Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
Sci Rep ; 14(1): 11783, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782944

ABSTRACT

Cyprinid herpesvirus is a causative agent of a destructive disease in common and koi carp (Cyprinus carpio), which leads to substantial global financial losses in aquaculture industries. Among the strains of C. herpesvirus, C. herpesvirus 1 (CyHV-1) and C. herpesvirus 3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.


Subject(s)
Carps , Fish Diseases , Herpesviridae Infections , Herpesviridae , Molecular Docking Simulation , Vaccines, Subunit , Animals , Vaccines, Subunit/immunology , Carps/virology , Carps/immunology , Herpesviridae/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/virology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Viral Vaccines/immunology , Epitopes/immunology , Epitopes/chemistry , Computational Biology/methods , Herpesvirus Vaccines/immunology , Immunoinformatics
2.
Int J Biol Macromol ; 269(Pt 2): 132104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719016

ABSTRACT

Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.


Subject(s)
Carps , Fish Proteins , Immunity, Innate , Membrane Proteins , Rhabdoviridae , Animals , Carps/immunology , Carps/genetics , Carps/virology , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Rhabdoviridae/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Rhabdoviridae Infections/immunology , Signal Transduction
3.
J Fish Dis ; 47(6): e13934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421376

ABSTRACT

Carp oedema virus (CEV) has distinct molecularly identified genogroups of viral mutations, denoted as I, IIa, and IIb. Failure to propagate CEV in vitro limits studies towards understanding its interactions with host cells. Here, virus isolates belonging to genogroup I collected during natural outbreaks in the Czech Republic were employed for routine CEV cultivation in monolayers of carp-derived primary cells, common carp brain (CCB) cells, and epithelioma papulosum cyprinid (EPC) cells. Induction of cytopathic effects (CPEs) was observed and recorded in affected cells. Cell survival rate was evaluated under serial dilutions of the CEV inoculum. Virus cell entry was quantified and visualized by qPCR and transmission electron microscopy, respectively. Study findings indicate primary gills epithelia likely present the most suitable matrix for CEV growth in vitro. Cells of the head kidney and spleen facilitate virus entry with microscopically confirmed CPEs and the presence of cytoplasmic pleomorphic virus particles. Cells of the trunk kidney and gonads are unlikely to permit virus cell entry and CPEs development. Although CEV cultivation in cell lines was inconclusive, EPC cells were CEV permissible. Monolayers of carp-derived primary cells show promise for CEV cultivation that could enable elaborate study of mechanisms underlying cellular binding and responses.


Subject(s)
Carps , Fish Diseases , Poxviridae , Animals , Carps/virology , Poxviridae/physiology , Poxviridae/genetics , Fish Diseases/virology , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Virus Cultivation/methods , Cell Line , Czech Republic , Cells, Cultured , Genotype
4.
Nucleic Acids Res ; 51(2): 806-830, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36130731

ABSTRACT

Zalpha (Zα) domains bind to left-handed Z-DNA and Z-RNA. The Zα domain protein family includes cellular (ADAR1, ZBP1 and PKZ) and viral (vaccinia virus E3 and cyprinid herpesvirus 3 (CyHV-3) ORF112) proteins. We studied CyHV-3 ORF112, which contains an intrinsically disordered region and a Zα domain. Genome editing of CyHV-3 indicated that the expression of only the Zα domain of ORF112 was sufficient for normal viral replication in cell culture and virulence in carp. In contrast, its deletion was lethal for the virus. These observations revealed the potential of the CyHV-3 model as a unique platform to compare the exchangeability of Zα domains expressed alone in living cells. Attempts to rescue the ORF112 deletion by a broad spectrum of cellular, viral, and artificial Zα domains showed that only those expressing Z-binding activity, the capacity to induce liquid-liquid phase separation (LLPS), and A-to-Z conversion, could rescue viral replication. For the first time, this study reports the ability of some Zα domains to induce LLPS and supports the biological relevance of dsRNA A-to-Z conversion mediated by Zα domains. This study expands the functional diversity of Zα domains and stimulates new hypotheses concerning the mechanisms of action of proteins containing Zα domains.


