Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.574
Filter
1.
Circ Res ; 134(12): 1663-1680, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843286

ABSTRACT

Over the past 30 years, the field of cardioimmunology has moved from being dismissed as a field that was chasing an epiphenomenon of little biological consequence to a scientific discipline that is providing important new insights into the immunologic basis for hypertension, atherosclerosis, myocarditis, pericarditis, autoimmune heart disease, and heart failure. In this article, we will review the conceptual insights and technical breakthroughs that have allowed the field to move forward, as well as the clinical trials in the cardioimmunology space, to provide a historical context for the articles that will appear in the compendium that is focused on the interface between cardioimmunology, myocardial function, and disease.


Subject(s)
Heart Diseases , Humans , Animals , Heart Diseases/immunology , Heart Diseases/therapy , Allergy and Immunology/trends , Allergy and Immunology/history , Cardiovascular Diseases/immunology , History, 21st Century , History, 20th Century
3.
Circ Res ; 134(11): 1546-1565, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781300

ABSTRACT

Cardiac abnormalities were identified early in the epidemic of AIDS, predating the isolation and characterization of the etiologic agent, HIV. Several decades later, the causation and pathogenesis of cardiovascular disease (CVD) linked to HIV infection continue to be the focus of intense speculation. Before the widespread use of antiretroviral therapy, HIV-associated CVD was primarily characterized by HIV-associated cardiomyopathy linked to profound immunodeficiency. With increasing antiretroviral therapy use, viral load suppression, and establishment of immune competency, the effects of HIV on the cardiovascular system are more subtle. Yet, people living with HIV still face an increased incidence of cardiovascular pathology. Advances in cardiac imaging modalities and immunology have deepened our understanding of the pathogenesis of HIV-associated CVD. This review provides an overview of the pathogenesis of HIV-associated CVD integrating data from imaging and immunologic studies with particular relevance to the HIV population originating from high-endemic regions, such as sub-Saharan Africa. The review highlights key evidence gaps in the field and suggests future directions for research to better understand the complex HIV-CVD interactions.


Subject(s)
Cardiovascular Diseases , HIV Infections , Humans , HIV Infections/immunology , HIV Infections/epidemiology , HIV Infections/complications , Cardiovascular Diseases/immunology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/diagnostic imaging , Animals
4.
Front Immunol ; 15: 1402817, 2024.
Article in English | MEDLINE | ID: mdl-38803502

ABSTRACT

Sterile inflammation, characterized by a persistent chronic inflammatory state, significantly contributes to the progression of various diseases such as autoimmune, metabolic, neurodegenerative, and cardiovascular disorders. Recent evidence has increasingly highlighted the intricate connection between inflammatory responses and cardiovascular diseases, underscoring the pivotal role of the Stimulator of Interferon Genes (STING). STING is crucial for the secretion of type I interferon (IFN) and proinflammatory cytokines in response to cytosolic nucleic acids, playing a vital role in the innate immune system. Specifically, research has underscored the STING pathway involvement in unregulated inflammations, where its aberrant activation leads to a surge in inflammatory events, enhanced IFN I responses, and cell death. The primary pathway triggering STING activation is the cyclic GMP-AMP synthase (cGAS) pathway. This review delves into recent findings on STING and the cGAS-STING pathways, focusing on their regulatory mechanisms and impact on cardiovascular diseases. It also discusses the latest advancements in identifying antagonists targeting cGAS and STING, and concludes by assessing the potential of cGAS or STING inhibitors as treatments for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Humans , Nucleotidyltransferases/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/immunology , Membrane Proteins/metabolism , Animals , Immunity, Innate , Inflammation/immunology , Inflammation/metabolism
5.
Pharmacol Res ; 204: 107215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744399

ABSTRACT

The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.


Subject(s)
Cardiovascular Diseases , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/immunology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Animals , Ubiquitin/metabolism , Ubiquitin/immunology , Signal Transduction
6.
Signal Transduct Target Ther ; 9(1): 130, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816371

ABSTRACT

The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.


