Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.239
Filter
1.
World J Microbiol Biotechnol ; 40(7): 230, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829459

ABSTRACT

ß-Carotene is an attractive compound and that its biotechnological production can be achieved by using engineered Saccharomyces cerevisiae. In a previous study, we developed a technique for the efficient establishment of diverse mutants through the introduction of point and structural mutations into the yeast genome. In this study, we aimed to improve ß-carotene production by applying this mutagenesis technique to S. cerevisiae strain that had been genetically engineered for ß-carotene production. Point and structural mutations were introduced into ß-carotene-producing engineered yeast. The resulting mutants showed higher ß-carotene production capacity than the parental strain. The top-performing mutant, HP100_74, produced 37.6 mg/L of ß-carotene, a value 1.9 times higher than that of the parental strain (20.1 mg/L). Gene expression analysis confirmed an increased expression of multiple genes in the glycolysis, mevalonate, and ß-carotene synthesis pathways. In contrast, expression of ERG9, which functions in the ergosterol pathway competing with ß-carotene production, was decreased in the mutant strain. The introduction of point and structural mutations represents a simple yet effective method for achieving mutagenesis in yeasts. This technique is expected to be widely applied in the future to produce chemicals via metabolic engineering of S. cerevisiae.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , beta Carotene , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , beta Carotene/biosynthesis , beta Carotene/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mutation , Gene Expression Regulation, Fungal , Carotenoids/metabolism , Mutagenesis , Point Mutation , Mevalonic Acid/metabolism , Biosynthetic Pathways/genetics , Farnesyl-Diphosphate Farnesyltransferase
2.
Food Res Int ; 188: 114512, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823883

ABSTRACT

Several studies have linked the intake of lycopene and/or tomato products with improved metabolic health under obesogenic regime. The aim was to evaluate the differential impact of supplementations with several tomato genotypes differing in carotenoid content and subjected to different irrigation levels on obesity-associated disorders in mice. In this study, 80 male C57BL/6JRj mice were assigned into 8 groups to receive: control diet, high fat diet, high fat diet supplemented at 5 % w/w with 4 tomato powders originating from different tomato genotypes cultivated under control irrigation: H1311, M82, IL6-2, IL12-4. Among the 4 genotypes, 2 were also cultivated under deficit irrigation, reducing the irrigation water supply by 50 % from anthesis to fruit harvest. In controlled irrigation treatment, all genotypes significantly improved fasting glycemia and three of them significantly lowered liver lipids content after 12 weeks of supplementation. In addition, IL6-2 genotype, rich in ß-carotene, significantly limited animal adiposity, body weight gain and improved glucose homeostasis as highlighted in glucose and insulin tolerance tests. No consistent beneficial or detrimental impact of deficit irrigation to tomato promoting health benefits was found. These findings imply that the choice of tomato genotype can significantly alter the composition of fruit carotenoids and phytochemicals, thereby influencing the anti-obesogenic effects of the fruit. In contrast, deficit irrigation appears to have an overall insignificant impact on enhancing the health benefits of tomato powder in this context, particularly when compared to the genotype-related variations in carotenoid content.


Subject(s)
Diet, High-Fat , Genotype , Mice, Inbred C57BL , Obesity , Solanum lycopersicum , Solanum lycopersicum/genetics , Animals , Male , Obesity/genetics , Obesity/metabolism , Mice , Carotenoids/metabolism , Fruit , Water , Agricultural Irrigation/methods , Blood Glucose/metabolism , Adiposity
3.
World J Microbiol Biotechnol ; 40(7): 227, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822932

ABSTRACT

In yeast metabolic engineering, there is a need for technologies that simultaneously suppress and regulate the expression of multiple genes and improve the production of target chemicals. In this study, we aimed to develop a novel technology that simultaneously suppresses the expression of multiple genes by combining RNA interference with global metabolic engineering strategy. Furthermore, using ß-carotene as the target chemical, we attempted to improve its production by using the technology. First, we developed a technology to suppress the expression of the target genes with various strengths using RNA interference. Using this technology, total carotenoid production was successfully improved by suppressing the expression of a single gene out of 10 candidate genes. Then, using this technology, RNA interference strain targeting 10 candidate genes for simultaneous suppression was constructed. The total carotenoid production of the constructed RNA interference strain was 1.7 times compared with the parental strain. In the constructed strain, the expression of eight out of the 10 candidate genes was suppressed. We developed a novel technology that can simultaneously suppress the expression of multiple genes at various intensities and succeeded in improving carotenoid production in yeast. Because this technology can suppress the expression of any gene, even essential genes, using only gene sequence information, it is considered a useful technology that can suppress the formation of by-products during the production of various target chemicals by yeast.


