Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.649
Filter
1.
J Transl Med ; 22(1): 433, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720361

ABSTRACT

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Subject(s)
Cardiotoxicity , Doxorubicin , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Humans , Doxorubicin/adverse effects , Cardiotoxicity/etiology , Animals , Dysbiosis , Fecal Microbiota Transplantation
2.
Int J Biol Sci ; 20(7): 2622-2639, 2024.
Article in English | MEDLINE | ID: mdl-38725840

ABSTRACT

Sorafenib is a standard first-line drug for advanced hepatocellular carcinoma, but the serious cardiotoxic effects restrict its therapeutic applicability. Here, we show that iron-dependent ferroptosis plays a vital role in sorafenib-induced cardiotoxicity. Remarkably, our in vivo and in vitro experiments demonstrated that ferroptosis inhibitor application neutralized sorafenib-induced heart injury. By analyzing transcriptome profiles of adult human sorafenib-treated cardiomyocytes, we found that Krüppel-like transcription factor 11 (KLF11) expression significantly increased after sorafenib stimulation. Mechanistically, KLF11 promoted ferroptosis by suppressing transcription of ferroptosis suppressor protein 1 (FSP1), a seminal breakthrough due to its ferroptosis-repressing properties. Moreover, FSP1 knockdown showed equivalent results to glutathione peroxidase 4 (GPX4) knockdown, and FSP1 overexpression counteracted GPX4 inhibition-induced ferroptosis to a substantial extent. Cardiac-specific overexpression of FSP1 and silencing KLF11 by an adeno-associated virus serotype 9 markedly improved cardiac dysfunction in sorafenib-treated mice. In summary, FSP1-mediated ferroptosis is a crucial mechanism for sorafenib-provoked cardiotoxicity, and targeting ferroptosis may be a promising therapeutic strategy for alleviating sorafenib-induced cardiac damage.


Subject(s)
Cardiotoxicity , Ferroptosis , S100 Calcium-Binding Protein A4 , Sorafenib , Sorafenib/adverse effects , Ferroptosis/drug effects , Animals , Mice , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Humans , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/genetics , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Repressor Proteins/metabolism , Repressor Proteins/genetics
4.
G Ital Cardiol (Rome) ; 25(6): 453-463, 2024 Jun.
Article in Italian | MEDLINE | ID: mdl-38808942

ABSTRACT

The survival of pediatric cancer patients has significantly increased thanks to the improvement of oncological treatments. Therefore, it is of utmost importance to manage short- and long-term cardiovascular complications. In pediatric cardio-oncology, there are no recognized guidelines as in adults. Several recommendations and many indications have been derived from the data obtained in the adult cancer population, resulting in greater discrepancies in the clinical management of patients. The aim of this position paper of the Italian Society of Pediatric Cardiology (SICP) is to collect the main evidence regarding the diagnosis, prevention, treatment and follow-up of cardiotoxicity in children, to provide useful indications for clinical practice, and to promote a network between pediatric centers.


Subject(s)
Antineoplastic Agents , Cardiotoxicity , Neoplasms , Humans , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Child , Neoplasms/drug therapy , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Italy , Cardiovascular Diseases/prevention & control , Cardiology , Follow-Up Studies , Heart Diseases/prevention & control , Heart Diseases/chemically induced , Heart Diseases/diagnosis , Societies, Medical
5.
Dtsch Med Wochenschr ; 149(12): 719-723, 2024 Jun.
Article in German | MEDLINE | ID: mdl-38781996

ABSTRACT

The emerging field of cardio-oncology addresses the critical need for specialized cardiovascular care in cancer patients, given the overlapping risk factors and potential cardiovascular complications of oncological therapies. In collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO), and the European Society of Cardiology (ESC), the first cardio-oncology guideline was developed and published in 2022. This guideline comprises 272 recommendations covering risk stratification before therapy initiation, monitoring during oncological treatment, and the diagnosis and treatment of therapy-associated cardiovascular side effects.A significant innovation in this guideline is the comprehensive risk stratification approach, which categorizes patients into low, moderate, and high-risk groups based on therapy-specific factors. This allows for tailored cardiovascular care during therapy, with varying frequencies of follow-up examinations depending on the patient's risk level. Notably, the guideline emphasizes the importance of interdisciplinary collaboration between oncologists and cardiologists to optimize patient outcomes.Overall, the cardio-oncology guideline represents a significant advancement in addressing the complex cardiovascular needs of cancer patients. Its comprehensive recommendations and emphasis on interdisciplinary care underscore the importance of optimizing cardiovascular health throughout the oncological treatment journey.This review provides an overview of the guidelines and updates on the risk stratification and therapy of patients with immune checkpoint inhibitor-associated myocarditis (ICIM), as well as the role of statins in protecting against anthracycline-associated cardiotoxicity.


