Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.817
Filter
1.
Elife ; 132024 May 31.
Article in English | MEDLINE | ID: mdl-38819423

ABSTRACT

Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.


Subject(s)
Apoptosis , Chondrocytes , DNA Methylation , Hemophilia A , Proto-Oncogene Proteins c-akt , Signal Transduction , Tenascin , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Humans , Mice , Hemophilia A/metabolism , Hemophilia A/genetics , Hemophilia A/complications , Tenascin/metabolism , Tenascin/genetics , Extracellular Matrix/metabolism , Male , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology
2.
Biomed Pharmacother ; 175: 116697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759289

ABSTRACT

Vitamin K2 (VK2) is an effective compound for anti-ferroptosis and anti-osteoporosis, and Semen sojae praeparatum (Dandouchi in Chinese) is the main source of VK2. Chondrocyte ferroptosis and extracellular matrix (ECM) degradation playing a role in the pathogenesis of osteoarthritis (OA). Glutathione peroxidase 4 (GPX4) is the intersection of two mechanisms in regulating OA progression. But no studies have elucidated the therapeutic effects and mechanisms of VK2 on OA. This study utilized an in vivo rat OA model created via anterior cruciate ligament transection (ACLT) and an in vitro chondrocyte oxidative damage model induced by TBHP to investigate the protective effects and mechanisms of action of VK2 in OA. Knee joint pain in mice was evaluated using the Von Frey test. Micro-CT and Safranin O-Fast Green staining were employed to observe the extent of damage to the tibial cartilage and subchondral bone, while immunohistochemistry and PCR were used to examine GPX4 levels in joint cartilage. The effects of VK2 on rat chondrocyte viability were assessed using CCK-8 and flow cytometry assays, and chondrocyte morphology was observed with toluidine blue and alcian blue staining. The impact of VK2 on intracellular ferroptosis-related markers was observed using fluorescent staining and flow cytometry. Protein expression changes were detected by immunofluorescence and Western blot analysis. Furthermore, specific protein inhibitors were applied to confirm the dual-regulatory effects of VK2 on GPX4. VK2 can increase bone mass and cartilage thickness in the subchondral bone of the tibia, and reduce pain and the OARSI score induced by OA. Immunohistochemistry results indicate that VK2 exerts its anti-OA effects by regulating GPX4 to delay ECM degradation. VK2 can inhibit the activation of the MAPK/NFκB signaling pathway caused by reduced expression of intracellular GPX4, thereby decreasing ECM degradation. Additionally, VK2 can reverse the inhibitory effect of RSL3 on GPX4, increase intracellular GSH content and the GSH/GSSG ratio, reduce MDA content, and rescue chondrocyte ferroptosis. The protective mechanism of VK2 may involve its dual-target regulation of GPX4, reducing chondrocyte ferroptosis and inhibiting the MAPK/NFκB signaling pathway to decelerate the degradation of the chondrocyte extracellular matrix.


Subject(s)
Chondrocytes , Extracellular Matrix , Ferroptosis , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Rats, Sprague-Dawley , Vitamin K 2 , Animals , Ferroptosis/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Mice , Vitamin K 2/pharmacology , Vitamin K 2/analogs & derivatives , Mice, Inbred C57BL , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Cells, Cultured
3.
Medicine (Baltimore) ; 103(19): e38065, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728521

ABSTRACT

Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.


Subject(s)
Cartilage, Articular , Finite Element Analysis , Knee Joint , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Knee Joint/physiopathology , Male , Weight-Bearing/physiology , Biomechanical Phenomena , Middle Aged , Stress, Mechanical , Female , Computer Simulation , Aged
4.
Cell Mol Biol Lett ; 29(1): 64, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698311

ABSTRACT

Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Inflammation , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/therapy , CRISPR-Cas Systems/genetics , Inflammation/genetics , Gene Editing/methods , Animals , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology , Cellular Senescence/genetics , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
5.
Acta Chir Orthop Traumatol Cech ; 91(2): 88-95, 2024.
Article in Czech | MEDLINE | ID: mdl-38801664