Subject(s)
Carotenoids , Gene Expression Regulation, Fungal , Metabolic Engineering , Saccharomyces cerevisiae , beta Carotene , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , RNA Interference
4.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830933

ABSTRACT

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Subject(s)
Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
5.
J Oleo Sci ; 73(5): 665-674, 2024.
Article in English | MEDLINE | ID: mdl-38692890

ABSTRACT

Sacha inchi seed oil is a food matrix rich in bioactive constituents, mainly polyunsaturated fatty acids. In this study, the characteristics of color, carotenoid content, tocopherols, and volatile aroma compounds in eight sacha inchi seed (Plukenetia volubilis L.) oil accessions were evaluated. Results showed that the oil obtained from the accessions presented a lightness and chroma of 91 to 98 units and 6 to 10 units respectively, while the hue angle ranged between 93 to 97 units. The total carotenoid content in the different accessions ranged from 0.6 to 1.5 mg/kg, while γ- and δ-tocopherol ranged from 861.6 to 1142 mg/kg and 587 to 717.1 mg/kg. In addition, the total content of tocopherols varied between 1450 and 1856 mg/kg and the δ/γ ratio ranged between 0.58 and 0.70. The oils from the accessions PER000408 (861 µg/kg) and PER000411 (896 µg/kg) were those with the higher volatile concentration, especially 1-hepten-3-ol, 2-nonanol, (E)-3-hexen- 1-ol, (E)-2-hexenal, and 1-hexanol. In this study, the variability of the oil obtained from 8 accessions were observed, from which promising accessions can be selected for continuous investigations of the new sacha inchi seed genotypes.


Subject(s)
Carotenoids , Plant Oils , Seeds , Tocopherols , Volatile Organic Compounds , Carotenoids/analysis , Tocopherols/analysis , Seeds/chemistry , Volatile Organic Compounds/analysis , Plant Oils/analysis , Plant Oils/chemistry , Brassicaceae/chemistry
6.
PLoS One ; 19(5): e0302541, 2024.
Article in English | MEDLINE | ID: mdl-38696430

ABSTRACT

This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.


Subject(s)
Chrysanthemum , Plant Diseases , Rhizoctonia , Volatile Organic Compounds , Chrysanthemum/metabolism , Chrysanthemum/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Chlorophyll/metabolism , Chlorophyll/analysis , Carotenoids/metabolism , Carotenoids/analysis
7.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702537

ABSTRACT

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Subject(s)
Fermentation , Molasses , Rhodotorula , Saccharum , beta Carotene , Rhodotorula/metabolism , Rhodotorula/genetics , Rhodotorula/growth & development , Rhodotorula/isolation & purification , Rhodotorula/classification , Saccharum/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , Carotenoids/metabolism , Antioxidants/metabolism , Biomass , Culture Media/chemistry , Phylogeny
8.
J Transl Med ; 22(1): 424, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704581

