Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63.481
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 636-643, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708495

ABSTRACT

OBJECTIVE: To investigate the effect of Jisuikang formula-medicated serum for promoting spinal cord injury (SCI) repair in rats and explore the possible mechanism. METHODS: Thirty adult SD rats were randomized into sham-operated group, SCI (induced using a modified Allen method) model group, and Jisuikang formula-medicated serum treatment group. After the operations, the rats were treated with normal saline or Jisuikang by gavage on a daily basis for 14 days, and the changes in hindlimb motor function of the rats was assessed with Basso-Beattie-Bresnahan (BBB) scores and inclined-plate test. The injured spinal cord tissues were sampled from the SCI rat models for single-cell RNA sequencing, and bioinformatics analysis was performed to identify the target genes of Jisuikang, spinal cord injury and glycolysis. In the cell experiment, cultured astrocytes from neonatal SD rat cortex were treated with SOX2 alone or in combination with Jisuikang-medicated serum for 21 days, and the protein expressions of PKM2, p-PKM2 and YAP and colocalization of PKM2 and YAP in the cells were analyzed with Western blotting and immunofluorescence staining, respectively. RESULTS: The SCI rats with Jisuikang treatment showed significantly improved BBB scores and performance in inclined-plate test. At the injury site, high PKM2 expression was detected in various cell types. Bioinformatic analysis identified the HIPPO-YAP signaling pathway as the target pathway of Jisuikang. In cultured astrocytes, SOX2 combined with the mediated serum, as compared with SOX2 alone, significantly increased PKM2, p-PKM2 and YAP expressions and entry of phosphorylated PKM2 into the nucleus, and promoted PKM2 and YAP co-localization in the cells. CONCLUSION: Jisuikang formula accelerates SCI repair in rats possibly by promoting aerobic glycolysis of the astrocytes via activating the PKM2/YAP axis to induce reprogramming of the astrocytes into neurons.


Subject(s)
Astrocytes , Pyruvate Kinase , Signal Transduction , Spinal Cord Injuries , YAP-Signaling Proteins , Animals , Rats , Astrocytes/metabolism , Astrocytes/drug effects , Carrier Proteins/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Membrane Proteins/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Thyroid Hormone-Binding Proteins , Thyroid Hormones/metabolism
2.
Life Sci ; 349: 122719, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759866

ABSTRACT

In the vast landscape of human health, head and neck cancer (HNC) poses a significant health burden globally, necessitating the exploration of novel diagnostics and therapeutics. Metabolic alterations occurring within tumor microenvironment are crucial to understand the foundational cause of HNC. Post-translational modifications (PTMs) have recently emerged as a silent foe exerting a significantly heightened influence on various aspects of the biological processes associated with the onset and advancement of cancer, particularly in the context of HNC. There are numerous targets involved in HNC but recently, the enzyme pyruvate kinase M2 (PKM2) has come out as a hot target due to its involvement in glycolysis resulting in metabolic reprogramming of cancer cells. Various PTMs have been reported to affect the structure and function of PKM2 by modulating its activity. This review aims to investigate the impact of PTMs on the interaction between PKM2 and several signaling pathways and transcription factors in the context of HNC. These interactions possess significant ramification for cellular proliferation, apoptosis, angiogenesis and metastasis. This review primarily explores the role of PTMs influencing PKM2 and its involvement in tumor development. While acknowledging the significance of PKM2 interactions with other tumor regulators, the emphasis lies on dissecting PTM-related mechanisms rather than solely scrutinizing individual regulators. It lays the framework for the development of more sophisticated diagnostic tools and uncovers exciting possibilities for precision medicine essential for effectively addressing the complexity of this malignancy in a precise and focused manner.