ABSTRACT

PURPOSE OF THE STUDY: Our study aims to compare the results of preoperative radiography and intraoperative visual assessment of the cartilage with histological assessment of joint surfaces of the medial and lateral compartments resected in patients during the total knee replacement. MATERIAL AND METHODS: The cohort included 20 patients (9 men and 11 women) with the mean age of 66.6 (±7.0) years who met the inclusion criteria of the study. Degenerative changes of the knee joint seen on a preoperative weight-bearing anteroposterior X-ray were evaluated according to the Kellgren-Lawrence grading system separately for the medial and lateral compartment. Based on the visual appearance, the condition of articular surfaces was assessed using the International Cartilage Repair Society Score (ICRS Grade). The histological assessment of degenerative changes was conducted by a pathologist with the use of the Osteoarthritis Research Society International Osteoarthritis Cartilage Histopathology Assessment System based on six grades of articular cartilage degeneration. RESULTS: The mean degree of degenerative changes based on the radiological classification was assessed as 3.5 (±0.6) for the medial compartment and 2.1 (±0.4) for the lateral compartment. The visually assessed chondropathy according to the ICRS Grade was 3.7 (±0.6) for the medial femoral condyle and 1.8 (±1.0) for the lateral femoral condyle. The histological score obtained using the Osteoarthritis Research Society International Osteoarthritis Cartilage Histopathology Assessment was 4.9 (±1.1) for the medial femoral condyle and 2.4 (±0.7) for the lateral femoral condyle. In respect of the medial compartment, there was no statistically significant parametric correlation between the intraoperative visual assessment of the cartilage degeneration and the preoperative radiological grade r = 0.45. The histological assessment showed a statistically significant concordance both with the degree of chondropathy r = 0.76 and the radiological grade r = 0.64. In the lateral compartment, the parametric test showed a statistically significant concordance only between the radiological grade and the histological score r = 0.72. The correlation between the visual assessment of chondropathy and the radiological grade r = 0.27 as well as the histological score r = 0.24 was very low. DISCUSSION: In our cohort assessing the early degenerative changes of the lateral compartment as well as the more advanced degenerative changes of the medial compartment, the correlation between the intraoperative assessment of cartilage degeneration as a diagnostic method to examine the lateral compartment and the preoperative radiological grade was not confirmed. Our results failed to confirm a better reporting value of the visual cartilage degeneration assessment of the lateral compartment as against the preoperative X-ray. The space width without narrowing on an X-ray has no reporting value for this compartment in case of varus deformity. CONCLUSIONS: The results clearly indicate that the assessment of macroscopic appearance of the cartilage degeneration during arthroscopy does not necessarily guarantee good long-term clinical outcomes after high tibial osteotomy. The respective degrees of cartilage degeneration identified during the intraoperative visual assessment and the radiological grading of osteoarthritic changes did not correlate in either compartment. In the lateral compartment, the initial radiological and histological findings preceded the visually detectable cartilage changes. KEY WORDS: knee, cartilage, osteoarthritis, radiology, histology, arthroscopy, osteotomy.


Subject(s)
Arthroplasty, Replacement, Knee , Cartilage, Articular , Osteoarthritis, Knee , Radiography , Humans , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Female , Male , Aged , Cartilage, Articular/pathology , Cartilage, Articular/diagnostic imaging , Arthroplasty, Replacement, Knee/methods , Radiography/methods , Middle Aged , Knee Joint/diagnostic imaging , Knee Joint/pathology , Knee Joint/surgery
6.
J Biomech ; 169: 112135, 2024 May.
Article in English | MEDLINE | ID: mdl-38744145

ABSTRACT

Articular cartilage exhibits site-specific biomechanical properties. However, no study has comprehensively characterized site-specific cartilage properties from the same knee joints at different stages of osteoarthritis (OA). Cylindrical osteochondral explants (n = 381) were harvested from donor-matched lateral and medial tibia, lateral and medial femur, patella, and trochlea of cadaveric knees (N = 17). Indentation test was used to measure the elastic and viscoelastic mechanical properties of the samples, and Osteoarthritis Research Society International (OARSI) grading system was used to categorize the samples into normal (OARSI 0-1), early OA (OARSI 2-3), and advanced OA (OARSI 4-5) groups. OA-related changes in cartilage mechanical properties were site-specific. In the lateral and medial tibia and trochlea sites, equilibrium, instantaneous and dynamic moduli were higher (p < 0.001) in normal tissue than in early and advanced OA tissue. In lateral and medial femur, equilibrium, instantaneous and dynamic moduli were smaller in advanced OA, but not in early OA, than in normal tissue. The phase difference (0.1-0.25 Hz) between stress and strain was significantly smaller (p < 0.05) in advanced OA than in normal tissue across all sites except medial tibia. Our results indicated that in contrast to femoral and patellar cartilage, equilibrium, instantaneous and dynamic moduli of the tibia and trochlear cartilage decreased in early OA. These may suggest that the tibia and trochlear cartilage degrades faster than the femoral and patellar cartilage. The information is relevant for developing site-specific computational models and engineered cartilage constructs.