ABSTRACT

BACKGROUND: The measurement of the skin carotenoids using the Veggie Meter® has emerged as a rapid objective method for assessing fruit and vegetable intake, highly recommended by the Mediterranean Diet (MD), which represents one of the healthiest dietary patterns, worldwide. This study aimed to examine differences in skin carotenoid content and degree of adherence to the MD pattern between two adult populations from Southern Italy and the Dominican Republic. METHODS: This cross-sectional study enrolled a total of 995 adults, 601 subjects from Italy and 394 from the Dominican Republic. All participants underwent anthropometric measurements and skin carotenoid assessment by Veggie Meter®. Adherence to the MD and lifestyle were evaluated using the Mediterranean Diet Adherence Screener (MEDAS) and the Mediterranean Lifestyle Index (MEDLIFE) questionnaires. Correlations between the skin carotenoid and MEDAS score were estimated using Pearson's correlation coefficient. Multiple linear regression models were created to determine variables that affect skin carotenoid score for both populations. RESULTS: Mean total skin carotenoids were higher in the Italian compared to the Dominican Republic population (342.4 ± 92.4 vs 282.9 ± 90.3; p < 0.005) regardless of sex (women: 318.5 ± 88.9 vs 277.3 ± 91.9, p < 0.005 and men: 371.7 ± 88.3 vs 289.5 ± 88.1, p < 0.005), and remaining statistically significant after age-adjustment of the Dominican Republic sample. Using the MEDAS questionnaire, we found a higher MD adherence score in the Italian than in the Dominican Republic population also after age-adjusting data (7.8 ± 2.1 vs 6.2 ± 3.7; p < 0.005) and even when categorized by sex (Italian vs age-adjusted Dominican Republic women: 7.9 ± 2.1 vs 6.3 ± 2.6; Italian vs age-adjusted Dominican Republic men: 7.7 ± 2.2 vs 6.0 ± 4.7; p < 0.005). Using the MEDLIFE test, total Italians presented a lower score with respect to the age-adjusted Dominican Republic population (3.2 ± 1.2 vs 3.4 ± 1.4; p < 0.05). In multiple regression analysis, skin carotenoids were associated with sex and negatively associated with BMI in the Italian population (sex: ß: 54.95; 95% CI: 40.11, 69.78; p < 0.0001; BMI: ß: - 1.60; 95% CI: - 2.98,0.86; p = 0.03), while they resulted associated with age and sex in the Dominican Republic population (age: ß: 2.76; 95% CI: 1.92, 3.56; p < 0.001; sex: ß: 23.29; 95% CI: 5.93, 40.64; p = 0.009). Interestingly, skin carotenoids were positively correlated with MEDAS score in both populations (Italy: r = 0.03, p < 0.0001, Dominican Republic: r = 0.16, p = 0.002). CONCLUSIONS: This study provides the assessment of the adherence to the MD and skin carotenoid content in adults living in Southern Italy and the Dominican Republic, showing a higher MD adherence score and a skin carotenoid content in inhabitants from the Mediterranean region. Our findings highlight the need to globally encourage fruit and vegetable intake, particularly in non-Mediterranean area.


Subject(s)
Carotenoids , Diet, Mediterranean , Skin , Humans , Italy , Dominican Republic , Carotenoids/analysis , Carotenoids/metabolism , Female , Male , Adult , Skin/metabolism , Middle Aged , Cross-Sectional Studies , Patient Compliance/statistics & numerical data , Surveys and Questionnaires
9.
BMC Plant Biol ; 24(1): 369, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711012

ABSTRACT

BACKGROUND: The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS: Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS: Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.


Subject(s)
Carotenoids , Crocus , Flowers , Metabolomics , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flavonoids/metabolism , Gene Expression Profiling , Transcriptome , Metabolome
10.
Physiol Plant ; 176(3): e14327, 2024.
Article in English | MEDLINE | ID: mdl-38716559

ABSTRACT

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Subject(s)
Anthocyanins , Chlorophyll , Plant Leaves , Seasons , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/physiology , Anthocyanins/metabolism , Chlorophyll/metabolism , Plant Senescence , Zeaxanthins/metabolism , Carotenoids/metabolism , Light , Plant Proteins/metabolism , Xanthophylls/metabolism
11.
Front Cell Infect Microbiol ; 14: 1404960, 2024.
Article in English | MEDLINE | ID: mdl-38803574

