Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.015
Filter
1.
Circ Res ; 134(11): 1566-1580, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781299

ABSTRACT

This interdisciplinary review explores the intricate nexus between HIV infection, nutrition, adrenal gland function, and cardiovascular health, highlighting a critical aspect of HIV management often overlooked in current literature. With the advent of antiretroviral therapy, the life expectancy of people living with HIV has dramatically improved, transforming HIV into a manageable chronic condition. However, this success brings forth new challenges, notably an increased risk of cardiovascular diseases among people living with HIV. We examine the normal physiology of the adrenal gland, including its role in mineral metabolism, a crucial facet of nutrition. We discuss the evolution of knowledge tying adrenal pathology to cardiovascular disease. We explore the impact of HIV on adrenal gland findings from a gross pathology perspective, as well as the clinical impact of adrenal insufficiency in HIV. The review further elucidates the role of nutrition in this context, considering the double burden of undernutrition and obesity prevalent in regions heavily affected by HIV. By aggregating findings from longitudinal studies and recent clinical trials, the review presents compelling evidence of increased cardiovascular disease among people living with HIV compared with people without HIV. It highlights the critical role of the adrenal glands in regulating nutrient metabolism and its implications for cardiovascular health, drawing attention to the potential for dietary interventions and targeted therapies to mitigate these risks. This review urges a paradigm shift in the management of HIV, advocating for a holistic approach that incorporates nutritional assessment and interventions into routine HIV care to address the complex interplay between HIV, adrenal function, and cardiovascular health. Through this lens, we offer insights into novel therapeutic strategies aimed at reducing cardiovascular risk in people living with HIV, contributing to the ongoing efforts to enhance the quality of life and longevity in this population.


Subject(s)
Adrenal Glands , Cardiovascular Diseases , HIV Infections , Nutritional Status , Humans , HIV Infections/complications , Cardiovascular Diseases/etiology , Adrenal Glands/metabolism , Adrenal Glands/physiopathology , Adrenal Insufficiency/physiopathology , Cardiovascular System/physiopathology , Cardiovascular System/metabolism
2.
Iran Biomed J ; 28(2&3): 59-70, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38770843

ABSTRACT

Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the ß2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.


Subject(s)
Adaptation, Physiological , Cold Temperature , Humans , Animals , Cardiovascular System/physiopathology , Cardiovascular System/drug effects , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Reperfusion Injury/metabolism , Reactive Oxygen Species/metabolism
3.
Menopause ; 31(5): 408-414, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38564706

ABSTRACT

OBJECTIVE: We investigated the systemic arterial hypertension effects on cardiovascular autonomic modulation and baroreflex sensitivity (BRS) in women with or without preserved ovarian function. METHODS: A total of 120 women were allocated into two groups: middle-aged premenopausal women (42 ± 3 y old; n = 60) and postmenopausal women (57 ± 4 y old; n = 60). Each group was also divided into two smaller groups (n = 30): normotensive and hypertensive. We evaluated hemodynamic and anthropometric parameters, cardiorespiratory fitness, BRS, heart rate variability (HRV), and blood pressure variability. The effects of hypertension and menopause were assessed using a two-way analysis of variance. Post hoc comparisons were performed using the Student-Newman-Keuls test. RESULTS: Comparing premenopausal groups, women with systemic arterial hypertension showed lower BRS (9.1 ± 4.4 vs 13.4 ± 4.2 ms/mm Hg, P < 0.001 ) and HRV total variance (1,451 ± 955 vs 2,483 ± 1,959 ms 2 , P = 0.005) values than normotensive; however, the vagal predominance still remained. On the other hand, both postmenopausal groups showed an expressive reduction in BRS (8.3 ± 4.2 vs 11.3 ± 4.8 ms/mm Hg, P < 0.001) and HRV characterized by sympathetic modulation predominance (low-frequency oscillations; 56% ± 17 vs 44% ± 17, P < 0.001), in addition to a significant increase in blood pressure variability variance (28.4 ± 14.9 vs 22.4 ± 12.5 mm Hg 2 , P = 0.015) compared with premenopausal groups. Comparing both postmenopausal groups, the hypertensive group had significantly lower values ​​of HRV total variance (635 ± 449 vs 2,053 ± 1,720 ms 2 , P < 0.001) and BRS (5.3 ± 2.8 vs 11.3 ± 3.2 ms/mm Hg) than the normotensive. CONCLUSIONS: Hypertensive middle-aged premenopausal women present HRV autonomic modulation impairment, but they still maintain a vagal predominance. After menopause, even normotensive women show sympathetic autonomic predominance, which may also be associated with aging. Furthermore, postmenopausal women with hypertension present even worse cardiac autonomic modulation.