Subject(s)
Cartilage, Articular , Knee Joint , Osteoarthritis, Knee , Humans , Cartilage, Articular/physiopathology , Cartilage, Articular/physiology , Cartilage, Articular/pathology , Knee Joint/physiopathology , Aged , Osteoarthritis, Knee/physiopathology , Male , Female , Middle Aged , Biomechanical Phenomena , Elasticity , Viscosity , Tibia/physiopathology , Femur/physiopathology , Femur/physiology , Aged, 80 and over , Adult , Stress, Mechanical
7.
Arthritis Res Ther ; 26(1): 106, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790038

ABSTRACT

BACKGROUND: Previously, fragments from Sirtuin 1 (SIRT1) were identified in preclinical and clinical samples to display an increase in serum levels for N-terminal (NT) SIRT1 vs. C-terminal (CT) SIRT1, indicative of early signs of OA. Here we tested NT/CT SIRT1 levels as well as a novel formulated sandwich assay to simultaneously detect both domains of SIRT1 in a manner that may inform us about the levels of full-length SIRT1 in the circulation (flSIRT1) of clinical cohorts undergoing knee joint distraction (KJD). METHODS: We employed an indirect ELISA assay to test NT- and CT-SIRT1 levels and calculated their ratio. Further, to test flSIRT1 we utilized novel antibodies (Ab), which were validated for site specificity and used in a sandwich ELISA method, wherein the CT-reactive served as capture Ab, and its NT-reactive served as primary detection Ab. This method was employed in human serum samples derived from a two-year longitudinal study of KJD patients. Two-year clinical and structural outcomes were correlated with serum levels of flSIRT1 compared to baseline. RESULTS: Assessing the cohort, exhibited a significant increase of NT/CT SIRT1 serum levels with increased osteophytes and PIIANP/CTX-II at baseline, while a contradictory increase in NT/CT SIRT1 was associated with less denuded bone, post-KJD. On the other hand, flSIRT1 exhibited an upward trend in serum level, accompanied by reduced denuded bone for 2-year adjusted values. Moreover, 2 year-adjusted flSIRT1 levels displayed a steeper linear regression for cartilage and bone-related structural improvement than those observed for NT/CT SIRT1. CONCLUSIONS: Our data support that increased flSIRT1 serum levels are a potential molecular endotype for cartilage-related structural improvement post-KJD, while NT/CT SIRT1 appears to correlate with osteophyte and PIIANP/CTX-II reduction at baseline, to potentially indicate baseline OA severity.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Osteoarthritis, Knee , Sirtuin 1 , Humans , Sirtuin 1/blood , Female , Male , Middle Aged , Osteoarthritis, Knee/blood , Osteoarthritis, Knee/surgery , Adult , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Longitudinal Studies , Knee Joint/diagnostic imaging , Knee Joint/pathology , Biomarkers/blood , Aged
8.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791601

ABSTRACT

Osteoarthritis (OA) is a common joint disorder characterized by cartilage degeneration, often leading to pain and functional impairment. Minced cartilage implantation (MCI) has emerged as a promising one-step alternative for large cartilage defects. However, the source of chondrocytes for MCI remains a challenge, particularly in advanced OA, as normal cartilage is scarce. We performed in vitro studies to evaluate the feasibility of MCI using osteophyte cartilage, which is present in patients with advanced OA. Osteophyte and articular cartilage samples were obtained from 22 patients who underwent total knee arthroplasty. Chondrocyte migration and proliferation were assessed using cartilage fragment/atelocollagen composites to compare the characteristics and regenerative potential of osteophytes and articular cartilage. Histological analysis revealed differences in cartilage composition between osteophytes and articular cartilage, with higher expression of type X collagen and increased chondrocyte proliferation in the osteophyte cartilage. Gene expression analysis identified distinct gene expression profiles between osteophytes and articular cartilage; the expression levels of COL2A1, ACAN, and SOX9 were not significantly different. Chondrocytes derived from osteophyte cartilage exhibit enhanced proliferation, and glycosaminoglycan production is increased in both osteophytes and articular cartilage. Osteophyte cartilage may serve as a viable alternative source of MCI for treating large cartilage defects in OA.