Subject(s)
DNA, Z-Form , Herpesviridae , Animals , Adenosine Deaminase/metabolism , Herpesviridae/genetics , Herpesviridae/metabolism , RNA, Double-Stranded , Carps/virology
5.
J Virol ; 96(19): e0117522, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36102647

ABSTRACT

The frequent outbreak of grass carp hemorrhagic disease caused by grass carp reovirus (GCRV), especially the mainly prevalent type II GCRV (GCRV-II), has seriously affected the grass carp culture in China. However, its pathogenic mechanism is still far from clear. In this study, the GCRV-II outer capsid protein VP35 was used as bait to capture interacting partners from Ctenopharyngon idellus kidney (CIK) cells, and heat shock protein 90 (Hsp90) was selected and confirmed interacting with VP35 through the C-terminal domain of Hsp90. Knockdown of Hsp90 or inhibition of Hsp90 activity suppressed GCRV-II proliferation, demonstrating that Hsp90 is an essential factor for GCRV-II proliferation. The confocal microscopy and flow cytometry showed that Hsp90 localized at both membrane and cytoplasm of CIK cells. The entry of GCRV-II into CIK cells was efficiently blocked by incubating the cells with Hsp90 antibody or by pretreating the virus with recombinant Hsp90 protein. Whereas overexpression of Hsp90 in CIK cells, grass carp ovary (GCO) cells, or 293T cells promoted GCRV-II entry, indicating that the membrane Hsp90 functions as a receptor of GCRV-II. Furthermore, Hsp90 interacted with clathrin and mediated GCRV-II entry into CIK cells through clathrin endocytosis pathway. In addition, we found that the cytoplasmic Hsp90 acted as a chaperone of VP35 because inhibition of Hsp90 activity enhanced VP35 polyubiquitination and degraded VP35 through the proteasome pathway. Collectively, our data suggest that Hsp90 functions both as a receptor for GCRV-II entry and a chaperone for the maturation of GCRV-II VP35, thus ensuring efficient proliferation of GCRV-II. IMPORTANCE Identification of viral receptors has always been the research hot spot in virus research field as receptor functions at the first stage of viral infection, which can be designed as efficient antiviral drug targets. GCRV-II, the causative agent of the grass carp epidemic hemorrhagic disease, has caused tremendous losses in grass carp culture in China. To date, the receptor of GCRV-II remains unknown. This study focused on identifying cellular receptor interacting with the GCRV-II outer capsid protein VP35, studying the effects of their interaction on GCRV-II proliferation, and revealing the underlying mechanisms. We demonstrated that Hsp90 acts both as a receptor of GCRV-II by interacting with VP35 and as a chaperone for the maturation of VP35, thus ensuring efficient proliferation of GCRV-II. Our data provide important insights into the role of Hsp90 in GCRV-II life cycle, which will help understand the mechanism of reovirus infection.


Subject(s)
Capsid Proteins , Fish Diseases , Heat-Shock Proteins , Reoviridae Infections , Reoviridae , Animals , Antibodies, Viral/metabolism , Capsid Proteins/metabolism , Carps/virology , Cell Proliferation , Clathrin/metabolism , Fish Diseases/virology , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Receptors, Virus/metabolism , Reoviridae/physiology , Reoviridae Infections/veterinary
6.
J Immunol ; 208(3): 707-719, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35022273

ABSTRACT

Grass carp reovirus (GCRV) is a highly virulent RNA virus that mainly infects grass carp and causes hemorrhagic disease. The roles of nonstructural proteins NS38 and NS80 of GCRV-873 in the viral replication cycle and viral inclusion bodies have been established. However, the strategies that NS38 and NS80 used to avoid host antiviral immune response are still unknown. In this study, we report the negative regulations of NS38 and NS80 on the RIG-I-like receptors (RLRs) antiviral signaling pathway and the production of IFNs and IFN-stimulated genes. First, both in the case of overexpression and GCRV infection, NS38 and NS80 inhibited the IFN promoter activation induced by RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7 and mRNA abundance of key antiviral genes involved in the RLR-mediated signaling. Second, both in the case of overexpression and GCRV infection, NS38 interacted with piscine TBK1 and IRF3, but not with piscine RIG-I, MDA5, MAVS, and TNF receptor-associated factor (TRAF) 3. Whereas NS80 interacted with piscine MAVS, TRAF3, and TBK1, but not with piscine RIG-I, MDA5, and IRF3. Finally, both in the case of overexpression and GCRV infection, NS38 inhibited the formation of the TBK1-IRF3 complex, but NS80 inhibited the formation of the TBK1-TRAF3 complex. Most importantly, NS38 and NS80 could hijack piscine TBK1 and IRF3 into the cytoplasmic viral inclusion bodies and inhibit the translocation of IRF3 into the nucleus. Collectively, all of these data demonstrate that GCRV nonstructural proteins can avoid host antiviral immune response by targeting the RLR signaling pathway, which prevents IFN-stimulated gene production and facilitates GCRV replication.