Subject(s)
Autonomic Nervous System , Baroreflex , Blood Pressure , Heart Rate , Hypertension , Menopause , Postmenopause , Premenopause , Humans , Female , Middle Aged , Hypertension/physiopathology , Adult , Baroreflex/physiology , Heart Rate/physiology , Autonomic Nervous System/physiopathology , Autonomic Nervous System/physiology , Blood Pressure/physiology , Menopause/physiology , Postmenopause/physiology , Premenopause/physiology , Cardiovascular System/physiopathology , Cardiorespiratory Fitness/physiology
4.
Exp Gerontol ; 190: 112420, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588751

ABSTRACT

Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for ß-adrenergic receptors (ßARs), which are essential regulators of mammalian physiology. It has in fact been shown that ßARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the ß3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how ß3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.


Subject(s)
Aging , Cardiovascular Diseases , Estrogens , Receptors, Adrenergic, beta-3 , Receptors, Estrogen , Humans , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Female , Male , Receptors, Adrenergic, beta-3/metabolism , Estrogens/metabolism , Receptors, Estrogen/metabolism , Aging/physiology , Animals , Sex Factors , Cardiovascular System/metabolism , Cardiovascular System/physiopathology , Sex Characteristics , Signal Transduction
5.
JACC Cardiovasc Imaging ; 17(5): 533-551, 2024 May.
Article in English | MEDLINE | ID: mdl-38597854

ABSTRACT

Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.


Subject(s)
Aging , Cardiovascular Diseases , Cardiovascular System , Predictive Value of Tests , Humans , Aging/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/metabolism , Cardiovascular System/physiopathology , Cardiovascular System/metabolism , Age Factors , Aged , Healthy Aging , Prognosis , Middle Aged , Female , Male , Aged, 80 and over , Animals , Cellular Senescence
6.
J Appl Physiol (1985) ; 136(5): 1087-1096, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482575

ABSTRACT

Prolonged uninterrupted sitting of >3 h has been shown to acutely cause central and peripheral cardiovascular dysfunction. However, individuals rarely sit uninterrupted for >2 h, and the cardiovascular response to this time is currently unknown. In addition, while increased cardiorespiratory fitness (CRF) and habitual physical activity (HPA) are independently associated with improvements in central and peripheral cardiovascular function, it remains unclear whether they influence the response to uninterrupted sitting. This study sought to 1) determine whether 2 h of uninterrupted sitting acutely impairs carotid-femoral pulse wave velocity (cfPWV), femoral ankle PWV (faPWV), and central and peripheral blood pressure and 2) investigate the associations between CRF and HPA versus PWV changes during uninterrupted sitting. Following 2 h of uninterrupted sitting, faPWV significantly increased [mean difference (MD) = 0.26 m·s-1, standard error (SE) = 0.10, P = 0.013] as did diastolic blood pressure (MD = 2.83 mmHg, SE = 1.08, P = 0.014), however, cfPWV did not significantly change. Although our study shows 2 h of uninterrupted sitting significantly impairs faPWV, neither CRF (r = 0.105, P = 0.595) nor HPA (r = -0.228, P = 0.253) was associated with the increases.NEW & NOTEWORTHY We demonstrate that neither cardiorespiratory fitness nor habitual physical activity influence central and peripheral cardiovascular responses to a 2-h bout of uninterrupted sitting in healthy young adults.