Subject(s)
Carrier Proteins , Head and Neck Neoplasms , Membrane Proteins , Protein Processing, Post-Translational , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Humans , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Thyroid Hormones/metabolism , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Tumor Microenvironment , Animals , Signal Transduction
3.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 354-362, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38733191

ABSTRACT

Objective: To observe the therapeutic effect of Shengsan Jiedu Huayu decoction in alleviating inflammatory liver injury in rats with acute-on-chronic liver failure (ACLF) and its effect on the activation intensity for the NLRP3 signaling pathway. Methods: 63 SD rats were randomly divided into a blank group, a model group, and low-, medium-, and high-dose groups of Shengsan Jiedu Huayu decoction (7.29 g/kg/d, 14.58 g/kg/d, and 29.16 g/kg/d). The ACLF rat model was replicated using carbon tetrachloride combined with d-galactosamine and lipopolysaccharide. Different dose gradients of the Shengsan Jiedu Huayu decoction were used for a five-day intervention treatment, and then rat serum and tissue samples were collected. A biochemical analyzer was used to detect the serum levels of ALT, AST, and TBIL in rats. ELISA was used to detect serum IL-18 and IL-1ß content. HE staining was used to observe histomorphological changes in liver tissue. Immunohistochemistry was used to detect GSDMD expression in liver tissue. Western blot and PCR were used to detect NLRP3, Caspase1, ASC, TLR4, IL-1ß, IL-18 protein, and mRNA expression levels.The groups were compared using analysis of variance and the rank-sum test. Results: Compared with the blank group, the model group's rat liver tissue was severely injured. Serum levels of ALT, AST, and TBIL, inflammatory factors IL-1ß and IL-18, and the GSDMD protein expression level, NLRP3 expression level, TLR4, caspase 1, ASC, IL-1ß, IL-18 protein, and mRNA (P<0.01) were all significantly increased in the model than the blank group (P<0.01). Additionally, compared with the model group, the low-, medium-, and high-dose groups of Shengsan Jiedu Huayu decoction had improved liver tissue injury in ACLF rats, while the serum levels of ALT, AST, TBIL, IL-1ß, IL-18, liver tissue GSDMD protein, NLRP3, TLR4, caspase 1, and ASC expressions were all lower in the different dose gradients of the Shengsan Jiedu Huayu decoction than the model group, with the most evident reduction in the high-dose group (P<0.01). Conclusion: Shengsan Jiedu Huayu decoction can weaken the activation intensity of the NLRP3 signaling pathway, alleviate liver tissue pathological injury, reduce inflammatory factor release, and alleviate inflammatory liver injury in ACLF rats.


Subject(s)
Acute-On-Chronic Liver Failure , Drugs, Chinese Herbal , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute-On-Chronic Liver Failure/drug therapy , Acute-On-Chronic Liver Failure/etiology , Drugs, Chinese Herbal/pharmacology , Rats , Signal Transduction/drug effects , Male , Interleukin-18/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Interleukin-1beta/metabolism , Toll-Like Receptor 4/metabolism , Carrier Proteins/metabolism
4.
Biochem Biophys Res Commun ; 716: 149954, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704887

ABSTRACT

Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.


Subject(s)
Cell Membrane , Cholesterol , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Vero Cells , Chlorocebus aethiops , Cholesterol/metabolism , Animals , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Cell Membrane/metabolism , Cell Membrane/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , Carrier Proteins/metabolism , COVID-19/virology , COVID-19/metabolism , Protein Binding
5.
Metallomics ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38692844

ABSTRACT

Eukaryotic DNA codes not only for proteins but contains a wealth of information required for accurate splicing of messenger RNA precursors and inclusion of constitutively or alternatively spliced exons in mature transcripts. This "auxiliary" splicing code has been characterized as exonic splicing enhancers and silencers (ESE and ESS). The exact interplay between protein and splicing codes is, however, poorly understood. Here, we show that exons encoding copper-coordinating amino acids in human cuproproteins lack ESEs and/or have an excess of ESSs, yet RNA sequencing and expressed sequence tags data show that they are more efficiently included in mature transcripts by the splicing machinery than average exons. Their largely constitutive inclusion in messenger RNA is facilitated by stronger splice sites, including polypyrimidine tracts, consistent with an important role of the surrounding intron architecture in ensuring high expression of metal-binding residues during evolution. ESE/ESS profiles of codons and entire exons that code for copper-coordinating residues were very similar to those encoding residues that coordinate zinc but markedly different from those that coordinate calcium. Together, these results reveal how the traditional and auxiliary splicing motifs responded to constraints of metal coordination in proteins.