Subject(s)
Cartilage, Articular , Cell Proliferation , Chondrocytes , Osteoarthritis , Osteophyte , Humans , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/surgery , Chondrocytes/metabolism , Chondrocytes/pathology , Osteophyte/metabolism , Osteophyte/pathology , Male , Female , Aged , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/surgery , Middle Aged , Collagen Type II/metabolism , Collagen Type II/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Cells, Cultured , Cell Movement
9.
Mar Drugs ; 22(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38786602

ABSTRACT

Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.


Subject(s)
Cyclooxygenase 2 , Nitric Oxide Synthase Type II , Osteoarthritis , Polysaccharides , Nitric Oxide Synthase Type II/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/chemically induced , Animals , Cyclooxygenase 2/metabolism , Polysaccharides/pharmacology , Male , Mice , Disease Models, Animal , Iodoacetic Acid , Oxidative Stress/drug effects , Humans , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Iodoacetates
10.
Nat Aging ; 4(5): 664-680, 2024 May.
Article in English | MEDLINE | ID: mdl-38760576

ABSTRACT

Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.


Subject(s)
Alternative Splicing , DEAD-box RNA Helicases , Fibrosis , G-Quadruplexes , Osteoarthritis , Animals , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Mice , Osteoarthritis/pathology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Fibrosis/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Male
11.
BMC Musculoskelet Disord ; 25(1): 398, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773475

ABSTRACT

OBJECTIVE: to investigate the association between cartilage lesion-related features observed in knee osteoarthritis (OA) patients' first MRI examination and incident knee surgery within 5 years. Additionally, to assess the predictive value of these features for the incident knee surgery. METHODS: We identified patients diagnosed with knee OA and treated at our institution between January 2015 and January 2018, and retrieved their baseline clinical data and first MRI examination films from the information system. Next, we proceeded to determine joint space narrowing grade, cartilage lesion size grade, cartilage full-thickness loss grade and cartilage lesion sum score for the medial and lateral compartments, respectively. Generalized linear regression models examined the association of these features with 5-year incident knee surgery. Positive and negative predictive values (PPVs and NPVs) were determined referring to 5-year incident knee surgery. RESULTS: Totally, 878 participants (knees) were found eligible to form the study population. Within the 5 years, surgery was performed on 61 knees. None of the cartilage-related features had been found significantly associated with incident surgery. The results were similar for medial and lateral compartments. The PPVs were low for all the features. CONCLUSIONS: Among symptomatic clinically diagnosed OA knees, cartilage lesions observed in the first MRI examinations were not found to be associated with the occurrence of joint surgery within a 5-year period. All these cartilage-related features appear to have no additional value in predicting 5-year incident joint surgery.


Subject(s)
Cartilage, Articular , Knee Joint , Magnetic Resonance Imaging , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/epidemiology , Female , Male , Retrospective Studies , Middle Aged , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Cartilage, Articular/surgery , Aged , Knee Joint/surgery , Knee Joint/diagnostic imaging , Knee Joint/pathology , Arthroplasty, Replacement, Knee/statistics & numerical data
12.
Sci Rep ; 14(1): 12093, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802533

ABSTRACT

Recently, we found significantly reduced total superoxide dismutase (SOD) activity in the cartilage of patients with end-stage knee osteoarthritis (OA). In this study, we aimed to evaluate the SOD activity in serum, joint fluid, cartilage, and synovial membrane samples collected from 52 patients with end-stage knee OA who underwent total knee arthroplasty. The relationship between the total SOD activity in each tissue was evaluated using Spearman's rank correlation coefficient. The joint fluid total SOD activity was used as the objective variable, and its association with the serum, cartilage, and synovial total SOD activities was evaluated using multiple linear regression analysis. Univariate analysis revealed that joint fluid total SOD activity was positively correlated with synovial total SOD activity. Multiple linear regression analysis using joint fluid total SOD activity as the objective variable showed a positive association with synovial total SOD activity (ß = 0.493, adjusted R2 = 0.172, P < 0.01). In patients with end-stage knee OA, the state of the synovial total SOD activity is better reflected by the total SOD activity in the joint fluid than that in the cartilage. Joint fluid total SOD activity may serve as a biomarker for the treatment and prevention of synovitis.