Subject(s)
Cardiovascular Diseases , Neoplasms , Humans , Neoplasms/complications , Neoplasms/therapy , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Medical Oncology , Practice Guidelines as Topic , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Cardiology/standards , Risk Assessment , Risk Factors , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Cardio-Oncology
6.
Rev Med Liege ; 79(S1): 56-61, 2024 May.
Article in French | MEDLINE | ID: mdl-38778651

ABSTRACT

To accept the toxic side effects of any treatment, whether medical, surgical or radiotherapeutic, cannot be avoided but implies to evaluate them taking into account the severity and prognosis of the disease that is concerned. Screening, preventing and treatment of these side effects are an integral aspect of the treatment of cancers. We will here review the contribution of the cardio-oncology, a recently emerged medical specialty. Cardiac irradiation cannot be avoided when treating several cancers, most frequently left sided breast cancer. As soon as radiotherapy is considered, it is of prime importance to evaluate each patient's risk factors and to handle them. If technical progresses have led to the complete disappearance of acute side effects of radiotherapy, this is not true for the delayed ones that may occur many years after the irradiation. Hence the need for «red flags¼ and for a systematic follow-up. Cardiac complications of left breast irradiation concern all aspects of cardiology: diseases of cardiac rhythm, valvulopathies, heart failure, coronary and pericardial disorders.


Admettre les effets secondaires d'un traitement, qu'il soit médical, chirurgical ou radiothérapique, est inévitable, mais impose de les évaluer en intégrant la gravité de l'affection pour laquelle ils sont prescrits. Leur dépistage, leur prévention et leur prise en charge font partie intégrante du traitement d'un cancer. Dans cette revue, nous ferons la synthèse de l'apport à cette démarche d'une discipline récente, la cardio-oncologie. L'irradiation cardiaque est incontournable lors du traitement de plusieurs cancers au premier rang desquels le cancer du sein gauche. Dès qu'elle est envisagée, il est essentiel d'évaluer les facteurs de risque de chaque patient et d'organiser leur prise en charge éventuelle. En effet, si les progrès techniques ont permis la disparition des complications cardiaques aiguës de la radiothérapie, ce n'est encore pas le cas des complications différées qui peuvent survenir de nombreuses années après l'irradiation. D'où la nécessité de «drapeaux rouges¼ et d'un suivi régulier systématique. Ces complications, rarement isolées, concernent tous les aspects de la cardiologie : troubles du rythme, valvulopathies, insuffisance cardiaque, maladies coronaires et atteintes péricardiques.


Subject(s)
Cardiotoxicity , Radiotherapy , Humans , Breast Neoplasms/radiotherapy , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Follow-Up Studies , Heart Diseases/prevention & control , Heart Diseases/etiology , Neoplasms/radiotherapy , Radiation Injuries/prevention & control , Radiation Injuries/etiology , Radiotherapy/adverse effects , Female
7.
Curr Probl Cardiol ; 49(7): 102609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697332