Subject(s)
Carps/virology , DEAD-box RNA Helicases/metabolism , Immune Evasion/immunology , Reoviridae Infections/veterinary , Reoviridae/immunology , Viral Nonstructural Proteins/immunology , Animals , Cells, Cultured , Fish Diseases/immunology , Fish Diseases/virology , Interferon Regulatory Factors/metabolism , Interferons/immunology , Protein Serine-Threonine Kinases/metabolism , Reoviridae Infections/immunology , Reoviridae Infections/pathology , TNF Receptor-Associated Factor 3/metabolism , Virus Replication/physiology
7.
Article in English | MEDLINE | ID: mdl-34822998

ABSTRACT

This experiment was conducted to evaluate the immunomodulatory effect and antiviral activity of Astragalus polysaccharides (APS) in crucian carp and epithelioma papulosum cyprinid (EPC) cells. Two diets containing 0 and 2 g/kg, APS were fed crucian carp for 56 days. The results showed that supplementation with APS significantly upregulated the immune-related indices including the levels of IgM, the activities of LZM, AKP and ACP, and the contents of C3 and C4. At the same time, compared with the CK group, adding APS to the feed significantly upregulated the expression of IL-8, IL-10, IL-1ß, IFN-α, IFN-γ, MyD88, TGF-ß and TNF-α in the spleen, kidney, liver and intestine of crucian carp. In addition, when the crucian carp were injected with SVCV, the survival rates of fish in the APS group and the control group were 48.87% and 13.76%, respectively. These results indicated that dietary APS could improve the resistance of crucian carp against SVCV infection. APS also significantly decreased viral titer and inhibited apoptosis induced by SVCV in EPC cells. These results indicated that APS could stimulate the immune response of crucian carp and improve the abilities of crucian carp and EPC cells to resist SVCV infection.


Subject(s)
Astragalus Plant/chemistry , Carps/immunology , Fish Diseases/drug therapy , Polysaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Animal Feed , Animals , Antiviral Agents/pharmacology , Apoptosis/drug effects , Carps/virology , Cells, Cultured , Dietary Supplements , Fish Diseases/virology , Fish Proteins/genetics , Gene Expression/drug effects , Viremia/drug therapy , Viremia/mortality , Viremia/veterinary
8.
Fish Shellfish Immunol ; 120: 451-457, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34902502

ABSTRACT

N-ethyl-N-nitrosourea (ENU) selection is a useful technique to generate new mutations that may cause some functional changes in the gene. Through our previous genomic bulked segregant analysis (BSA), one single nucleotide polymorphism (SNP) at the 3' UTR of Toll interacting protein gene (TOLLIP982T>C) was identified in grass carp (Ctenopharyngodon idella) subjected to ENU-induced mutagenesis. We found that the overexpression of cid-miR-nov-1043 mimics significantly suppressed the luciferase activity of the TOLLIP 3' UTR, but TOLLIP982T>C mutation at the target site can decrease the binding affinity between the miRNA cid-miR-nov-1043 and TOLLIP 3' UTR, reducing the inhibition of TOLLIP mRNA transcription in grass carp subjected to ENU-induced mutagenesis. More importantly, we demonstrated that TOLLIP mRNA transcription levels in the gills, liver, kidney and the isolate white cells of the mutant grass carp were significantly (p < 0.01) higher than those in the corresponding tissues from the wild-type grass carp following infection with Grass Carp Reovirus (GCRV) for seven days, while the downstream gene of TOLLIP transforming growth factor ß-activated kinase 1 (TAK1) and TAK1-binding protein 1 (TAB1), were higher expressed in wild-type grass carp. As a negative regulator in the pro-inflammatory pathway of NF-κB, TOLLIP inhibits the excessive inflammation in ENU grass carp after GCRV infection. Consistent with the TOLLIP expression, histopathological results demonstrated more severe inflammation in wild-type grass carp, compared to the TOLLIP982T>C mutant grass carp on the seventh day. Severe inflammation will lead to thoroughly infiltration of chloride and inflammatory cells in the gill filaments. This seriously hindered the exchange of oxygen, which ultimately disrupted blood circulation. Meanwhile, the survival rate of the mutant grass carp was significantly (p < 0.01) higher than that of the wild-type grass carp, indicating that the TOLLIP982T>C mutants showed strong anti-viral abilities. Our results revealed that an SNP in the TOLLIP 3' UTR may contribute to the suppression of serve inflammation subjected to ENU-induced mutagenesis following GCRV infection, which may be helpful for future resistant breeding development of grass carp.