ABSTRACT

Staphylococcus aureus and Staphylococcus epidermidis stand as notorious threats to human beings owing to the myriad of infections they cause. The bacteria readily form biofilms that help in withstanding the effects of antibiotics and the immune system. Intending to combat the biofilm formation and reduce the virulence of the pathogens, we investigated the effects of carotenoids, crocetin, and crocin, on four Staphylococcal strains. Crocetin was found to be the most effective as it diminished the biofilm formation of S. aureus ATCC 6538 significantly at 50 µg/mL without exhibiting bactericidal effect (MIC >800 µg/mL) and also inhibited the formation of biofilm by MSSA 25923 and S. epidermidis at a concentration as low as 2 µg/mL, and that by methicillin-resistant S. aureus MW2 at 100 µg/mL. It displayed minimal to no antibiofilm efficacy on the Gram-negative strains Escherichia coli O157:H7 and Pseudomonas aeruginosa as well as a fungal strain of Candida albicans. It could also curb the formation of fibrils, which partly contributes to the biofilm formation in S. epidermidis. Additionally, the ADME analysis of crocetin proclaims how relatively non-toxic the chemical is. Also, crocetin displayed synergistic antibiofilm characteristics in combination with tobramycin. The presence of a polyene chain with carboxylic acid groups at its ends is hypothesized to contribute to the strong antibiofilm characteristics of crocetin. These findings suggest that using apocarotenoids, particularly crocetin might help curb the biofilm formation by S. aureus and S. epidermidis.


Subject(s)
Anti-Bacterial Agents , Biofilms , Carotenoids , Microbial Sensitivity Tests , Staphylococcus epidermidis , Vitamin A , Biofilms/drug effects , Carotenoids/pharmacology , Vitamin A/analogs & derivatives , Vitamin A/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus epidermidis/drug effects , Candida albicans/drug effects , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Staphylococcus/drug effects
12.
Sci Prog ; 107(2): 368504241253695, 2024.
Article in English | MEDLINE | ID: mdl-38801654

ABSTRACT

The current emphasis within the cosmetic market on sustainable ingredients has heightened the exploration of new sources for natural, active components. Actinomycetota, recognized for producing pigments with bioactive potential, offer promising functional cosmetic ingredients. This study aimed to optimize pigment and antioxidant metabolite production from the Gordonia hongkongensis strain EUFUS-Z928 by implementing the Plackett-Burman experimental design and response surface methodology. Extracts derived from this strain exhibited no cytotoxic activity against human primary dermal fibroblast (HDFa, ATCC® PCS-201-012™, Primary Dermal Fibroblast; Normal, Human, Adult). Eight variables, including inoculum concentration, carbon and nitrogen source concentration, NaCl concentration, pH, incubation time, temperature, and stirring speed, were analyzed using the Plackett-Burman experimental design. Subsequently, factors significantly influencing pigment and antioxidant metabolite production, such as temperature, inoculum concentration, and agitation speed, were further optimized using response surface methodology and Box-Behnken design. The results demonstrated a substantial increase in absorbance (from 0.091 to 0.32), DPPH radical scavenging capacity (from 27.60% to 84.61%), and ABTS radical scavenging capacity (from 17.39% to 79.77%) compared to responses obtained in the isolation medium. The validation of the mathematical model accuracy exceeded 90% for all cases. Furthermore, liquid chromatography coupled with mass spectrometry (LC-MS) facilitated the identification of compounds potentially responsible for enhanced pigment production and antioxidant capacity in extracts derived from G. hongkongensis. Specifically, six carotenoids, red-orange pigments with inherent antioxidant capacity, were identified as the main enhanced compounds. This comprehensive approach effectively optimized the culture conditions and medium of a G. hongkongensis strain, resulting in enhanced carotenoid production and antioxidant capacity. Beyond identifying bioactive compounds and their potential cosmetic applications, this study offers insights into the broader industrial applicability of these extracts. It underscores the potential of G. hongkongensis and hints at the future utilization of other untapped sources of rare actinomycetes within the industry.


Subject(s)
Antioxidants , Carotenoids , Antioxidants/metabolism , Antioxidants/chemistry , Carotenoids/metabolism , Carotenoids/chemistry , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Gordonia Bacterium/metabolism
13.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722384

ABSTRACT

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Subject(s)
Lutein , Xanthophylls , Zeaxanthins , Lutein/biosynthesis , Lutein/metabolism , Zeaxanthins/metabolism , Xanthophylls/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Bacteria/metabolism , Humans , Biosynthetic Pathways
14.
Food Res Int ; 187: 114354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763639