ABSTRACT

BACKGROUND: The cardiotoxic effects of anthracyclines therapy are well recognized, both in the short and long term. Echocardiography allows monitoring of cancer patients treated with this class of drugs by serial assessment of left ventricle ejection fraction (LVEF) as a surrogate of systolic function. However, changes in myocardial function may occur late in the process when cardiac damage is already established. Novel cardiac magnetic resonance (CMR) parametric techniques, like native T1 mapping and extra-cellular volume (ECV), may detect subclinical myocardial damage in these patients, recognizing early signs of cardiotoxicity before development of overt cancer therapy-related cardiac dysfunction (CTRCD) and prompting tailored therapeutic and follow-up strategies to improve outcome. METHODS AND RESULTS: We conducted a systematic review and a meta-analysis to investigate the difference in CMR derived native T1 relaxation time and ECV values, respectively, in anthracyclines-treated cancer patients with preserved EF versus healthy controls. PubMed, Embase, Web of Science and Cochrane Central were searched for relevant studies. A total of 6 studies were retrieved from 1057 publications, of which, four studies with 547 patients were included in the systematic review on T1 mapping and five studies with 481 patients were included in the meta-analysis on ECV. Three out of the four included studies in the systematic review showed higher T1 mapping values in anthracyclines treated patients compared to healthy controls. The meta-analysis demonstrated no statistically significant difference in ECV values between the two groups in the main analysis (Hedges´s g =3.20, 95% CI -0.72-7.12, p =0.11, I2 =99%), while ECV was significantly higher in the anthracyclines-treated group when sensitivity analysis was performed. CONCLUSIONS: Higher T1 mapping and ECV values in patients exposed to anthracyclines could represent early biomarkers of CTRCD, able to detect subclinical myocardial changes present before the development of overt myocardial dysfunction. Our results highlight the need for further studies to investigate the correlation between anthracyclines-based chemotherapy and changes in CMR mapping parameters that may guide future tailored follow-up strategies in this group of patients.


Subject(s)
Anthracyclines , Antibiotics, Antineoplastic , Cardiotoxicity , Stroke Volume , Ventricular Function, Left , Humans , Anthracyclines/adverse effects , Anthracyclines/therapeutic use , Stroke Volume/drug effects , Stroke Volume/physiology , Cardiotoxicity/etiology , Cardiotoxicity/diagnosis , Ventricular Function, Left/drug effects , Ventricular Function, Left/physiology , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/therapeutic use , Neoplasms/drug therapy , Magnetic Resonance Imaging, Cine/methods , Adult
8.
BMJ ; 385: e075859, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38749554

ABSTRACT

In addition to conventional chemoradiation and targeted cancer therapy, the use of immune based therapies, specifically immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T cell therapy (CAR-T), has increased exponentially across a wide spectrum of cancers. This has been paralleled by recognition of off-target immune related adverse events that can affect almost any organ system including the cardiovascular system. The use of ICIs has been associated with myocarditis, a less common but highly fatal adverse effect, pericarditis and pericardial effusions, vasculitis, thromboembolism, and potentially accelerated atherosclerosis. CAR-T resulting in a systemic cytokine release syndrome has been associated with myriad cardiovascular consequences including arrhythmias, myocardial infarction, and heart failure. This review summarizes the current state of knowledge regarding adverse cardiovascular effects associated with ICIs and CAR-T.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Cardiovascular Diseases/chemically induced , Cardiotoxicity/etiology , Myocarditis/chemically induced , Myocarditis/therapy , Cytokine Release Syndrome/etiology , Pericarditis/chemically induced , Pericarditis/therapy
9.
Methods ; 226: 164-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702021

ABSTRACT

Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate prediction of compound toxicity using deep learning models offers a promising solution to mitigate these risks during drug discovery. In this study, we present the development of several deep-learning models aimed at evaluating different types of compound toxicity, including acute toxicity, carcinogenicity, hERG_cardiotoxicity (the human ether-a-go-go related gene caused cardiotoxicity), hepatotoxicity, and mutagenicity. To address the inherent variations in data size, label type, and distribution across different types of toxicity, we employed diverse training strategies. Our first approach involved utilizing a graph convolutional network (GCN) regression model to predict acute toxicity, which achieved notable performance with Pearson R 0.76, 0.74, and 0.65 for intraperitoneal, intravenous, and oral administration routes, respectively. Furthermore, we trained multiple GCN binary classification models, each tailored to a specific type of toxicity. These models exhibited high area under the curve (AUC) scores, with an impressive AUC of 0.69, 0.77, 0.88, and 0.79 for predicting carcinogenicity, hERG_cardiotoxicity, mutagenicity, and hepatotoxicity, respectively. Additionally, we have used the approved drug dataset to determine the appropriate threshold value for the prediction score in model usage. We integrated these models into a virtual screening pipeline to assess their effectiveness in identifying potential low-toxicity drug candidates. Our findings indicate that this deep learning approach has the potential to significantly reduce the cost and risk associated with drug development by expediting the selection of compounds with low toxicity profiles. Therefore, the models developed in this study hold promise as critical tools for early drug candidate screening and selection.