Subject(s)
Copper , Exons , RNA Splicing , Humans , Exons/genetics , Copper/metabolism , Alternative Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Enhancer Elements, Genetic/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism
6.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727583

ABSTRACT

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Subject(s)
Carrier Proteins , Disease Models, Animal , Retinal Cone Photoreceptor Cells , Retinitis Pigmentosa , Animals , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Mutation, Missense , Cell Survival , Alleles , Gene Deletion , Thioredoxins/genetics , Thioredoxins/metabolism , Retinal Pigment Epithelium/metabolism
7.
Science ; 384(6698): 920-928, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781377

ABSTRACT

Excitatory and inhibitory synapses do not overlap even when formed on one submicron-sized dendritic protrusion. How excitatory and inhibitory postsynaptic cytomatrices or densities (e/iPSDs) are segregated is not understood. Broadly, why membraneless organelles are naturally segregated in cellular subcompartments is unclear. Using biochemical reconstitutions in vitro and in cells, we demonstrate that ePSDs and iPSDs spontaneously segregate into distinct condensed molecular assemblies through phase separation. Tagging iPSD scaffold gephyrin with a PSD-95 intrabody (dissociation constant ~4 nM) leads to mistargeting of gephyrin to ePSD condensates. Unexpectedly, formation of iPSD condensates forces the intrabody-tagged gephyrin out of ePSD condensates. Thus, instead of diffusion-governed spontaneous mixing, demixing is a default process for biomolecules in condensates. Phase separation can generate biomolecular compartmentalization specificities that cannot occur in dilute solutions.


Subject(s)
Biomolecular Condensates , Carrier Proteins , Membrane Proteins , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Animals , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Humans , Post-Synaptic Density/metabolism , Disks Large Homolog 4 Protein/metabolism , HEK293 Cells , Synapses/physiology , Phase Separation
8.
Physiol Plant ; 176(3): e14359, 2024.
Article in English | MEDLINE | ID: mdl-38797943

ABSTRACT

Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.


Subject(s)
Carrier Proteins , Droughts , Endophytes , Plant Proteins , Endophytes/physiology , Endophytes/metabolism , Antarctic Regions , Carrier Proteins/metabolism , Carrier Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Fungi/physiology , Fungi/genetics , Stress, Physiological , Molecular Dynamics Simulation
9.
Nat Commun ; 15(1): 4430, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789420

ABSTRACT

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Replication , Drug Resistance, Neoplasm , Histones , Poly(ADP-ribose) Polymerase Inhibitors , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , Histones/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Replication/drug effects , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Cell Line, Tumor , Female , Drug Resistance, Neoplasm/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Breaks, Double-Stranded , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Mice , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , DNA Repair , Carrier Proteins/metabolism , Carrier Proteins/genetics , DNA Damage , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics
10.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789868

ABSTRACT

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Subject(s)
Apoptosis , Carrier Proteins , Rutin , Rutin/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Humans , Animals , Apoptosis/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/genetics , Male
11.
Biochemistry ; 63(10): 1270-1277, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770609