Subject(s)
Osteoarthritis, Knee , Superoxide Dismutase , Synovial Fluid , Synovial Membrane , Humans , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/enzymology , Osteoarthritis, Knee/pathology , Male , Female , Synovial Fluid/metabolism , Superoxide Dismutase/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Aged , Middle Aged , Biomarkers , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Cartilage, Articular/enzymology , Arthroplasty, Replacement, Knee
13.
Arthritis Res Ther ; 26(1): 111, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812033

ABSTRACT

BACKGROUND: Due to the unclear pathogenesis of osteoarthritis (OA), effective treatment for this ailment is presently unavailable. Accumulating evidence points to chondrocyte senescence as a key driver in OA development. This study aims to identify OA-specific microRNAs (miRNAs) targeting chondrocyte senescence to alleviate OA progression. METHODS: We screened and identified miRNAs differentially expressed in OA and normal cartilage, then confirmed the impact of miR-653-5p on chondrocyte functions and senescence phenotypes through in vitro experiments with overexpression/silencing. We identified interleukin 6 (IL-6) as the target gene of miR-653-5p and confirmed the regulatory influence of miR-653-5p on the IL-6/JAK/STAT3 signaling pathway through gain/loss-of-function studies. Finally, we assessed the therapeutic efficacy of miR-653-5p on OA using a mouse model with destabilization of the medial meniscus. RESULTS: MiR-653-5p was significantly downregulated in cartilage tissues and chondrocytes from OA patients. Overexpression of miR-653-5p promoted chondrocyte matrix synthesis and proliferation while inhibiting chondrocyte senescence. Furthermore, bioinformatics target prediction and the luciferase reporter assays identified IL-6 as a target of miR-653-5p. Western blot assays demonstrated that miR-653-5p overexpression inhibited the protein expression of IL-6, the phosphorylation of JAK1 and STAT3, and the expression of chondrocyte senescence phenotypes by regulating the IL-6/JAK/STAT3 signaling pathway. More importantly, the cartilage destruction was significantly alleviated and chondrocyte senescence phenotypes were remarkably decreased in the OA mouse model treated by agomiR-653-5p compared to the control mice. CONCLUSIONS: MiR-653-5p showed a significant decrease in cartilage tissues of individuals with OA, leading to an upregulation of chondrocyte senescence phenotypes in the articular cartilage. AgomiR-653-5p emerges as a potential treatment approach for OA. These findings provide further insight into the role of miR-653-5p in chondrocyte senescence and the pathogenesis of OA.


Subject(s)
Cellular Senescence , Chondrocytes , MicroRNAs , Osteoarthritis , MicroRNAs/genetics , MicroRNAs/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Animals , Humans , Cellular Senescence/genetics , Cellular Senescence/physiology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Mice , Male , Interleukin-6/metabolism , Interleukin-6/genetics , Mice, Inbred C57BL , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Cells, Cultured , Middle Aged , Female , Signal Transduction/genetics , Signal Transduction/physiology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology
14.
Acta Biomater ; 181: 297-307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710401

ABSTRACT

The pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM. This study aims to assess the role and involvement of specific matrix metalloproteinases (MMPs) in PCM degradation during OA. We selected cartilage samples from 148 OA patients based on the predominant spatial chondrocyte patterns. The presence of various MMPs (-1,-2,-3,-7,-8,-9,-10,-12,-13) was identified by multiplexed immunoassays. For each pattern and identified MMP, the levels and activation states (pro-form vs. active form) were measured by zymograms and western blots. The localization of these MMPs was determined using immunohistochemical labeling. To verify these results, healthy cartilage was exposed to purified MMPs, and the consecutive structural integrity of the PCM was analyzed through immunolabeling and proximity ligation assay. Screening showed elevated levels of MMP-1,-2,-3,-7, and -13, with their expression profile showing a clear dependency of the degeneration stage. MMP-2 and -7 were localized in the PCM, whereas MMP-1,-7, and -13 were predominantly intracellular. We found that MMP-2 and -3 directly disrupt collagen type VI, and MMP-3 and -7 destroy perlecan. MMP-2, -3, and -7 emerge as central players in early PCM degradation in OA. With the disease's initial stages already displaying elevated peaks in MMP expression, this insight may guide early targeted therapies to halt abnormal PCM remodeling. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) causes a gradual deterioration of the articular cartilage, accompanied by a progressive breakdown of the pericellular matrix (PCM). The PCM's crucial function in protecting and transmitting signals within chondrocytes is impaired in OA. By studying 148 OA-patient cartilage samples, the involvement of matrix metalloproteinases (MMPs) in PCM breakdown was explored. Findings highlighted elevated levels of certain MMPs linked to different stages of degeneration. Notably, MMP-2, -3, and -7 were identified as potent contributors to early PCM degradation, disrupting key components like collagen type VI and perlecan. Understanding these MMPs' roles in initiating OA progression, especially in its early stages, provides insights into potential targets for interventions to preserve PCM integrity and potentially impeding OA advancement.


