Registries , Adult , Middle Aged , Aged
17.
Front Biosci (Schol Ed) ; 16(1): 1, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38538344

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important. METHODS: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease. Searching for the genetic variants in HCM genes was performed using different sequencing methods. RESULTS: A new missense variant, p.Leu714Arg, was identified in exon 19 of the beta-myosin heavy chain gene (MYH7). The mutation was found in a region that encodes the 'converter domain' in the globular myosin head. This domain is essential for the conformational change of myosin during ATP cleavage and contraction cycle. Most reports on different mutations in this region describe severe phenotypic consequences. The two patients with the p.Leu714Arg mutation had heart failure early in life and died from HCM complications. CONCLUSIONS: This case presents a new likely pathogenic variant in MYH7 and supports the hypothesis that myosin converter mutations constitute a subclass of HCM mutations with a poor prognosis for the patient.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial , Cardiomyopathy, Hypertrophic , Humans , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic, Familial/diagnostic imaging , Cardiomyopathy, Hypertrophic, Familial/genetics , Mutation , Mutation, Missense/genetics , Myosin Heavy Chains/genetics , Phenotype
19.
Can J Cardiol ; 40(5): 754-765, 2024 May.
Article in English | MEDLINE | ID: mdl-38447917

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a common myocardial disease defined by increased left ventricular wall thickness unexplained by loading conditions. HCM frequently is caused by pathogenic variants in sarcomeric protein genes, but several other syndromic, metabolic, infiltrative, and neuromuscular diseases can result in HCM phenocopies. This review summarizes the current understanding of these HCM mimics, highlighting their importance across the life course. The central role of a comprehensive, multiparametric diagnostic approach and the potential of precision medicine in tailoring treatment strategies are emphasized.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy , Cardiomyopathy, Hypertrophic/genetics , Diagnosis, Differential , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...