Subject(s)
Carps , Fish Diseases , Intracellular Signaling Peptides and Proteins/genetics , MicroRNAs , Polymorphism, Single Nucleotide , Reoviridae Infections , 3' Untranslated Regions , Animals , Carps/genetics , Carps/virology , Ethylnitrosourea , Fish Diseases/genetics , Fish Diseases/virology , Fish Proteins/genetics , Inflammation , MicroRNAs/genetics , Mutagenesis , Reoviridae , Reoviridae Infections/genetics , Reoviridae Infections/veterinary
9.
Sci Rep ; 11(1): 23134, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848777

ABSTRACT

Microalgae are possible sources of antiviral substances, e.g. against cyprinid herpesvirus 3 (CyHV-3). Although this virus leads to high mortalities in aquacultures, there is no treatment available yet. Hence, ethanolic extracts produced with accelerated solvent extraction from six microalgal species (Arthrospira platensis, Chlamydomonas reinhardtii, Chlorella kessleri, Haematococcus pluvialis, Nostoc punctiforme and Scenedesmus obliquus) were examined in this study. An inhibition of the in vitro replication of CyHV-3 could be confirmed for all six species, with the greatest effect for the C. reinhardtii and H. pluvialis crude extracts. At still non-cytotoxic concentrations, viral DNA replication was reduced by over 3 orders of magnitude each compared to the untreated replication controls, while the virus titers were even below the limit of detection (reduction of 4 orders of magnitude). When pre-incubating both cells and virus with C. reinhardtii and H. pluvialis extracts before inoculation, the reduction of viral DNA was even stronger (> 4 orders of magnitude) and no infectious viral particles were detected. Thus, the results of this study indicate that microalgae and cyanobacteria are a promising source of natural bioactive substances against CyHV-3. However, further studies regarding the isolation and identification of the active components of the extracts are needed.


Subject(s)
Carps/virology , Chlamydomonas reinhardtii , Chlorella , Herpesviridae , Microalgae/metabolism , Nostoc , Scenedesmus , Spirulina , Virus Diseases/therapy , Animals , Aquaculture , Biomass , Biotechnology , Chlorophyceae/genetics , Chlorophyta , Complex Mixtures , Cyanobacteria/genetics , DNA Replication , DNA, Viral , Ethanol , In Vitro Techniques , Inhibitory Concentration 50 , Virus Replication , Water Microbiology
10.
Front Immunol ; 12: 769775, 2021.
Article in English | MEDLINE | ID: mdl-34804060

ABSTRACT

The crosstalk between the immune system and microbiota drives an amazingly complex mutualistic symbiosis. In mammals, the upper respiratory tract acts as a gateway for pathogen invasion, and the dynamic interaction between microbiota and mucosal immunity on its surface can effectively prevent disease development. However, the relationship between virus-mediated mucosal immune responses and microbes in lower vertebrates remains uncharacterized. In this study, we successfully constructed an infection model by intraperitoneally injecting common carp (Cyprinus carpio) with spring viremia of carp virus (SVCV). In addition to the detection of the SVCV in the nose and pharynx of common carp, we also identified obvious histopathological changes following viral infection. Moreover, numerous immune-related genes were significantly upregulated in the nose and pharynx at the peak of SVCV infection, after which the expression levels decreased to levels similar to those of the control group. Transcriptome sequencing results revealed that pathways associated with bacterial infection in the Toll-like receptor pathway and the Nod-like receptor pathway were activated in addition to the virus-related Rig-I-like receptor pathway after SVCV infection, suggesting that viral infection may be followed by opportunistic bacterial infection in these mucosal tissues. Using 16S rRNA gene sequencing, we further identified an upward trend in pathogenic bacteria on the mucosal surface of the nose and pharynx 4 days after SVCV infection, after which these tissues eventually reached new homeostasis. Taken together, our results suggest that the dynamic interaction between mucosal immunity and microbiota promotes the host to a new ecological state.


Subject(s)
Bacteria/immunology , Carps/immunology , Fish Diseases/immunology , Immunity, Mucosal/immunology , Pharynx/immunology , Rhabdoviridae/immunology , Animal Structures/immunology , Animal Structures/microbiology , Animal Structures/virology , Animals , Bacteria/classification , Bacteria/genetics , Carps/microbiology , Carps/virology , Fish Diseases/microbiology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/methods , Homeostasis/genetics , Homeostasis/immunology , Immunity, Mucosal/genetics , Pharynx/microbiology , Pharynx/virology , Phylogeny , RNA, Ribosomal, 16S/genetics , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Rhabdoviridae/genetics , Rhabdoviridae/physiology , Signal Transduction/genetics , Signal Transduction/immunology
11.
Int J Mol Sci ; 22(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34769442

ABSTRACT

Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.


Subject(s)
Carps/metabolism , Complement Factor D/metabolism , Fish Proteins/metabolism , Reoviridae Infections/metabolism , Reoviridae/physiology , Amino Acid Sequence , Animals , Carps/genetics , Carps/virology , Cloning, Molecular/methods , Complement Factor D/genetics , Fish Diseases/genetics , Fish Diseases/pathology , Fish Proteins/genetics , Phylogeny , Reoviridae Infections/genetics , Reoviridae Infections/pathology , Reoviridae Infections/virology , Sequence Analysis, DNA/methods , Sequence Homology, Amino Acid
12.
Front Immunol ; 12: 702971, 2021.
Article in English | MEDLINE | ID: mdl-34531856