Subject(s)
Cardiovascular Diseases , Macrophages , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular Diseases/therapy , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Fibrosis/genetics , Inflammation/genetics , Inflammation/pathology , Inflammation/immunology , Animals
7.
Adv Protein Chem Struct Biol ; 140: 381-417, 2024.
Article in English | MEDLINE | ID: mdl-38762276

ABSTRACT

Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.


Subject(s)
Cardiovascular Diseases , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Cardiovascular Diseases/immunology , Immunotherapy , Immunity, Innate/immunology , Gastrointestinal Microbiome/immunology , Animals , Adaptive Immunity/immunology
8.
Nature ; 629(8010): 174-183, 2024 May.
Article in English | MEDLINE | ID: mdl-38693412

ABSTRACT

Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).


Subject(s)
Endurance Training , Multiomics , Physical Conditioning, Animal , Physical Endurance , Animals , Female , Humans , Male , Rats , Acetylation , Blood/immunology , Blood/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Databases, Factual , Epigenome , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Internet , Lipidomics , Metabolome , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Organ Specificity/physiology , Phosphorylation , Physical Conditioning, Animal/physiology , Physical Endurance/genetics , Physical Endurance/physiology , Proteome/metabolism , Proteomics , Time Factors , Transcriptome/genetics , Ubiquitination , Wounds and Injuries/genetics , Wounds and Injuries/immunology , Wounds and Injuries/metabolism
9.
Free Radic Biol Med ; 219: 64-75, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604314

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death globally, resulting in a major health burden. Thus, an urgent need exists for exploring effective therapeutic targets to block progression of CVDs and improve patient prognoses. Immune and inflammatory responses are involved in the development of atherosclerosis, ischemic myocardial damage responses and repair, calcification, and stenosis of the aortic valve. These responses can involve both large and small blood vessels throughout the body, leading to increased blood pressure and end-organ damage. While exploring potential avenues for therapeutic intervention in CVDs, researchers have begun to focus on immune metabolism, where metabolic changes that occur in immune cells in response to exogenous or endogenous stimuli can influence immune cell effector responses and local immune signaling. Itaconate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, is related to pathophysiological processes, including cellular metabolism, oxidative stress, and inflammatory immune responses. The expression of immune response gene 1 (IRG1) is upregulated in activated macrophages, and this gene encodes an enzyme that catalyzes the production of itaconate from the TCA cycle intermediate, cis-aconitate. Itaconate and its derivatives have exerted cardioprotective effects through immune modulation in various disease models, such as ischemic heart disease, valvular heart disease, vascular disease, heart transplantation, and chemotherapy drug-induced cardiotoxicity, implying their therapeutic potential in CVDs. In this review, we delve into the associated signaling pathways through which itaconate exerts immunomodulatory effects, summarize its specific roles in CVDs, and explore emerging immunological therapeutic strategies for managing CVDs.


Subject(s)
Cardiovascular Diseases , Succinates , Humans , Succinates/metabolism , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/immunology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/pathology , Citric Acid Cycle , Oxidative Stress/drug effects , Signal Transduction/drug effects , Carboxy-Lyases
10.
Cell Signal ; 119: 111169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599440

ABSTRACT

Cardiac resident macrophages (CRMs) are essential in maintaining the balance of the immune homeostasis in the heart. One of the main factors in the progression of cardiovascular diseases, such as myocarditis, myocardial infarction(MI), and heart failure(HF), is the imbalance in the regulatory mechanisms of CRMs. Recent studies have reported novel heterogeneity and spatiotemporal complexity of CRMs, and their role in maintaining cardiac immune homeostasis and treating cardiovascular diseases. In this review, we focus on the functions of CRMs, including immune surveillance, immune phagocytosis, and immune metabolism, and explore the impact of CRM's homeostasis imbalance on cardiac injury and cardiac repair. We also discuss the therapeutic approaches linked to CRMs. The immunomodulatory strategies targeting CRMs may be a therapeutic approach for the treatment of cardiovascular disease.