Subject(s)
Deep Learning , Humans , Drug Discovery/methods , Animals , Drug-Related Side Effects and Adverse Reactions , Cardiotoxicity/etiology
10.
Acta Oncol ; 63: 248-258, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698698

ABSTRACT

BACKGROUND AND PURPOSE: The CardioSwitch-study demonstrated that patients with solid tumors who develop cardiotoxicity on capecitabine or 5-fluorouracil (5-FU) treatment can be safely switched to S-1, an alternative fluoropyrimidine (FP). In light of the European Medicines Agency approval of S-1 in metastatic colorectal cancer (mCRC), this analysis provides more detailed safety and efficacy information, and data regarding metastasectomy and/or local ablative therapy (LAT), on the mCRC patients from the original study. MATERIALS AND METHODS: This retrospective cohort study was conducted at 12 European centers. The primary endpoint was recurrence of cardiotoxicity after switch. For this analysis, safety data are reported for 78 mCRC patients from the CardioSwitch cohort (N = 200). Detailed efficacy and outcomes data were available for 66 mCRC patients. RESULTS: Data for the safety of S-1 in mCRC patients were similar to the original CardioSwitch cohort and that expected for FP-based treatment, with no new concerns. Recurrent cardiotoxicity (all grade 1) with S-1-based treatment occurred in 4/78 (5%) mCRC patients; all were able to complete FP treatment. Median progression-free survival from initiation of S-1-based treatment was 9.0 months and median overall survival 26.7 months. Metastasectomy and/or LAT was performed in 33/66 (50%) patients, and S-1 was successfully used in recommended neoadjuvant/conversion or adjuvant-like combination regimens and schedules as for standard FPs. INTERPRETATION: S-1 is a safe and effective FP alternative when mCRC patients are forced to discontinue 5-FU or capecitabine due to cardiotoxicity and can be safely used in the standard recommended regimens, settings, and schedules.


Subject(s)
Capecitabine , Cardiotoxicity , Colorectal Neoplasms , Drug Combinations , Fluorouracil , Oxonic Acid , Tegafur , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Tegafur/adverse effects , Tegafur/administration & dosage , Oxonic Acid/administration & dosage , Oxonic Acid/adverse effects , Oxonic Acid/therapeutic use , Male , Female , Middle Aged , Aged , Retrospective Studies , Cardiotoxicity/etiology , Capecitabine/adverse effects , Capecitabine/administration & dosage , Fluorouracil/adverse effects , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Adult , Aged, 80 and over , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
Clin Transl Sci ; 17(5): e13828, 2024 May.
Article in English | MEDLINE | ID: mdl-38783568

ABSTRACT

As a treatment for relapsed or refractory multiple myeloma (MM), carfilzomib has been associated with a significant risk of cardiovascular adverse events (CVAE). The goals of our study were to evaluate the metabolomic profile of MM patients to identify those at high risk prior to carfilzomib treatment and to explore the mechanisms of carfilzomib-CVAE to inform potential strategies to protect patients from this cardiotoxicity. Global metabolomic profiling was performed on the baseline and post-baseline plasma samples of 60 MM patients treated with carfilzomib-based therapy, including 31 who experienced CVAE, in a prospective cohort study. Baseline metabolites and post-baseline/baseline metabolite ratios that differ between the CVAE and no-CVAE patients were identified using unadjusted and adjusted methods. A baseline metabolomic risk score was created to stratify patients. We observed a lower abundance of tauroursodeoxycholic acid (T-UDCA) in CVAE patients at baseline (odds ratio [OR] = 0.47, 95% confidence interval [CI] = 0.21-0.94, p = 0.044) compared with the no-CVAE patients. A metabolite risk score was able to stratify patients into three risk groups. The area under the receiver-operating curve of the model with clinical predictors and metabolite risk score was 0.93. Glycochenodeoxycholic acid (OR = 0.56, 95% CI = 0.31-0.87, p = 0.023) was significantly lower in post-baseline/baseline ratios of CVAE patients compared with no-CVAE patients. Following metabolomic analysis, we created a baseline metabolite risk score that can stratify MM patients into different risk groups. The result also provided intriguing clues about the mechanism of carfilzomib-CVAE and potential cardioprotective strategies.


Subject(s)
Cardiotoxicity , Metabolomics , Multiple Myeloma , Oligopeptides , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/blood , Oligopeptides/adverse effects , Male , Female , Aged , Middle Aged , Cardiotoxicity/etiology , Cardiotoxicity/blood , Cardiotoxicity/diagnosis , Metabolomics/methods , Prospective Studies , Metabolome/drug effects , Aged, 80 and over , Risk Factors
13.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791311

ABSTRACT

Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3ß. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3ß molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.