Subject(s)
Blood Pressure , Cardiorespiratory Fitness , Exercise , Pulse Wave Analysis , Sitting Position , Humans , Cardiorespiratory Fitness/physiology , Male , Exercise/physiology , Female , Blood Pressure/physiology , Adult , Pulse Wave Analysis/methods , Young Adult , Sedentary Behavior , Carotid-Femoral Pulse Wave Velocity/methods , Vascular Stiffness/physiology , Cardiovascular System/physiopathology
7.
Cardiovasc Res ; 120(5): 443-460, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38456601

ABSTRACT

An increasing number of individuals are at high risk of type 2 diabetes (T2D) and its cardiovascular complications, including heart failure (HF), chronic kidney disease (CKD), and eventually premature death. The sodium-glucose co-transporter-2 (SGLT2) protein sits in the proximal tubule of human nephrons to regulate glucose reabsorption and its inhibition by gliflozins represents the cornerstone of contemporary T2D and HF management. Herein, we aim to provide an updated overview of the pleiotropy of gliflozins, provide mechanistic insights and delineate related cardiovascular (CV) benefits. By discussing contemporary evidence obtained in preclinical models and landmark randomized controlled trials, we move from bench to bedside across the broad spectrum of cardio- and cerebrovascular diseases. With landmark randomized controlled trials confirming a reduction in major adverse CV events (MACE; composite endpoint of CV death, non-fatal myocardial infarction, and non-fatal stroke), SGLT2 inhibitors strongly mitigate the risk for heart failure hospitalization in diabetics and non-diabetics alike while conferring renoprotection in specific patient populations. Along four major pathophysiological axes (i.e. at systemic, vascular, cardiac, and renal levels), we provide insights into the key mechanisms that may underlie their beneficial effects, including gliflozins' role in the modulation of inflammation, oxidative stress, cellular energy metabolism, and housekeeping mechanisms. We also discuss how this drug class controls hyperglycaemia, ketogenesis, natriuresis, and hyperuricaemia, collectively contributing to their pleiotropic effects. Finally, evolving data in the setting of cerebrovascular diseases and arrhythmias are presented and potential implications for future research and clinical practice are comprehensively reviewed.


Subject(s)
Blood Glucose , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/mortality , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/mortality , Cardiovascular Diseases/metabolism , Animals , Treatment Outcome , Blood Glucose/metabolism , Blood Glucose/drug effects , Sodium-Glucose Transporter 2/metabolism , Risk Assessment , Risk Factors , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Cardiovascular System/physiopathology , Biomarkers/blood
8.
Hypertension ; 81(6): 1233-1243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38533662

ABSTRACT

The interplay of various body systems, encompassing those that govern cardiovascular and metabolic functions, has evolved alongside the development of multicellular organisms. This evolutionary process is essential for the coordination and maintenance of homeostasis and overall health by facilitating the adaptation of the organism to internal and external cues. Disruption of these complex interactions contributes to the development and progression of pathologies that involve multiple organs. Obesity-associated cardiovascular risks, such as hypertension, highlight the significant influence that metabolic processes exert on the cardiovascular system. This cardiometabolic communication is reciprocal, as indicated by substantial evidence pointing to the ability of the cardiovascular system to affect metabolic processes, with pathophysiological implications in disease conditions. In this review, I outline the bidirectional nature of the cardiometabolic interaction, with special emphasis on the impact that metabolic organs have on the cardiovascular system. I also discuss the contribution of the neural circuits and autonomic nervous system in mediating the crosstalk between cardiovascular and metabolic functions in health and disease, along with the molecular mechanisms involved.


Subject(s)
Autonomic Nervous System , Cardiovascular Diseases , Humans , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/metabolism , Autonomic Nervous System/physiopathology , Autonomic Nervous System/metabolism , Cardiovascular System/physiopathology , Cardiovascular System/metabolism , Hypertension/physiopathology , Hypertension/metabolism , Obesity/physiopathology , Obesity/metabolism , Neural Pathways/physiopathology , Animals
13.
Nat Metab ; 5(4): 563-571, 2023 04.
Article in English | MEDLINE | ID: mdl-37100995

ABSTRACT

Cardiometabolic diseases are a major public-health concern owing to their increasing prevalence worldwide. These diseases are characterized by a high degree of interindividual variability with regards to symptoms, severity, complications and treatment responsiveness. Recent technological advances, and the growing availability of wearable and digital devices, are now making it feasible to profile individuals in ever-increasing depth. Such technologies are able to profile multiple health-related outcomes, including molecular, clinical and lifestyle changes. Nowadays, wearable devices allowing for continuous and longitudinal health screening outside the clinic can be used to monitor health and metabolic status from healthy individuals to patients at different stages of disease. Here we present an overview of the wearable and digital devices that are most relevant for cardiometabolic-disease-related readouts, and how the information collected from such devices could help deepen our understanding of metabolic diseases, improve their diagnosis, identify early disease markers and contribute to individualization of treatment and prevention plans.