Subject(s)
Homeostasis , Macrophages , Humans , Macrophages/immunology , Macrophages/metabolism , Animals , Myocardium/immunology , Myocardium/metabolism , Myocardium/pathology , Phagocytosis , Cardiovascular Diseases/immunology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism
11.
Cardiovasc Res ; 120(7): 681-698, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38630620

ABSTRACT

Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.


Subject(s)
Cardiovascular Diseases , Mast Cells , Humans , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Mast Cells/pathology , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Signal Transduction , Phenotype , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Cardiovascular Agents/therapeutic use , Cardiovascular Agents/pharmacology , Cell Plasticity/drug effects , Inflammation Mediators/metabolism
12.
Int J Cardiovasc Imaging ; 40(4): 945-948, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558330

ABSTRACT

In the last century, there has been more than enough research that proved the association of high lipid and glucose levels with cardiovascular disease, thus establishing the current well-known traditional cardiovascular risk factors such as dyslipidemia, diabetes, and metabolic syndrome. Hence, these cardiovascular risk factors are target therapy for glucose and lipid-lowering agents to prevent adverse cardiovascular events. However, despite controlling the lipid and glucose levels, some studies demonstrated the subclinical atherosclerosis suggesting that these cardiovascular risk factors alone cannot account for the entire atherosclerosis burden. In the last years, large-scale clinical trials demonstrated the operation of the inflammatory pathway in atherosclerotic cardiovascular disease (ASCVD) by the immune system, both the innate (neutrophils, macrophages) and adaptive (T cell and other lymphocytes) limbs, contribute to atherosclerosis and atherothrombosis. In this regard, some studies that use antiinflammatory therapy targeting the immune system by modulating or blocking interleukins, also known as anti-cytokine therapy, have been shown to reduce the risk of adverse cardiovascular events in patients with previous coronary artery disease. In this regard, the U.S. Food and Drug Administration (FDA) approved the use of colchicine 0.5 mg once daily for reducing cardiovascular events in patients who have established ASCVD and high residual systemic inflammation. Therefore, measuring the systemic inflammation can improve the cardiovascular risk assessment and identify the subsets of patients that will benefit from anti-cytokine therapy after diagnosis of ASCVD or after myocardial revascularization.


Subject(s)
Anti-Inflammatory Agents , Biomarkers , Blood Glucose , Cytokines , Heart Disease Risk Factors , Inflammation Mediators , Inflammation , Triglycerides , Humans , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/adverse effects , Atherosclerosis/immunology , Atherosclerosis/drug therapy , Atherosclerosis/blood , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/immunology , Colchicine/therapeutic use , Colchicine/adverse effects , Cytokines/blood , Cytokines/metabolism , Inflammation/immunology , Inflammation/drug therapy , Inflammation/blood , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Risk Assessment , Risk Factors , Treatment Outcome , Triglycerides/blood
13.
J Cell Physiol ; 239(5): e31229, 2024 May.
Article in English | MEDLINE | ID: mdl-38426269

ABSTRACT

RNA-binding proteins (RBPs) play a crucial role in the regulation of posttranscriptional RNA networks, which can undergo dysregulation in many pathological conditions. Human antigen R (HuR) is a highly researched RBP that plays a crucial role as a posttranscriptional regulator. HuR plays a crucial role in the amplification of inflammatory signals by stabilizing the messenger RNA of diverse inflammatory mediators and key molecular players. The noteworthy correlations between HuR and its target molecules, coupled with the remarkable impacts reported on the pathogenesis and advancement of multiple diseases, position HuR as a promising candidate for therapeutic intervention in diverse inflammatory conditions. This review article examines the significance of HuR as a member of the RBP family, its regulatory mechanisms, and its implications in the pathophysiology of inflammation and cardiometabolic illnesses. Our objective is to illuminate potential directions for future research and drug development by conducting a comprehensive analysis of the existing body of research on HuR.