Subject(s)
Cardiotoxicity , Doxorubicin , MicroRNAs , Myocytes, Cardiac , Reactive Oxygen Species , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Animals , Doxorubicin/adverse effects , Doxorubicin/toxicity , Cardiotoxicity/etiology , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism , Guinea Pigs , Membrane Potential, Mitochondrial/drug effects , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Male , Calcium/metabolism , Gene Expression Regulation/drug effects
14.
Med Sci Monit ; 30: e945188, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775003

ABSTRACT

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study and the manuscript. Reference: Ying-Jun Zhang, He Huang, Yu Liu, Bin Kong, Guangji Wang. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-kappaB) Signaling Pathway. Med Sci Monit, 2019; 25: 7898-7907. DOI: 10.12659/MSM.919861.


Subject(s)
Apoptosis , Cardiotoxicity , Doxorubicin , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/deficiency , NF-kappa B/metabolism , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Apoptosis/drug effects , Animals , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Signal Transduction/drug effects , Inflammation/metabolism , Inflammation/pathology , Myocardium/pathology , Myocardium/metabolism , Mice , Lymphocyte Antigen 96/metabolism , Male , Mitogen-Activated Protein Kinases/metabolism
15.
FASEB J ; 38(10): e23677, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38775792

ABSTRACT

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Subject(s)
Artemisinins , Autophagy , Cardiotoxicity , Doxorubicin , Ferroptosis , Myocytes, Cardiac , NF-E2-Related Factor 2 , Artemisinins/pharmacology , Animals , NF-E2-Related Factor 2/metabolism , Autophagy/drug effects , Doxorubicin/adverse effects , Doxorubicin/toxicity , Mice , Ferroptosis/drug effects , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Mice, Inbred C57BL , Cell Line , Rats
16.
Free Radic Biol Med ; 219: 127-140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614228

ABSTRACT

Doxorubicin (DOX) is a widely utilized chemotherapeutic agent in clinical oncology for treating various cancers. However, its clinical use is constrained by its significant side effects. Among these, the development of cardiomyopathy, characterized by cardiac remodeling and eventual heart failure, stands as a major concern following DOX chemotherapy. In our current investigation, we have showcased the efficacy of MLN4924 in mitigating doxorubicin-induced cardiotoxicity through direct inhibition of the NEDD8-activating enzyme, NAE. MLN4924 demonstrated the ability to stabilize mitochondrial function post-doxorubicin treatment, diminish cardiomyocyte apoptosis, alleviate oxidative stress-induced damage in the myocardium, enhance cardiac contractile function, mitigate cardiac fibrosis, and impede cardiac remodeling associated with heart failure. At the mechanistic level, MLN4924 intervened in the neddylation process by inhibiting the NEDD8 activating enzyme, NAE, within the murine cardiac tissue subsequent to doxorubicin treatment. This intervention resulted in the suppression of NEDD8 protein expression, reduction in neddylation activity, and consequential manifestation of cardioprotective effects. Collectively, our findings posit MLN4924 as a potential therapeutic avenue for mitigating doxorubicin-induced cardiotoxicity by attenuating heightened neddylation activity through NAE inhibition, thereby offering a viable and promising treatment modality for afflicted patients.


Subject(s)
Apoptosis , Cardiotoxicity , Cyclopentanes , Doxorubicin , Myocytes, Cardiac , NEDD8 Protein , Pyrimidines , Animals , Doxorubicin/adverse effects , Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Pyrimidines/pharmacology , Mice , NEDD8 Protein/metabolism , NEDD8 Protein/antagonists & inhibitors , Cardiotoxicity/drug therapy , Cardiotoxicity/pathology , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis/drug effects , Oxidative Stress/drug effects , Humans , Male , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/genetics , Mice, Inbred C57BL
17.
Redox Biol ; 72: 103129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574433