ABSTRACT

Polyploidy and subsequent diploidization provide genomic opportunities for evolutionary innovations and adaptation. The researches on duplicated gene evolutionary fates in recurrent polyploids have seriously lagged behind that in paleopolyploids with diploidized genomes. Moreover, the antiviral mechanisms of Viperin remain largely unclear in fish. Here, we elaborate the distinct antiviral mechanisms of two viperin homeologs (Cgviperin-A and Cgviperin-B) in auto-allo-hexaploid gibel carp (Carassius gibelio). First, Cgviperin-A and Cgviperin-B showed differential and biased expression patterns in gibel carp adult tissues. Subsequently, using co-immunoprecipitation (Co-IP) screening analysis, both CgViperin-A and CgViperin-B were found to interact with crucian carp (C. auratus) herpesvirus (CaHV) open reading frame 46 right (ORF46R) protein, a negative herpesvirus regulator of host interferon (IFN) production, and to promote the proteasomal degradation of ORF46R via decreasing K63-linked ubiquitination. Additionally, CgViperin-B also mediated ORF46R degradation through autophagosome pathway, which was absent in CgViperin-A. Moreover, we found that the N-terminal α-helix domain was necessary for the localization of CgViperin-A and CgViperin-B at the endoplasmic reticulum (ER), and the C-terminal domain of CgViperin-A and CgViperin-B was indispensable for the interaction with degradation of ORF46R. Therefore, the current findings clarify the divergent antiviral mechanisms of the duplicated viperin homeologs in a recurrent polyploid fish, which will shed light on the evolution of teleost duplicated genes.


Subject(s)
Carps , Fish Diseases , Fish Proteins , Herpesviridae Infections , Herpesviridae/immunology , Polyploidy , Viperin Protein , Animals , Carps/genetics , Carps/immunology , Carps/virology , Cell Line , Fish Diseases/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Herpesviridae Infections/genetics , Herpesviridae Infections/immunology , Herpesviridae Infections/veterinary , Viperin Protein/genetics , Viperin Protein/immunology
13.
Microbiol Spectr ; 9(2): e0100021, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34523975

ABSTRACT

Grass carp reovirus (GCRV), the most virulent aquareovirus, causes epidemic hemorrhagic disease and tremendous economic loss in freshwater aquaculture industry. VP56, a putative fibrin inlaying the outer surface of GCRV-II and GCRV-III, is involved in cell attachment. In the present study, we found that VP56 localizes at the early endosome, lysosome, and endoplasmic reticulum, recruits the cytoplasmic viral RNA sensor retinoic acid-inducible gene I (RIG-I) and binds to it. The interaction between VP56 and RIG-I was detected by endogenous coimmunoprecipitation (co-IP), glutathione S-transferase (GST) pulldown, and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) and was then confirmed by traditional co-IPs and a novel far-red mNeptune-based bimolecular fluorescence complementation system. VP56 binds to the helicase domain of RIG-I. VP56 enhances K48-linked ubiquitination of RIG-I to degrade it by the proteasomal pathway. Thus, VP56 impedes the initial immune function of RIG-I by dual mechanisms (blockade and degradation) and attenuates signaling from RIG-I recognizing viral RNA, subsequently weakening downstream signaling transduction and interferon (IFN) responses. Accordingly, host antiviral effectors are reduced, and cytopathic effects are increased. These findings were corroborated by RNA sequencing (RNA-seq) and VP56 knockdown. Finally, we found that VP56 and the major outer capsid protein VP4 bind together in the cytosol to enhance the degradation of RIG-I and more efficiently facilitate viral replication. Collectively, the results indicated that VP56 allies VP4, recruits, blocks, and degrades RIG-I, thereby attenuating IFNs and antiviral effectors to facilitate viral evasion more effectively. This study reveals a virus attacking target and an escaping strategy from host antiviral immunity for GCRV and will help understand mechanisms of infection of reoviruses. IMPORTANCE Grass carp reovirus (GCRV) fibrin VP56 and major outer capsid protein VP4 inlay and locate on the outer surface of GCRV-II and GCRV-III, which causes tremendous loss in grass carp and black carp industries. Fibrin is involved in cell attachment and plays an important role in reovirus infection. The present study identified the interaction proteins of VP56 and found that VP56 and VP4 bind to the different domains of the viral RNA sensor retinoic acid-inducible gene I (RIG-I) in grass carp to block RIG-I sensing of viral RNA and induce RIG-I degradation by the proteasomal pathway to attenuate signaling transduction, thereby suppressing interferons (IFNs) and antiviral effectors, facilitating viral replication. VP56 and VP4 bind together in the cytosol to more efficiently facilitate viral evasion. This study reveals a virus attacking a target and an escaping strategy from host antiviral immunity for GCRV and will be helpful in understanding the mechanisms of infection of reoviruses.