ABSTRACT

Cyanovirin-N (CV-N) binds high-mannose oligosaccharides on enveloped viruses with two carbohydrate-binding sites, one bearing high affinity and one low affinity to Manα(1-2)Man moieties. A tandem repeat of two CV-N molecules (CVN2) was tested for antiviral activity against human immunodeficiency virus type I (HIV-1) by using a domain-swapped dimer. CV-N was shown to bind N-acetylmannosamine (ManNAc) and N-acetyl-d-glucosamine (GlcNAc) when the carbohydrate-binding sites in CV-N were free to interact with these monosaccharides independently. CVN2 recognized ManNAc at a Kd of 1.4 µM and bound this sugar in solution, regardless of the lectin making amino acid side chain contacts on the targeted viral glycoproteins. An interdomain cross-contacting residue Glu41, which has been shown to be hydrogen bonding with dimannose, was substituted in the monomeric CV-N. The amide derivative of glucose, GlcNAc, achieved similar high affinity to the new variant CVN-E41T as high-mannose N-glycans, but binding to CVN2 in the nanomolar range with four binding sites involved or binding to the monomeric CVN-E41A. A stable dimer was engineered and expressed from the alanine-to-threonine-substituted monomer to confirm binding to GlcNAc. In summary, low-affinity binding was achieved by CVN2 to dimannosylated peptide or GlcNAc with two carbohydrate-binding sites of differing affinities, mimicking biological interactions with the respective N-linked glycans of interest and cross-linking of carbohydrates on human T cells for lymphocyte activation.


Subject(s)
Acetylglucosamine , Bacterial Proteins , Carrier Proteins , Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Binding Sites , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Humans , HIV-1/metabolism , Protein Binding , Hexosamines/metabolism , Hexosamines/chemistry , Models, Molecular , Protein Multimerization
12.
Cells ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786060

ABSTRACT

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Subject(s)
Antioxidants , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Animals , Cisplatin/pharmacology , Female , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins , Mice , Pyruvate Kinase/metabolism , Glycolysis/drug effects , Autophagy/drug effects , Carrier Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology
13.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38748453

ABSTRACT

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Subject(s)
Actin Cytoskeleton , Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actins/metabolism , Pseudopodia/metabolism , Humans , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics
14.
Sci Rep ; 14(1): 10049, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698008

ABSTRACT

Although some studies have reported on the expression and clinical significance of Fascin-1 (FSCN1) in liver cancer, the clinical application and differential diagnosis value of FSCN1 in liver cancer are still unclear. The aim of this study was to analyze the expression level of FSCN1 protein in liver cancer tissues and explore its diagnostic and application value in differentiating between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The immunehistochemical analysis was used to detect the expression of FSCN1 in 108 cases of HCC, 26 cases of ICC, 23 cases of liver cirrhosis, and 11 cases of normal liver tissues. The differences in the positive expression rate and strong positive expression rate of FSCN1 among different groups were analyzed. The positive rate of FSCN1 in normal liver tissues, liver cirrhosis, HCC, and ICC tissues was 0.0% (0/11), 0.0% (0/23), 13.9% (15/108), and 92.3% (24/26), respectively, while the strong positive rate was 0.0% (0/11), 0.0% (0/23), 0.9% (1/108), and 69.2% (18/26), respectively. Both the positive rate and strong positive rate of FSCN1 in ICC tissues were significantly higher than those in HCC, liver cirrhosis, and normal liver tissues. Additionally, the positive rate of FSCN1 in moderately to poorly differentiated HCC tissues was 18.8% (15/80), significantly higher than in well-differentiated HCC (0.0%, 0/28) (P = 0.031). In liver cancer, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FSCN1 positive prediction for ICC were 92.3%, 86.1%, 61.5%, and 97.9%, respectively, whereas the sensitivity, specificity, PPV, and NPV of FSCN1 strong positive prediction for ICC were 69.2%, 99.1%, 94.7%, and 93.0%, respectively. These results suggest that FSCN1 may play an important role in the occurrence and progression of liver cancer, and it can be used as a novel diagnostic marker for ICC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Carrier Proteins , Cholangiocarcinoma , Liver Neoplasms , Microfilament Proteins , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Microfilament Proteins/metabolism , Carrier Proteins/metabolism , Male , Female , Middle Aged , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/metabolism , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/metabolism , Aged , Adult , Liver Cirrhosis/diagnosis , Liver Cirrhosis/metabolism , Diagnosis, Differential , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Sensitivity and Specificity
15.
ACS Chem Neurosci ; 15(10): 2070-2079, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691676

ABSTRACT

PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.