Subject(s)
Cardiovascular Diseases , ELAV-Like Protein 1 , Inflammation , Humans , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Inflammation/genetics , Inflammation/pathology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Animals , Gene Expression Regulation , Metabolic Diseases/genetics , Metabolic Diseases/immunology , Metabolic Diseases/metabolism , Signal Transduction , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
Cardiovasc Res ; 120(6): 567-580, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38395029

ABSTRACT

Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.


Subject(s)
Fibrosis , Hypertension , Myofibroblasts , Humans , Myofibroblasts/pathology , Myofibroblasts/metabolism , Animals , Hypertension/physiopathology , Hypertension/metabolism , Hypertension/pathology , Hypertension/immunology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Blood Pressure , Signal Transduction , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/immunology , Phenotype
15.
An. R. Acad. Nac. Farm. (Internet) ; 89(1): 23-51, Enero-Marzo 2023. graf
Article in English | IBECS | ID: ibc-219534

ABSTRACT

Apart from their well-stablished antihypercholesterolemic effect, HMG-CoA reductase inhibitors, commonly known as statins, have been described to exert pleotropic effects at different levels, including anti-inflammatory and pro-apoptotic responses. Since its discovery, and based on these properties, a broad range of studies have tried to evaluate their potential beneficial effects in other pathological situations beyond cardiovascular diseases (CVDs). Although statins effects have been evaluated in different types of diseases including not only in vitro and in vivo experiments, but also statin administration in patients, the current bibliography about statins is mainly focused on specific diseases and/or cell types. Hence, in this review, we aim to summarize every virtue attributed to statins in many pathologies, comprehending from the wellknown effects in CVDs to the recent discovered beneficial effects in the COVID-19 disease, trough cancer, brain and autoimmune diseases or even pathogen infections. We include the suggested mechanisms implicated in these effects, the current situation of the use of statins in different pathologies as well as their negative and/or opposite effects stated by some authors. Considering the substantial cost and slow pace of new drugs discovery and development besides the high attrition rates, several authors have remarked the need of repurposing old drugs to treat common and rare diseases. Given the low risk, the low overall development costs and the short development timelines, the purpose of this review is to emphasize the potential use of statins as multitarget drug to treat different pathologies. (AU)


Aparte de la actividad antihipercolesterolémica ampliamente descrita de los inhibidores de la HMG-CoA reductasa, conocidos como estatinas, estos fármacos también ejercen otros efectos pleiotrópicos, incluyendo respuestas antinflamatorias y proapoptóticas. Desde su descubrimiento, numerosos estudios han evaluado los efectos beneficiosos que ejercen en otras patologías diferentes a las que comúnmente se tratan con estatinas, como las enfermedades cardiovasculares (ECVs). Aunque se han evaluado sus efectos en estudiosin vitro e in vivo, así como en pacientes, la bibliografía existente está enfocada al uso de estatinas en una enfermedad o tipo celular concreto, por lo que, en esta revisión, pretendemos resumir en un mismo trabajo todas las virtudes atribuidas a las estatinas en numerosas patologías, que abarcan desde las ECVs hasta los beneficios recientemente descritos en relación a la COVID-19, considerando otras enfermedades comoel cáncer, patologías cerebrales y autoinmunes e incluso infecciones por agentes patógenos. Incluimos los mecanismos descritos en los efectos beneficiosos de las estatinas, la situación actual de su uso en diferentespatologías, así como la descripción de los efectos opuestos o negativos observados por algunos autores. El elevado coste y tiempo que implican el descubrimiento y desarrollo de nuevos fármacos, conlleva quemuchos autores propongan la reutilización de antiguos fármacos para el tratamiento de enfermedades tanto comunes como raras. Considerando el bajo riesgo, los bajos costes relativos de producción y los cortosplazos de desarrollo, el propósito de esta revisión es focalizar el potencial uso de las estatinas como fármacosmultiusos para el tratamiento de diferentes enfermedades. (AU)