ABSTRACT

AIMS: Doxorubicin is a powerful chemotherapeutic agent for cancer, whose use is limited due to its potential cardiotoxicity. Semaglutide (SEMA), a novel analog of glucagon-like peptide-1 (GLP-1), has received widespread attention for the treatment of diabetes. However, increasing evidence has highlighted its potential therapeutic benefits on cardiac function. Therefore, the objective of this study was to examine the efficacy of semaglutide in ameliorating doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: Doxorubicin-induced cardiotoxicity is an established model to study cardiac function. Cardiac function was studied by transthoracic echocardiography and invasive hemodynamic monitoring. The results showed that semaglutide significantly ameliorated doxorubicin-induced cardiac dysfunction. RNA sequencing suggested that Bnip3 is the candidate gene that impaired the protective effect of semaglutide in doxorubicin-induced cardiotoxicity. To determine the role of BNIP3 on the effect of semaglutide in doxorubicin-induced cardiotoxicity, BNIP3 with adeno-associated virus serotype 9 (AAV9) expressing cardiac troponin T (cTnT) promoter was injected into tail vein of C57/BL6J mice to overexpress BNIP3, specifically in the heart. Overexpression of BNIP3 prevented the improvement in cardiac function caused by semaglutide. In vitro experiments showed that semaglutide, via PI3K/AKT pathway, reduced BNIP3 expression in the mitochondria, improving mitochondrial function. CONCLUSION: Semaglutide ameliorates doxorubicin-induced mitochondrial and cardiac dysfunction via PI3K/AKT pathway, by reducing BNIP3 expression in mitochondria. The improvement in mitochondrial function reduces doxorubicin-mediated cardiac injury and improves cardiac function. Therefore, semaglutide is a potential therapy to reduce doxorubicin-induced acute cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Glucagon-Like Peptides , Membrane Proteins , Animals , Mice , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Glucagon-Like Peptides/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Humans
19.
Pak J Biol Sci ; 27(3): 125-131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38686734

ABSTRACT

<b>Background and Objective:</b> Doxorubicin is an anticancer therapy belonging to the anthracycline class, which has clinical activity in breast cancer. Doxorubicin can cause cardiotoxic effects due to the formation of doxorubicinol as its main metabolite. The purpose of this study was to obtain the optimum sample preparation conditions for the analysis of doxorubicin in VAMS and as a form of therapeutic drug monitoring (TDM) in patients with cancer breasts. <b>Materials and Methods:</b> Analyze doxorubicin and doxorubicinol levels with Volumetric Absorptive Microsampling (VAMS) in patients' cancer breasts receiving doxorubicin in their therapeutic regimen. The sample was analyzed using Ultra Performance Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS). The method uses deep linear range concentrations of 8-200 ng/mL for doxorubicin and 3-100 ng/mL for doxorubicinol. <b>Results:</b> Multiple reaction monitoring (MRM) value set at m/z 544.22>396.9 for doxorubicin; m/z 546.22>398.9 for doxorubicinol and m/z 528.5>362.95 for daunorubicin. The LLOQ value obtained was 8 ng/mL for doxorubicin and 3 ng/mL for doxorubicinol with linearity of 0.9904 for doxorubicin and 0.9902 for doxorubicinol. Analysis results show doxorubicin levels were in the range of 9.47 ng/mL to 87.84 ng/mL and doxorubicinol range between 4.24 and 54.02 ng/mL. <b>Conclusion:</b> Dosage cumulative doxorubicin ranges between 47.93 and 346.09 mg/m<sup>2</sup>; with this, the risk of cardiomyopathy in the patients surveyed is under 4%, according to the literature.


Subject(s)
Breast Neoplasms , Cardiotoxicity , Doxorubicin , Doxorubicin/analogs & derivatives , Drug Monitoring , Tandem Mass Spectrometry , Doxorubicin/adverse effects , Humans , Breast Neoplasms/drug therapy , Female , Cardiotoxicity/etiology , Drug Monitoring/methods , Antibiotics, Antineoplastic/adverse effects , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid , Liquid Chromatography-Mass Spectrometry
20.
Chem Commun (Camb) ; 60(37): 4898-4901, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38629248

ABSTRACT

A heart-on-a-particle model based on multicompartmental microgel is proposed to simulate the heart microenvironment and study the cardiotoxicity of drugs. The relevant microgel was fabricated by a biocompatible microfluidic-based approach, where heart function-related HL-1 and HUVEC cells were arranged in separate compartments. Finally, the mechanism of aconitine-induced heart toxicity was elucidated using mass spectrometry and molecular biotechnology.


Subject(s)
Aconitine , Human Umbilical Vein Endothelial Cells , Lab-On-A-Chip Devices , Aconitine/chemistry , Humans , Cardiotoxicity/etiology , Cell Line , Particle Size , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...