Subject(s)
Carrier Proteins , PDZ Domains , Protein Binding , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Carrier Proteins/metabolism , Protein Binding/physiology , Humans , Nuclear Proteins/metabolism , Nuclear Proteins/chemistry , Binding Sites/physiology
16.
Food Chem ; 451: 139471, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692241

ABSTRACT

To compare the bioavailability of protein-binding zinc, we investigated the impact of baking on the structure of zinc-binding proteins. The results showed that zinc-binding proteins enriched in zinc with relative molecular weights distributed at 6 kDa and 3 kDa. Protein-binding zinc is predisposed to separate from proteins' interiors and converge on proteins' surface after being baked, and its structure tends to be crystalline. Especially -COO, -C-O, and -C-N played vital roles in the sites of zinc-binding proteins. However, baking did not affect protein-binding zinc's bioavailability which was superior to that of ZnSO4 and C12H22O14Zn. They were digested in the intestine, zinc-binding complexes that were easily transported and uptaken by Caco-2 cells, with transport and uptake rates as high as 62.15% and 15.85%. Consequently, baking can alter the conformation of zinc-binding proteins without any impact on protein-binding zinc's bioavailability which is superior to that of ZnSO4 and C12H22O14Zn.


Subject(s)
Biological Availability , Ostreidae , Zinc , Humans , Caco-2 Cells , Animals , Zinc/metabolism , Zinc/chemistry , Ostreidae/chemistry , Ostreidae/metabolism , Cooking , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Hot Temperature , Protein Binding , Shellfish/analysis
17.
Fluids Barriers CNS ; 21(1): 42, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755642

ABSTRACT

BACKGROUND: Most subarachnoid hemorrhage (SAH) patients have no obvious hematoma lesions but exhibit blood-brain barrier dysfunction and vasogenic brain edema. However, there is a few days between blood‒brain barrier dysfunction and vasogenic brain edema. The present study sought to investigate whether this phenomenon is caused by endothelial injury induced by the acute astrocytic barrier, also known as the glial limitans. METHODS: Bioinformatics analyses of human endothelial cells and astrocytes under hypoxia were performed based on the GEO database. Wild-type, EGLN3 and PKM2 conditional knock-in mice were used to confirm glial limitan formation after SAH. Then, the effect of endothelial EGLN3-PKM2 signaling on temporal and spatial changes in glial limitans was evaluated in both in vivo and in vitro models of SAH. RESULTS: The data indicate that in the acute phase after SAH, astrocytes can form a temporary protective barrier, the glia limitans, around blood vessels that helps maintain barrier function and improve neurological prognosis. Molecular docking studies have shown that endothelial cells and astrocytes can promote glial limitans-based protection against early brain injury through EGLN3/PKM2 signaling and further activation of the PKC/ERK/MAPK signaling pathway in astrocytes after SAH. CONCLUSION: Improving the ability to maintain glial limitans may be a new therapeutic strategy for improving the prognosis of SAH patients.


Subject(s)
Astrocytes , Blood-Brain Barrier , Endothelial Cells , Signal Transduction , Subarachnoid Hemorrhage , Animals , Astrocytes/metabolism , Humans , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/immunology , Mice , Signal Transduction/physiology , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Male , Pyruvate Kinase/metabolism , Carrier Proteins/metabolism , Brain Edema/metabolism , Mice, Transgenic , Membrane Proteins/metabolism
18.
Biomed Pharmacother ; 175: 116785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781869