Subject(s)
Extracellular Matrix , Matrix Metalloproteinases , Osteoarthritis , Proteolysis , Humans , Matrix Metalloproteinases/metabolism , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/enzymology , Extracellular Matrix/metabolism , Male , Female , Middle Aged , Aged , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/enzymology , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
15.
Biomed Pharmacother ; 175: 116717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749179

ABSTRACT

Knee osteoarthritis (OA) involves articular cartilage degradation driven mainly by inflammation. Kaempferol (KM), known for its anti-inflammatory property, holds potential for OA treatment. This study investigated the potential of hyaluronic acid (HA)-coated gelatin nanoparticles loaded with KM (HA-KM GNP) for treating knee OA. KM was encapsulated into gelatin nanoparticles (KM GNP) and then coated with HA to form HA-KM GNPs. Physical properties were characterized, and biocompatibility and cellular uptake were assessed in rat chondrocytes. Anti-inflammatory and chondrogenic properties were evaluated using IL-1ß-stimulated rat chondrocytes, compared with HA-coated nanoparticles without KM (HA GNP) and KM alone. Preclinical efficacy was tested in an anterior cruciate ligament transection (ACLT)-induced knee OA rat model treated with intra-articular injection of HA-KM GNP. Results show spherical HA-KM GNPs (88.62 ± 3.90 nm) with positive surface charge. Encapsulation efficiency was 98.34 % with a sustained release rate of 18 % over 48 h. Non-toxic KM concentration was 2.5 µg/mL. In IL-1ß-stimulated OA rat chondrocytes, HA-KM GNP significantly down-regulated RNA expression of IL-1ß, TNF-α, COX-2, MMP-9, and MMP-13, while up-regulating SOX9 compared to HA GNP, and KM. In vivo imaging demonstrated significantly higher fluorescence intensity within rat knee joints for 3 hours post HA-KM GNP injection compared with KM GNP (185.2% ± 34.1% vs. 45.0% ± 16.7%). HA-KM GNP demonstrated significant effectiveness in reducing subchondral sclerosis, attenuating inflammation, inhibiting matrix degradation, restoring cartilage thickness, and reducing the severity of OA in the ACLT rat model. In conclusion, HA-KM GNP holds promise for knee OA therapy.


Subject(s)
Chondrocytes , Hyaluronic Acid , Kaempferols , Nanoparticles , Osteoarthritis, Knee , Rats, Sprague-Dawley , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Kaempferols/pharmacology , Kaempferols/administration & dosage , Nanoparticles/chemistry , Injections, Intra-Articular , Rats , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Interleukin-1beta/metabolism , Cells, Cultured
16.
Sci Rep ; 14(1): 10568, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719877

ABSTRACT

Early diagnosis and treatment of pre- and early-stage osteoarthritis (OA) is important. However, the cellular and cartilaginous changes occurring during these stages remain unclear. We investigated the histological and immunohistochemical changes over time between pre- and early-stage OA in a rat model of traumatic injury. Thirty-six male rats were divided into two groups, control and OA groups, based on destabilization of the medial meniscus. Histological and immunohistochemical analyses of articular cartilage were performed on days 1, 3, 7, 10, and 14 postoperatively. Cell density of proteins associated with cartilage degradation increased from postoperative day one. On postoperative day three, histological changes, including chondrocyte death, reduced matrix staining, and superficial fibrillation, were observed. Simultaneously, a compensatory increase in matrix staining was observed. The Osteoarthritis Research Society International score increased from postoperative day seven, indicating thinner cartilage. On postoperative day 10, the positive cell density decreased, whereas histological changes progressed with fissuring and matrix loss. The proteoglycan 4-positive cell density increased on postoperative day seven. These findings will help establish an experimental model and clarify the mechanism of the onset and progression of pre- and early-stage traumatic OA.