Subject(s)
Capsid Proteins/metabolism , Carps/virology , DEAD Box Protein 58/metabolism , Interferons/immunology , Reoviridae/immunology , Animals , Capsid Proteins/genetics , Cell Line , Fish Diseases/virology , Fisheries/economics , RNA Interference , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA-Seq , Reoviridae/metabolism , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Tandem Mass Spectrometry , Ubiquitination
14.
Viruses ; 13(9)2021 09 03.
Article in English | MEDLINE | ID: mdl-34578342

ABSTRACT

Cyprinid herpesvirus 2 (CyHV-2), a member of the Alloherpesviridae family belonging to the genus Cyprinivirus, is a fatal contagious aquatic pathogen that affects goldfish (Carassius auratus) and crucian carp (Carassius carassius). Although crucian carp and goldfish belong to the genus Carassius, it is unclear whether they are susceptible to the same CyHV-2 isolate. In addition, the origin of the crucian carp-derived CyHV-2 virus isolate remains unclear. CyHV-2 SH01 was isolated during herpesviral hematopoietic necrosis disease (HVHN) outbreaks in crucian carp at a local fish farm near Shanghai. CyHV-2 SH01 was confirmed by PCR and Western blot analysis of kidney, spleen, muscle, and blood tissue from the diseased crucian carp. Moreover, histopathological and ultra-pathological analyses revealed pathological changes characteristic of CyHV-2 SH01 infection in the tissues of the diseased crucian carp. In the present study, goldfish and crucian carp were challenged with CyHV-2 SH01 to elucidate viral virulence. We found that CyHV-2 SH01 could cause rapid and fatal disease progression in goldfish and crucian carp 24 h post-injection at 28 °C. Experimental infection of goldfish by injection indicated that the average virus titer in the kidney of the goldfish was 103.47 to 103.59 copies/mg. In addition, tissues exhibited the most prominent histopathological changes (cellular wrinkling and shrinkage, cytoplasmic vacuolation, fusion of the gill lamellae, and hepatic congestion) in CyHV-2 SH01-infected goldfish and crucian carp. Thus, crucian carp and goldfish showed a high sensitivity, with typical symptoms, to HVHN disease caused by CyHV-2 SH01.


Subject(s)
Carps/virology , Fish Diseases/virology , Goldfish/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae/isolation & purification , Animals , China , Disease Susceptibility , Fish Diseases/pathology , Herpesviridae/classification , Herpesviridae/genetics , Herpesviridae Infections/pathology , Necrosis/pathology , Necrosis/veterinary , Necrosis/virology , Phylogeny
15.
Virulence ; 12(1): 1855-1883, 2021 12.
Article in English | MEDLINE | ID: mdl-34269137

ABSTRACT

Gills of fish are involved in respiration, excretion and osmoregulation. Due to numerous interactions between these processes, branchial diseases have serious implications on fish health. Here, "koi sleepy disease" (KSD), caused by carp edema virus (CEV) infection was used to study physiological, immunological and metabolic consequences of a gill disease in fish. A metabolome analysis shows that the moderately hypoxic-tolerant carp can compensate the respiratory compromise related to this infection by various adaptations in their metabolism. Instead, the disease is accompanied by a massive disturbance of the osmotic balance with hyponatremia as low as 71.65 mmol L-1, and an accumulation of ammonia in circulatory blood causing a hyperammonemia as high as 1123.24 µmol L-1. At water conditions with increased ambient salt, the hydro-mineral balance and the ammonia excretion were restored. Importantly, both hyponatremia and hyperammonemia in KSD-affected carp can be linked to an immunosuppression leading to a four-fold drop in the number of white blood cells, and significant downregulation of cd4, tcr a2 and igm expression in gills, which can be evaded by increasing the ion concentration in water. This shows that the complex host-pathogen interactions within the gills can have immunosuppressive consequences, which have not previously been addressed in fish. Furthermore, it makes the CEV infection of carp a powerful model for studying interdependent pathological and immunological effects of a branchial disease in fish.


Subject(s)
Carps , Fish Diseases , Hyperammonemia , Hyponatremia , Poxviridae Infections , Ammonia , Animals , Carps/immunology , Carps/virology , Edema , Fish Diseases/immunology , Fish Diseases/virology , Hyperammonemia/veterinary , Hyponatremia/veterinary , Poxviridae , Poxviridae Infections/immunology , Poxviridae Infections/veterinary
16.
Dev Comp Immunol ; 124: 104202, 2021 11.
Article in English | MEDLINE | ID: mdl-34246624