ABSTRACT

Carotenoids, versatile natural pigments with numerous health benefits, face environmental concerns associated with conventional petrochemical-based extraction methods and limitations of their synthetic equivalents. In this context, this study aims to introduce eco-friendly approaches using ultrasound-based strategies (probe and bath) for the extraction of carotenoids from microalgae, initially focusing on Microchloropsis gaditana and subsequently evaluating the versatility of the method by applying it to other microalgae species of interest (Tisochrysis lutea, Porphyridium cruentum, and Phaeodactylum tricornutum) and defatted microalgal residues. Among the approaches evaluated, the 5-min ultrasonic probe system with ethanol showed comparable carotenoid recovery efficiency to the reference method (agitation, 24 h, acetone) (9.4 ± 2.5 and 9.6 ± 3.2 mg g-1 carotenoids per dry biomass, for the green and the reference method, respectively). Moreover, the method's sustainability was demonstrated using the AGREEprep™ software (scored 0.62 out of 1), compared to the traditional method (0.22 out of 1). The developed method yielded high carotenoid contents across species with diverse cell wall compositions (3.1 ± 0.2, 2.1 ± 0.3, and 4.1 ± 0.1 mg g-1 carotenoid per dry biomass for T. lutea, P. cruentum, and P. tricornutum, respectively). Moreover, the application of the method to defatted biomass showed potential for microalgal valorization with carotenoid recovery rates of 41 %, 60 %, 61 %, and 100 % for M.gaditana, P. tricornutum, T. lutea, and P. cruentum, compared to the original biomass, respectively. Furthermore, by using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-resolution mass spectrometry (HRMS), we reported the carotenoid and chlorophyll profiles of the different microalgae and evaluated the impact of the eco-friendly methods. The carotenoid and chlorophyll profiles varied depending on the species, biomass, and method used. In summary, this study advances a green extraction method with improved environmental sustainability and shorter extraction time, underscoring the potential of this approach as a valuable alternative for the extraction of microalgal pigments.


Subject(s)
Carotenoids , Microalgae , Carotenoids/analysis , Carotenoids/isolation & purification , Microalgae/chemistry , Mass Spectrometry , Ultrasonics/methods , Biomass , Green Chemistry Technology
15.
BMC Genomics ; 25(1): 469, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745121

ABSTRACT

Carotenoid cleavage oxygenases (CCOs) enzymes play a vital role in plant growth and development through the synthesis of apocarotenoids and their derivative. These chemicals are necessary for flower and fruit coloration, as well as the manufacture of plant hormones such as abscisic acid (ABA) and strigolactones, which control a variety of physiological processes. The CCOs gene family has not been characterized in Arachis hypogaea. Genome mining of A. hypogaea identifies 24 AhCCO gene members. The AhCCO gene family was divided into two subgroups based on the recent study of the Arabidopsis thaliana CCO gene family classification system. Twenty-three AhCCO genes, constituting 95.8% of the total, were regulated by 29 miRNAs, underscoring the significance of microRNAs (miRNAs) in governing gene expression in peanuts. AhCCD19 is the only gene that lacks a miRNA target site. The physicochemical characteristics of CCO genes and their molecular weights and isoelectric points were studied further. The genes were then characterized regarding chromosomal distribution, structure, and promoter cis-elements. Light, stress development, drought stress, and hormone responsiveness were discovered to be associated with AhCCO genes, which can be utilized in developing more resilient crops. The investigation also showed the cellular location of the encoded proteins and discovered that the peanut carotenoid oxygenase gene family's expansion was most likely the result of tandem, segmental, and whole-genome duplication events. The localization expresses the abundance of genes mostly in the cytoplasm and chloroplast. Expression analysis shows that AhCCD7 and AhCCD14 genes show the maximum expression in the apical meristem, lateral leaf, and pentafoliate leaf development, while AhNCED9 and AhNCED13 express in response to Aspergillus flavus resistance. This knowledge throws light on the evolutionary history of the AhCCO gene family and may help researchers better understand the molecular processes behind gene duplication occurrences in plants. An integrated synteny study was used to find orthologous carotenoid oxygenase genes in A. hypogaea, whereas Arabidopsis thaliana and Beta vulgaris were used as references for the functional characterization of peanut CCO genes. These studies provide a foundation for future research on the regulation and functions of this gene family. This information provides valuable insights into the genetic regulation of AhCCO genes. This technology could create molecular markers for breeding programs to develop new peanut lines.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Multigene Family , Oxygenases , Stress, Physiological , Arachis/genetics , Arachis/enzymology , Stress, Physiological/genetics , Oxygenases/genetics , Oxygenases/metabolism , Carotenoids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phylogeny , Genome, Plant , Promoter Regions, Genetic , Plant Proteins/genetics , Plant Proteins/metabolism
16.
PLoS One ; 19(5): e0303264, 2024.
Article in English | MEDLINE | ID: mdl-38758743