Subject(s)
Cartilage, Articular , Disease Models, Animal , Disease Progression , Immunohistochemistry , Osteoarthritis , Animals , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Male , Rats , Osteoarthritis/pathology , Osteoarthritis/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Rats, Sprague-Dawley , Proteoglycans/metabolism
17.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732111

ABSTRACT

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Subject(s)
Cartilage, Articular , Chondrocytes , Glycosphingolipids , Osteoarthritis , Regeneration , Humans , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Glycosphingolipids/metabolism , Signal Transduction , Gangliosides/metabolism
18.
Jt Dis Relat Surg ; 35(2): 330-339, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727112

ABSTRACT

OBJECTIVES: The study aims to investigate the relationship between the vastus medialis obliquus (VMO) muscle distal insertion features and patellar chondral lesion presence. PATIENTS AND METHODS: This cross-sectional study included a total of 100 patients (18 males, 82 females, mean age 67.2±7.1 years; range, 50 to 86 years) who underwent total knee arthroplasty (TKA). Radiological assessments, including merchant view and standing orthoroentgenograms, were conducted. The current osteoarthritis stage, varus angle, quadriceps angle (Q angle), patella-patellar tendon angle (P-PT angle), congruence angle, and sulcus angle were calculated. The VMO tendon length, muscle fiber angle, tendon insertion width measurements, and patellar chondral lesion localization data were obtained intraoperatively. Grouping was done according to the distal insertion width of the VMO tendon to the medial edge of the patella. The medial rim of the patella was divided into three equal-sized sectors. The first group (Group 1, n=31) consisted of patients who had an insertion from the quadriceps tendon into the upper one-third of the patella. The second group (Group 1, n=48) consisted of patients with a distal insertion expanding into the middle one-third of the patella. The third group (Group 3, n=21) consisted of patients who had a distal insertion extending into the distal third region of the medial patella margin. The patella joint surface was divided into sectors, and the presence and location of cartilage lesions were noted in detail. RESULTS: The mean tendon insertion width rate was 45.99±16.886% (range, 16.7 to 83.3%). The mean muscle fiber insertion angle was 51.85±11.67º (range, 20º to 80º). The mean tendon length was 12.45±3.289 (range, 4 to 20) mm. There was no significant difference between the mean age, weight, height, body mass index, BMI, fiber angle, tendon length, varus angle, Q angle, sulcus angle, and congruence angle data among the groups. In terms of the P-PT angle, Groups 1 and 2 had a significant relationship (p=0.008). No relationship was found between the mean fiber insertion angle, mean tendon length, or the presence of chondral lesions. There was a statistically significant difference among the groups regarding the presence of chondral lesions. The highest percentage of chondral lesion frequency was observed in Group 3 (95.24%), followed by Group 1 (90.3%) and Group 2 (89.6%), respectively. Compared to the other two groups, Group 3 had a higher average ratio of lesion areas per patient. CONCLUSION: Our study results demonstrate that the formation and localization of the patellar chondral lesions are affected by the insertion width type of the VMO muscle into the patella. Group 2-type insertion is associated with a lower lesion frequency rate than Groups 1 and 3.


Subject(s)
Patella , Quadriceps Muscle , Humans , Female , Male , Middle Aged , Aged , Quadriceps Muscle/pathology , Quadriceps Muscle/diagnostic imaging , Cross-Sectional Studies , Aged, 80 and over , Patella/pathology , Patella/diagnostic imaging , Patella/anatomy & histology , Arthroplasty, Replacement, Knee , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/diagnostic imaging , Cartilage, Articular/pathology , Cartilage, Articular/diagnostic imaging , Radiography , Knee Joint/pathology , Knee Joint/surgery , Knee Joint/diagnostic imaging
19.
Jt Dis Relat Surg ; 35(2): 361-367, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38727116