ABSTRACT

Scavenger receptor class B type 2 (SR-B2) is a pattern recognition receptor involved in innate immunity in mammals; however, the immunological function of SR-Bs in fish remains unclear. In this study, the full-length cDNA sequences of SR-B2a and SR-B2b from grass carp (Ctenopharyngodon idellus) were cloned and designated as CiSR-B2a and CiSR-B2b. Multiple alignments and phylogenetic analyses deduced that CiSR-B2a and CiSR-B2b had the highest evolutionary conservation and were closely related to the zebrafish (Danio rerio) homologs, DrSR-B2a and DrSR-B2b, respectively. Both CiSR-B2a and CiSR-B2b were expressed in all the tested tissues, with the highest expression levels found in the hepatopancreas. In Ctenopharyngodon idellus kidney cells (CIK), CiSR-B2a and CiSR-B2b were mainly located in the cytoplasm, and a small amount located on the plasma membrane. After challenge with Grass Carp Reovirus (GCRV), the expression of CiSR-B2a and CiSR-B2b were significantly upregulated in the spleen (about 10.27 and 27.19 times higher than that at 0 day, p < 0.01). With CiSR-B2a or CiSR-B2b overexpressed in CIK, the relative copy number of GCRV in the cells was both significantly increased compared to that in the control group, indicating that CiSR-B2a and CiSR-B2b may be important proteins during the infection processes of GCRV.


Subject(s)
Carps/virology , Reoviridae/pathogenicity , Scavenger Receptors, Class B/physiology , Amino Acid Sequence , Animals , Carps/genetics , Carps/immunology , Cell Line , Cell Membrane/metabolism , Cytoplasm/metabolism , Fish Diseases/genetics , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression , Immunity, Innate , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reoviridae Infections/genetics , Reoviridae Infections/immunology , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Scavenger Receptors, Class B/genetics , Sequence Alignment , Tissue Distribution , Viral Load/genetics
17.
Front Immunol ; 12: 694965, 2021.
Article in English | MEDLINE | ID: mdl-34220856

ABSTRACT

Grass carp (Ctenopharyngodon idellus) is an important aquaculture species in China that is affected by serious diseases, especially hemorrhagic disease caused by grass carp reovirus (GCRV). Grass carp have previously shown age-dependent susceptibility to GCRV, however, the mechanism by which this occurs remains poorly understood. Therefore, we performed transcriptome and metabolome sequencing on five-month-old (FMO) and three-year-old (TYO) grass carp to identify the potential mechanism. Viral challenge experiments showed that FMO fish were susceptible, whereas TYO fish were resistant to GCRV. RNA-seq showed that the genes involved in immune response, antigen presentation, and phagocytosis were significantly upregulated in TYO fish before the GCRV infection and at the early stage of infection. Metabolome sequencing showed that most metabolites were upregulated in TYO fish and downregulated in FMO fish after virus infection. Intragroup analysis showed that arachidonic acid metabolism was the most significantly upregulated pathway in TYO fish, whereas choline metabolism in cancer and glycerophospholispid metabolism were significantly downregulated in FMO fish after virus infection. Intergroup comparison revealed that metabolites from carbohydrate, amino acid, glycerophospholipid, and nucleotide metabolism were upregulated in TYO fish when compared with FMO fish. Moreover, the significantly differentially expressed metabolites showed antiviral effects both in vivo and in vitro. Based on these results, we concluded that the immune system and host biosynthesis and metabolism, can explain the age-dependent viral susceptibility in grass carp.


Subject(s)
Carps/virology , Fish Diseases/virology , Genomics , Metabolome , Metabolomics , Reoviridae Infections/veterinary , Reoviridae/pathogenicity , Transcriptome , Age Factors , Animals , Carps/genetics , Carps/metabolism , Cells, Cultured , Chromatography, Liquid/veterinary , Energy Metabolism , Fish Diseases/genetics , Fish Diseases/metabolism , Gene Expression Profiling/veterinary , Host-Pathogen Interactions , RNA-Seq/veterinary , Reoviridae Infections/genetics , Reoviridae Infections/metabolism , Reoviridae Infections/virology , Tandem Mass Spectrometry/veterinary
18.
Front Immunol ; 12: 687151, 2021.
Article in English | MEDLINE | ID: mdl-34290708