ABSTRACT

Saffron, the "golden spice" derived from Crocus sativus L., is renowned for its richness in secondary metabolites such as crocin and safranal, contributing to its unique properties. Facing challenges like decreasing global production, optimizing cultivation techniques becomes imperative for enhanced yields. Although the impact of factors like planting density, planting depth, spacing, and corm size on saffron growth has been studied, the interaction between corm size and planting depth remains underexplored. This study systematically investigates the interactive effects of corm size and planting depth on saffron growth and yield, providing evidence-based guidelines for optimizing cultivation. A factorial experiment, employing a completely randomized design, was conducted to assess the influence of corm size (05-10g, 10.1-15g, 15.1-20g) and planting depth (10cm, 15cm, 20cm) on saffron yield. Uniform-sized corms were obtained, and a suitable soil mixture was prepared for cultivation. Morphological and agronomic parameters were measured, and statistical analyses were performed using ANOVA and Tukey's HSD test. The study revealed that planting depth significantly affected saffron emergence. The corms sown under 15cm depth showed 100% emergence regardless of corm size (either 05-10g, 10.1-15g, 15.1-20g) followed by 10cm depth corms. Corm dry weight exhibited a complex interaction, where larger corms benefited from deeper planting, while intermediate-sized corms thrived at shallower depths. Similar patterns were observed in shoot fresh weight and dry weight. Specifically, the largest corm size (t3, 15.1-20g) produced the greatest fresh-weight biomass at the deepest planting depth of 20cm (T3), while intermediate-sized corms (t2, 10.1-15g) were superior at the shallowest 10cm depth (T1). The total plant biomass demonstrated that larger corms excelled in deeper planting, while intermediate-sized corms were optimal at moderate depths. This research highlights the intricate interplay between corm size and planting depth in influencing saffron growth. Larger corms generally promote higher biomass, but the interaction with planting depth is crucial. Understanding these dynamics can aid farmers in tailoring cultivation practices for optimal saffron yields. The study emphasizes the need for a coordinated approach to corm selection and depth placement, providing valuable insights for sustainable saffron production and economic growth.


Subject(s)
Crocus , Crocus/growth & development , Crocus/metabolism , Agriculture/methods , Soil/chemistry , Biomass , Carotenoids/metabolism
17.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791150

ABSTRACT

Tomatoes contain many secondary metabolites such as ß-carotene, lycopene, phenols, flavonoids, and vitamin C, which are responsible for antioxidant activity. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. Therefore, the present study was conducted to evaluate the sgr1 null lines based on their physicochemical characteristics, the content of secondary metabolites, and the γ-Aminobutyric acid (GABA) content. The total soluble solids (TSS), titrated acidity (TA), and brix acid ratio (BAR) of the sgr1 null lines were higher than those of the wild type(WT). Additionally, the sgr1 null lines accumulated higher levels of flavor-inducing ascorbic acid and total carotenoids compared to WT. Also, the total phenolic content, total flavonoids, GABA content, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical content of the sgr1 null lines were higher than those of the WT. Therefore, these studies suggest that the knockout of the SGR1 gene by the CRISPR/Cas9 system can improve various functional compounds in tomato fruit, thereby satisfying the antioxidant properties required by consumers.