ABSTRACT

Rearrangement of the actin cytoskeleton is a prerequisite for carcinoma cells to develop cellular protrusions, which are required for migration, invasion, and metastasis. Fascin is a key protein involved in actin bundling and is expressed in aggressive and invasive carcinomas. Additionally, fascin appears to be involved in tubulin-binding and microtubule rearrangement. Pharmacophoric-based in silico screening was performed to identify compounds with better fascin inhibitory properties than migrastatin, a gold-standard fascin inhibitor. We hypothesized that monastrol displays anti-migratory and anti-invasive properties via fascin blocking in colorectal cancer cell lines. Biophysical (thermofluor and ligand titration followed by fluorescence spectroscopy), biochemical (NMR), and cellular assays (MTT, invasion of human tissue), as well as animal model studies (zebrafish invasion) were performed to characterize the inhibitory effect of monastrol on fascin activity. In silico analysis revealed that monastrol is a potential fascin-binding compound. Biophysical and biochemical assays demonstrated that monastrol binds to fascin and interferes with its actin-bundling activity. Cell culture studies, including a 3D human myoma disc model, showed that monastrol inhibited fascin-driven cytoplasmic protrusions as well as invasion. In silico, confocal microscopy, and immunoprecipitation assays demonstrated that monastrol disrupted fascin-tubulin interactions. These anti-invasive effects were confirmed in vivo. In silico confocal microscopy and immunoprecipitation assays were carried out to test whether monastrol disrupted the fascin-tubulin interaction. This study reports, for the first time, the in vitro and in vivo anti-invasive properties of monastrol in colorectal tumor cells. The number and types of interactions suggest potential binding of monastrol across actin and tubulin sites on fascin, which could be valuable for the development of antitumor therapies.


Subject(s)
Carrier Proteins , Colorectal Neoplasms , Kinesins , Microfilament Proteins , Neoplasm Invasiveness , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Microfilament Proteins/metabolism , Carrier Proteins/metabolism , Kinesins/metabolism , Kinesins/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement/drug effects , Neoplasm Metastasis/prevention & control , Pyrimidines/pharmacology , Signal Transduction/drug effects , Thiones/pharmacology , Antineoplastic Agents/pharmacology
19.
Commun Biol ; 7(1): 648, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802450

ABSTRACT

In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.


Subject(s)
Carrier Proteins , Mice, Knockout , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice , Sarcomeres/metabolism , Myofibrils/metabolism , Myofibrils/genetics , Muscle, Skeletal/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Male , Myosins/metabolism , Myosins/genetics
20.
J Transl Med ; 22(1): 514, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812032

ABSTRACT

The aging process of the kidneys is accompanied with several structural diseases. Abnormal fiber formation disrupts the balance of kidney structure and function, causing to end-stage renal disease and subsequent renal failure. Despite this, the precise mechanism underlying renal damage in aging remains elusive. In this study, ABI3BP gene knockout mice were used to investigate the role of ABI3BP in renal aging induced by irradiation. The results revealed a significant increase in ABI3BP expression in HK2 cells and kidney tissue of aging mice, with ABI3BP gene knockout demonstrating a mitigating effect on radiation-induced cell aging. Furthermore, the study observed a marked decrease in Klotho levels and an increase in ferroptosis in renal tissue and HK2 cells following irradiation. Notably, ABI3BP gene knockout not only elevated Klotho expression but also reduced ferroptosis levels. A significant negative correlation between ABI3BP and Klotho was established. Further experiments demonstrated that Klotho knockdown alleviated the aging inhibition caused by ABI3BP downregulation. This study identifies the upregulation of ABI3BP in aged renal tubular epithelial cells, indicating a role in promoting ferroptosis and inducing renal aging by inhibiting Klotho expression.


Subject(s)
Aging , Ferroptosis , Kidney , Klotho Proteins , Mice, Knockout , Klotho Proteins/metabolism , Animals , Aging/metabolism , Kidney/metabolism , Kidney/pathology , Humans , Cell Line , Glucuronidase/metabolism , Mice, Inbred C57BL , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...