Subject(s)
Metabolic Diseases , Monitoring, Physiologic , Wearable Electronic Devices , Humans , Cardiovascular System/physiopathology , Continuous Glucose Monitoring , Data Collection , Fitness Trackers , Life Style , Metabolic Diseases/diagnosis , Metabolic Diseases/physiopathology , Metabolic Diseases/therapy , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Polysomnography , Time Factors , Wearable Electronic Devices/trends
15.
Health Psychol Rev ; 17(1): 121-147, 2023 03.
Article in English | MEDLINE | ID: mdl-35445639

ABSTRACT

Novel research demonstrates that lower or 'blunted' cardiovascular reactions to stress are associated with a range of adverse outcomes. The aim of the current review was (1) to examine the prospective outcomes predicted by blunted cardiovascular reactivity and (2) to identify a range of blunted cardiovascular reaction levels that predict these outcomes. Electronic databases were systematically searched (Medline, PsycArticles, PsycInfo, CINAHL, PubMed, Web of Science). Studies were included if they examined the prospective influence of blunted cardiovascular reactivity to psychological stress (SBP, DBP or HR) on a negative health, behavioural or psychological outcome. A total of 23 studies were included in the review. Blunted reactivity predicted (1) adverse cardiovascular health, primarily in cardiac samples (e.g., myocardial infarction, carotid atherosclerosis) and (2) outcomes associated with motivational and behavioural dysregulation in healthy samples (e.g., obesity, smoking addiction, depression). The cardiovascular reactivity threshold levels that were predictive of adverse health outcomes ranged between -3.00-12.59 bpm (14.41% to 136.59% lower than the sample mean) and -2.4-5.00 mmhg (65.99% to 133.80% lower than sample mean), for HR and DBP respectively. We posit that blunted reactions lower than, or equal to, the ranges reported here may be utilised by clinicians and researchers to identify individuals who are at increased risk of adverse cardiovascular health outcomes, as well as outcomes associated with motivational and behavioural dysregulation.


Subject(s)
Cardiovascular System , Stress, Psychological , Humans , Cardiovascular System/physiopathology , Prospective Studies , Stress, Psychological/physiopathology , Risk Assessment , Carotid Artery Diseases/epidemiology , Myocardial Infarction/epidemiology , Obesity/epidemiology , Smoking/epidemiology , Depression/epidemiology
18.
Physiol Meas ; 44(1)2023 01 12.
Article in English | MEDLINE | ID: mdl-36343372

ABSTRACT

Objective.To conduct a systematic review of the possible effects of passive heating protocols on cardiovascular autonomic control in healthy individuals.Approach.The studies were obtained from MEDLINE (PubMed), LILACS (BVS), EUROPE PMC (PMC), and SCOPUS databases, simultaneously. Studies were considered eligible if they employed passive heating protocols and investigated cardiovascular autonomic control by spontaneous methods, such as heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), in healthy adults. The revised Cochrane risk-of-bias tool (RoB-2) was used to assess the risk of bias in each study.Main results.Twenty-seven studies were included in the qualitative synthesis. Whole-body heating protocols caused a reduction in cardiac vagal modulation in 14 studies, and two studies reported both increased sympathetic modulation and vagal withdrawal. Contrariwise, local-heating protocols and sauna bathing seem to increase cardiac vagal modulation. A reduction of BRS was reported in most of the studies that used whole-body heating protocols. However, heating effects on BRS remain controversial due to methodological differences among baroreflex analysis and heating protocols.Significance.Whole-body heat stress may increase sympathetic and reduce vagal modulation to the heart in healthy adults. On the other hand, local-heating therapy and sauna bathing seem to increase cardiac vagal modulation, opposing sympathetic modulation. Nonetheless, further studies should investigate acute and chronic effects of thermal therapy on cardiovascular autonomic control.


Subject(s)
Autonomic Nervous System , Cardiovascular System , Hyperthermia, Induced , Adult , Humans , Autonomic Nervous System/physiology , Autonomic Nervous System/physiopathology , Baroreflex/physiology , Blood Pressure/physiology , Cardiovascular System/innervation , Cardiovascular System/physiopathology , Heart/innervation , Heart/physiology , Heart Rate/physiology , Hot Temperature/adverse effects , Hyperthermia, Induced/adverse effects , Hyperthermia, Induced/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...