Subject(s)
Antioxidants , CRISPR-Cas Systems , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Antioxidants/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Editing/methods , Gene Knockout Techniques , Carotenoids/metabolism , Phenols/metabolism , Ascorbic Acid/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Flavonoids/metabolism , gamma-Aminobutyric Acid/metabolism
18.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791472

ABSTRACT

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Subject(s)
Acetates , Cactaceae , Carotenoids , Cyclopentanes , Food Storage , Fruit , Oxylipins , Salicylic Acid , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Fruit/growth & development , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Acetates/pharmacology , Carotenoids/metabolism , Food Storage/methods , Cactaceae/chemistry , Cactaceae/growth & development , Cactaceae/metabolism , Salicylic Acid/pharmacology , Salicylates/pharmacology , Salicylates/metabolism , Phenols/analysis , Oxalic Acid/metabolism
19.
Sci Rep ; 14(1): 12173, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806551

ABSTRACT

Carotenoids play a role in preventing and impeding the progression of atherosclerotic cardiovascular diseases (ASCVDs) through their anti-oxidative effects. This study evaluated associations between ASCVD risk and skin carotenoid (SC) levels, reflecting dietary carotenoid intake. Participants' ASCVD risk was assessed using the Hisayama ASCVD risk prediction model, and SC levels were measured through a reflection spectroscope (Veggie Meter). The associations between high ASCVD risk and SC levels were analyzed using logistic regression analysis and a restricted cubic spline (RCS) model. A total of 1130 men and women (mean age: 56 years) from participants who underwent a health examination in Seirei Center for Health Promotion and Prevention Medicine in 2019 and 2022 were analyzed. Of these, 4.6% had moderate or high ASCVD risk. Mean SC values were 236, 315, 376, 447, and 606 in quintile Q1 to Q5, respectively. The adjusted odds ratios (95% confidence intervals) of SC quintile for moderate- or high-risk ASCVD was 0.24 (0.12-0.51) in Q5 (495 ≤), 0.42 (0.23-0.77) in Q4, 0.50 (0.29-0.88) in Q3, and 0.68 (0.41-1.12) in Q2 compared to Q1 (< 281). High SC values continuously showed non-linear inverse association with moderate- or high-risk for ASCVD in Japanese adults. Non-invasive SC measurements may be a good indicator for recommending carotenoids to prevent cardiovascular disease.


Subject(s)
Atherosclerosis , Carotenoids , Skin , Humans , Female , Male , Carotenoids/metabolism , Carotenoids/analysis , Middle Aged , Cross-Sectional Studies , Japan/epidemiology , Skin/metabolism , Skin/chemistry , Atherosclerosis/epidemiology , Aged , Adult , Cardiovascular Diseases/epidemiology , Risk Factors , Spectrum Analysis/methods , East Asian People
20.
Int J Med Mushrooms ; 26(6): 25-38, 2024.
Article in English | MEDLINE | ID: mdl-38808753

ABSTRACT

Colored oyster mushrooms species of genus Pleurotus are a variety of edible mushrooms that attract a lot of interest among the consumers and scientists due to its scientific evidence that they have promising health benefits. However, information on their characteristics and properties is still scarce. Consequently, it is important to determine the potential health benefits of the mushrooms. This review paper presents an overview of functional properties and nutritional values of colored oyster mushrooms (Pleurotus spp.). It particularly discusses the types of pigments present in Pleurotus spp., their characteristics, and potential nutritional values. Pigments such as melanin, carotenoids, and flavonoids are reported to be present in colored oyster mushrooms. Moreover, the antioxidant compounds of these mushrooms have been unveiled, demonstrating their potential to counteract oxidative stress and improve general health. In addition, the investigation into the nutritional characteristics of the mushrooms reveals encouraging aspects for their incorporation into dietary considerations. Thus, it can be concluded that colored Pleurotus species have an immense amount of potential for use as natural colorants, as well as nutritious and antioxidant-rich compounds. These mushrooms represent an important advancement in the search for functional foods due to their significant nutrients such as proteins, amino acids, carbohydrates, and fibers.


Subject(s)
Antioxidants , Nutritive Value , Pigments, Biological , Pleurotus , Pleurotus/chemistry , Pleurotus/classification , Antioxidants/chemistry , Antioxidants/analysis , Pigments, Biological/analysis , Pigments, Biological/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Functional Food
SELECTION OF CITATIONS
SEARCH DETAIL
...