Subject(s)
Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/immunology , Communicable Diseases/drug therapy , Pharmacology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/therapy , Autoimmune Diseases/drug therapy
17.
J Leukoc Biol ; 112(6): 1649-1661, 2022 12.
Article in English | MEDLINE | ID: mdl-36073777

ABSTRACT

Due to the ability of γδ T cells to bridge adaptive and innate immunity, γδ T cells can respond to a variety of molecular cues and acquire the ability to induce a variety of cytokines such as IL-17 family, IFN-γ, IL-4, and IL-10. IL-17+ γδ T cells (γδ T17 cells) populations have recently received considerable interest as they are the major early source of IL-17A in many immune response models. However, the exact mechanism of γδ T17 cells is still poorly understood, especially in the context of cardiovascular disease (CVD). CVD is the leading cause of death in the world, and it tends to be younger. Here, we offer a review of the cardiovascular inflammatory and immune functions of γδ T17 cells in order to understand their role in CVD, which may be the key to developing new clinical applications.


Subject(s)
Cardiovascular Diseases , Th17 Cells , Humans , Cardiovascular Diseases/immunology , Immunity, Innate , Interleukin-17 , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , Th17 Cells/immunology
18.
Front Immunol ; 13: 879600, 2022.
Article in English | MEDLINE | ID: mdl-35720418

ABSTRACT

Background: Transgender women (TW) are at increased risk for both human immunodeficiency virus (HIV) and cardiovascular disease (CVD). Antiretroviral therapy-treated HIV has been associated with a two-fold increased risk of CVD, potentially due to dysregulated Toll-like receptor (TLR)-induced immune activation. Use of estrogens in feminizing hormone therapy (FHT) may enhance inflammatory responses and the risk of cardiovascular mortality in TW. Despite this, the immunomodulatory effects of estrogen use in TW with HIV have been inadequately explored. Methods: As an in vitro model for FHT, cryopreserved PBMCs (cryoPBMCs) from HIV negative (HIV-), HIV+ ART-suppressed (HIV+SP), and HIV+ ART-unsuppressed (HIV+USP) cisgender men were cultured overnight in the presence of 17-ß estradiol or 17-α ethinylestradiol with and without the TLR4 agonist LPS or the TLR8 agonist ssPolyU. Monocyte activation (CD69, HLA-DR, CD38) was assessed by flow cytometry. Cytokine levels (IL-6, TNF-α, IL-1ß, and IL-10) were measured in cell culture supernatants by Legendplex. Levels of phosphorylated TLR signaling molecules (JNK, MAPK p38) were assessed by Phosflow. Plasma levels of immune activation biomarkers (LPS-binding protein, monocyte activation markers sCD14 and sCD163, and inflammatory molecules IL-6 and TNF-α receptor I) were measured by ELISA. Results: PBMCs from people with HIV (PWH) produced greater levels of inflammatory cytokines following exposure to LPS or ssPolyU compared to levels from cells of HIV- individuals. While estrogen exposure alone induced mild changes in immune activation, LPS-induced TLR4 activation was elevated with estrogen in cisgender men (CM) with HIV, increasing monocyte activation and inflammatory cytokine production (IL-6, TNF-α). Interestingly, testosterone inhibited LPS-induced cytokine production in CM regardless of HIV status. Plasma markers of immune activation and microbial translocation (e.g., sCD14, sCD163, LPS-binding protein) were generally higher in PWH compared to HIV- CM, and these markers were positively associated with in vitro responsiveness to estrogen and LPS in CM with HIV. Conclusions: Our in vitro data suggest that estrogen exposure may enhance innate immune activation in PWH. Further examination is needed to fully understand the complex interactions of FHT, HIV, and CVD in TW, and determine optimal FHT regimens or supplementary treatments aimed at reducing excess immune activation.