ABSTRACT

OBJECTIVES: This study aims to compare the radiological, biomechanical, and histopathological results of microfracture treatment and osteochondral damage repair treatment with a new scaffold product produced by the three-dimensional (3D) bioprinting method containing gelatin-hyaluronic acid-alginate in rabbits with osteochondral damage. MATERIALS AND METHODS: A new 3D bioprinted scaffold consisting of gelatin, hyaluronic acid, and alginate designed by us was implanted into the osteochondral defect created in the femoral trochlea of 10 rabbits. By randomization, it was determined which side of 10 rabbits would be repaired with a 3D bioprinted scaffold, and microfracture treatment was applied to the other knees of the rabbits. After six months of follow-up, the rabbits were sacrificed. The results of both treatment groups were compared radiologically, biomechanically, and histopathologically. RESULTS: None of the rabbits experienced any complications. The magnetic resonance imaging evaluation showed that all osteochondral defect areas were integrated with healthy cartilage in both groups. There was no significant difference between the groups in the biomechanical load test (p=0.579). No statistically significant difference was detected in the histological examination using the modified Wakitani scores (p=0.731). CONCLUSION: Our study results showed that 3D bioprinted scaffolds exhibited comparable radiological, biomechanical, and histological properties to the conventional microfracture technique for osteochondral defect treatment.


Subject(s)
Alginates , Bioprinting , Cartilage, Articular , Gelatin , Hyaluronic Acid , Knee Joint , Printing, Three-Dimensional , Tissue Scaffolds , Animals , Rabbits , Alginates/chemistry , Gelatin/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/therapeutic use , Tissue Scaffolds/chemistry , Cartilage, Articular/pathology , Cartilage, Articular/injuries , Cartilage, Articular/surgery , Knee Joint/surgery , Knee Joint/pathology , Bioprinting/methods , Disease Models, Animal , Biomechanical Phenomena , Magnetic Resonance Imaging , Arthroplasty, Subchondral/methods
20.
Curr Gene Ther ; 24(4): 331-345, 2024.
Article in English | MEDLINE | ID: mdl-38783531

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a highly debilitating, degenerative pathology of cartilaginous joints affecting over 500 million people worldwide. The global economic burden of OA is estimated at $260-519 billion and growing, driven by aging global population and increasing rates of obesity. To date, only the multi-injection chondroanabolic treatment regimen of Fibroblast Growth Factor 18 (FGF18) has demonstrated clinically meaningful disease-modifying efficacy in placebo-controlled human trials. Our work focuses on the development of a novel single injection disease-modifying gene therapy, based on FGF18's chondroanabolic activity. METHODS: OA was induced in Sprague-Dawley rats using destabilization of the medial meniscus (DMM) (3 weeks), followed by intra-articular treatment with 3 dose levels of AAV2-FGF18, rh- FGF18 protein, and PBS. Durability, redosability, and biodistribution were measured by quantifying nLuc reporter bioluminescence. Transcriptomic analysis was performed by RNA-seq on cultured human chondrocytes and rat knee joints. Morphological analysis was performed on knee joints stained with Safranin O/Fast Green and anti-PRG antibody. RESULTS: Dose-dependent reductions in cartilage defect size were observed in the AAV2-FGF18- treated joints relative to the vehicle control. Total defect width was reduced by up to 76% and cartilage thickness in the thinnest zone was increased by up to 106%. Morphologically, the vehicle- treated joints exhibited pronounced degeneration, ranging from severe cartilage erosion and bone void formation, to subchondral bone remodeling and near-complete subchondral bone collapse. In contrast, AAV2-FGF18-treated joints appeared more anatomically normal, with only regional glycosaminoglycan loss and marginal cartilage erosion. While effective at reducing cartilage lesions, treatment with rhFGF18 injections resulted in significant joint swelling (19% increase in diameter), as well as a decrease in PRG4 staining uniformity and intensity. In contrast to early-timepoint in vitro RNA-seq analysis, which showed a high degree of concordance between protein- and gene therapy-treated chondrocytes, in vivo transcriptomic analysis, revealed few gene expression changes following protein treatment. On the other hand, the gene therapy treatment exhibited a high degree of durability and localization over the study period, upregulating several chondroanabolic genes while downregulating OA- and fibrocartilage-associated markers. CONCLUSION: FGF18 gene therapy treatment of OA joints can provide benefits to both cartilage and subchondral bone, with a high degree of localization and durability.


Subject(s)
Cartilage, Articular , Dependovirus , Disease Models, Animal , Fibroblast Growth Factors , Genetic Therapy , Osteoarthritis , Rats, Sprague-Dawley , Animals , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/pharmacology , Genetic Therapy/methods , Rats , Humans , Osteoarthritis/therapy , Osteoarthritis/genetics , Osteoarthritis/pathology , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Dependovirus/genetics , Chondrocytes/metabolism , Genetic Vectors , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...