ABSTRACT

Anti-disease breeding is becoming the most promising solution to cyprinid herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. Virus challenging studies suggested that a breeding strain of common carp developed resistance to CyHV-3 infection. This study illustrates the immune mechanisms involved in both sensitivity and anti-virus ability for CyHV3 infection in fish. An integrative analysis of the protein-coding genes and long non-coding RNAs (lncRNAs) using transcriptomic data was performed. Tissues from the head kidney of common carp were extracted at days 0 (the healthy control) and 7 after CyHV-3 infection (the survivors) and used to analyze the transcriptome through both Illumina and PacBio sequencing. Following analysis of the GO terms and KEGG pathways involved, the immune-related terms and pathways were merged. To dig out details on the immune aspect, the DEGs were filtered using the current common carp immune gene library. Immune gene categories and their corresponding genes in different comparison groups were revealed. Also, the immunological Gene Ontology terms for lncRNA modulation were retained. The weighted gene co-expression network analysis was used to reveal the regulation of immune genes by lncRNA. The results demonstrated that the breeding carp strain develops a marked resistance to CyHV-3 infection through a specific innate immune mechanism. The featured biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage by lectins and MUC3. Moreover, the immune-suppressive signals, such as suppression of IL21R on STAT3, PI3K mediated inhibition of inflammation by dopamine upon infection, as well as the inhibition of NLRC3 on STING during a steady state. Possible susceptible factors for CyHV-3, such as ITGB1, TLR18, and CCL4, were also revealed from the non-breeding strain. The results of this study also suggested that Nramp and PAI regulated by LncRNA could facilitate virus infection and proliferation for infected cells respectively, while T cell leukemia homeobox 3 (TLX3), as well as galectin 3 function by lncRNA, may play a role in the resistance mechanism. Therefore, immune factors that are immunogenetically insensitive or susceptible to CyHV-3 infection have been revealed.


Subject(s)
Carps/genetics , Carps/immunology , Fish Diseases/genetics , Fish Diseases/immunology , Herpesviridae Infections/veterinary , Immunity, Innate/genetics , Animals , Carps/virology , Disease Susceptibility , Fish Diseases/virology , Gene Expression Profiling , Head Kidney/pathology , Herpesviridae/immunology , Herpesviridae/physiology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , High-Throughput Nucleotide Sequencing
19.
J Immunol ; 207(1): 244-256, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34183367

ABSTRACT

Ovarian tumor domain-containing 6B (OTUD6B) belongs to the OTU deubiquitylating enzyme family. In this study, we report that zebrafish otud6b is induced upon viral infection, and overexpression of otud6b suppresses cellular antiviral response. Disruption of otud6b in zebrafish increases the survival rate upon spring viremia of carp virus and grass carp reovirus exposure. Further assays indicate that otud6b interacts with irf3 and irf7 and diminishes traf6-mediated K63-linked polyubiquitination of irf3 and irf7. In addition, the OTU domain is required for otud6b to repress IFN-1 activation and K63-linked polyubiquitination of irf3 and irf7. Moreover, otud6b also attenuates tbk1 to bind to irf3 and irf7, resulting in the impairment of irf3 and irf7 phosphorylation. This study provides, to our knowledge, novel insights into otud6b function and sheds new lights on the regulation of irf3 and irf7 by deubiquitination in IFN-1 signaling.


Subject(s)
Carps/immunology , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factors/immunology , Lysine/immunology , Viremia/immunology , Zebrafish Proteins/immunology , Animals , Carps/virology , Cell Line , Ubiquitination , Viremia/virology , Zebrafish , Zebrafish Proteins/genetics
20.
Viruses ; 13(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946252

ABSTRACT

The hemorrhagic disease of grass carp (HDGC) caused by grass carp reovirus (GCRV) still poses a great threat to the grass carp industry. Isolation and identification of the GCRV genotype I (GCRV-I) has been rarely reported in the past decade. In this study, a new GCRV was isolated from diseased fish with severe symptoms of enteritis and mild hemorrhages on the body surface. The isolate was further identified by cell culture, transmission electron, indirect immunofluorescence, and SDS-PAGE electrophoretic pattern analysis of genomic RNA. The results were consistent with the new isolate as a GCRV-I member and tentatively named GCRV-GZ1208. Both grass carp and rare minnow infected by the GCRV-GZ1208 have no obvious hemorrhagic symptoms, and the final mortality rate was ≤10%, indicating that it may be a low virulent isolate. GZ1208 possessed highest genomic homology to 873/GCHV (GCRV-I) and golden shiner reovirus (GSRV). Additionally, it was found a 90.7-98.3% nucleotide identity, a 96.4-100% amino acid identity, and <50% identity with GCRV-II and III genotypes. Interestingly, the sequences of some segments of GZ1208 were similar to GCRV-8733/GCHV, whereas the remaining segments were more closely related to GSRV, suggesting that a recombination event had occurred. Bootscan analysis of the complete genomic sequence confirmed this hypothesis, and recombination events between 873/GCHV and other GSRV-like viruses were also accompanied by gene mutations.


Subject(s)
Carps/virology , Fish Diseases/virology , Genotype , Recombination, Genetic , Reoviridae/genetics , Animals , Antigens, Viral , Cell Line , Cells, Cultured , Cytopathogenic Effect, Viral , Genome, Viral , Genomics/methods , Reoviridae/isolation & purification , Reoviridae/pathogenicity , Reoviridae/ultrastructure , Virulence/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...