Subject(s)
Estrogens , HIV Infections , Toll-Like Receptor 4 , Transgender Persons , Cardiovascular Diseases/immunology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Cytokines/metabolism , Estrogens/adverse effects , Estrogens/pharmacology , Female , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , Humans , Interleukin-6/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharides/pharmacology , Male , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/immunology
19.
Viruses ; 14(2)2022 02 11.
Article in English | MEDLINE | ID: mdl-35215967

ABSTRACT

Zika virus (ZIKV), a re-emerging virus, causes congenital brain abnormalities and Guillain-Barré syndrome. It is mainly transmitted by Aedes mosquitoes, but infections are also linked to sexual transmissions. Infectious ZIKV has been isolated, and viral RNA has been detected in semen over a year after the onset of initial symptoms, but the mode of long-term persistence is not yet understood. ZIKV can proliferate in human Sertoli cells (HSerC) for several weeks in vitro, suggesting that it might be a reservoir for persistent ZIKV infection. This study determined proteomic changes in HSerC during ZIKV infections by TMT-mass spectrometry analysis. Levels of 4416 unique Sertoli cell proteins were significantly altered at 3, 5, and 7 days after ZIKV infection. The significantly altered proteins include enzymes, transcription regulators, transporters, kinases, peptidases, transmembrane receptors, cytokines, ion channels, and growth factors. Many of these proteins are involved in pathways associated with antiviral response, antigen presentation, and immune cell activation. Several immune response pathway proteins were significantly activated during infection, e.g., interferon signaling, T cell receptor signaling, IL-8 signaling, and Th1 signaling. The altered protein levels were linked to predicted activation of immune response in HSerC, which was predicted to suppress ZIKV infection. ZIKV infection also affected the levels of critical regulators of gluconeogenesis and glycolysis pathways such as phosphoglycerate mutase, phosphoglycerate kinase, and enolase. Interestingly, many significantly altered proteins were associated with cardiac hypertrophy, which may induce heart failure in infected patients. In summary, our research contributes to a better understanding of ZIKV replication dynamics and infection in Sertoli cells.


Subject(s)
Semen/virology , Sertoli Cells/immunology , Virus Replication , Zika Virus Infection/immunology , Carbohydrate Metabolism/immunology , Cardiovascular Diseases/immunology , Disease Transmission, Infectious , Humans , Male , Protein Processing, Post-Translational , Proteomics , RNA, Viral/genetics , Sertoli Cells/virology , Zika Virus/isolation & purification , Zika Virus Infection/transmission
20.
Life Sci ; 294: 120392, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35149115

ABSTRACT

The SARS coronavirus 2 (SARS CoV-2) causes Coronavirus Disease (COVID-19), is an emerging viral infection. SARS CoV-2 infects target cells by attaching to Angiotensin-Converting Enzyme (ACE2). SARS CoV-2 could cause cardiac damage in patients with severe COVID-19, as ACE2 is expressed in cardiac cells, including cardiomyocytes, pericytes, and fibroblasts, and coronavirus could directly infect these cells. Cardiovascular disorders are the most frequent comorbidity found in COVID-19 patients. Immune cells such as monocytes, macrophages, and T cells may produce inflammatory cytokines and chemokines that contribute to COVID-19 pathogenesis if their functions are uncontrolled. This causes a cytokine storm in COVID-19 patients, which has been associated with cardiac damage. Tregs are a subset of immune cells that regulate immune and inflammatory responses. Tregs suppress inflammation and improve cardiovascular function through a variety of mechanisms. This is an exciting research area to explore the cellular, molecular, and immunological mechanisms related to reducing risks of cardiovascular complications in severe COVID-19. This review evaluated whether Tregs can affect COVID-19-related cardiovascular complications, as well as the mechanisms through which Tregs act.


Subject(s)
COVID-19/immunology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/prevention & control , SARS-CoV-2 , T-Lymphocytes, Regulatory/physiology , Adoptive Transfer , Animals , Cardiovascular Diseases/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Humans , Inflammation/immunology , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...