Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38989842

ABSTRACT

Advances in molecular ecology can overcome many challenges in understanding host-parasitoid interactions. Genetic characterization of the key-players in systems helps to confirm species and identify trophic linkages essential for ecological service delivery by biological control agents; however, relatively few agroecosystems have been explored using this approach. Pecan production consists of a large tree perennial system containing an assortment of seasonal pests and natural enemies. As a first step to characterizing host-parasitoid associations in pecan food webs, we focus on aphid species and their parasitoids. Based on DNA barcoding of field-collected and reared specimens, we confirmed the presence of 3 species of aphid, one family of primary parasitoids, and 5 species of hyperparasitoids. By applying metabarcoding to field-collected aphid mummies, we were able to identify multiple species within each aphid mummy to unravel a complex food web of 3 aphids, 2 primary parasitoids, and upward of 8 hyperparasitoid species. The results of this study demonstrate that multiple hyperparasitoid species attack a single primary parasitoid of pecan aphids, which may have negative consequences for successful aphid biological control. Although further research is needed on a broader spatial scale, our results suggest multiple species exist in this system and may suggest a complex set of interactions between parasitoids, hyperparasitoids, and the 3 aphid species. This was the first time that many of these species have been characterized and demonstrates the application of novel approaches to analyze the aphid-parasitoid food webs in pecans and other tree crop systems.


Subject(s)
Aphids , Food Chain , Host-Parasite Interactions , Animals , Aphids/parasitology , Aphids/genetics , Carya/parasitology , DNA Barcoding, Taxonomic , Wasps/physiology , Wasps/genetics
2.
J Econ Entomol ; 104(1): 14-20, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21404833

ABSTRACT

The pecan weevil, Curculio caryae (Horn), is a key pest of pecan [Carya illinoinensis (Wangenh.) K. Koch]. Current control recommendations are based on chemical insecticide applications. Microbial control agents such as the entomopathogenic nematode, Steinernema carpocapsae (Weiser) and the fungus Beauveria bassiana (Balsamo) Vuillemin occur naturally in southeastern U.S. pecan orchards and have shown promise as alternative control agents for C. caryjae. Conceivably, the chemical and microbial agents occur simultaneously within pecan orchards or might be applied concurrently. The objective of this study was to determine the interactions between two chemical insecticides that are used in commercial C. caryae control (i.e., carbaryl and cypermethrin applied below field rates) and the microbial agents B. bassiana and S. carpocapsae. In laboratory experiments, pecan weevil larval or adult mortality was assessed after application of microbial or chemical treatments applied singly or in combination (microbial + chemical agent). The nature of interactions (antagonism, additivity, or synergy) in terms of weevil mortality was evaluated over 9 d (larvae) or 5 d (adults). Results for B. bassiana indicated synergistic activity with carbaryl and antagonism with cypermethrin in C. caryae larvae and adults. For S. carpocapsae, synergy was detected with both chemicals in C. caryae larvae, but only additive effects were detected in adult weevils. Our results indicate that the chemical-microbial combinations tested are compatible with the exception of B. bassiana and cypermethrin. In addition, combinations that exhibited synergistic interactions may provide enhanced C. caryae control in commercial field applications; thus, their potential merits further exploration.


Subject(s)
Beauveria , Insecticides/chemistry , Pest Control, Biological , Rhabditida , Weevils , Animals , Carbaryl/chemistry , Carya/parasitology , Pyrethrins/chemistry
3.
Environ Entomol ; 40(4): 889-92, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22251690

ABSTRACT

Two synthetic sex pheromones have been developed and are currently used to detect the flight of the pecan nut casebearer, Acrobasis nuxvorella Neunzig, the most damaging pest of pecan [Carya illinoinensis (Wangenh.) K. Koch]. One pheromone (referred to as standard) is attractive to moths in the southern United States, but not in Mexico. The other pheromone (referred to as Mexican) is attractive to moths in the southern United States and in Mexico. These two pheromones have been implemented by producers as an important tool in monitoring the activity of this pest and have allowed for more efficient pesticide use. In the future, these pheromones could be used as a means of population reduction through pheromone based control methods. Trapping data taken over a 3-yr period were used to determine if phenological differences exist between pheromone types of pecan nut casebearer. The relative abundance of each pheromone type at several locations in the United States also was evaluated. Results of this study indicate that no phenological differences exist between the two pheromone types studied in the United States and that significantly more males are attracted to field-deployed pheromone traps baited with the standard pheromone than to traps baited with the Mexican pheromone.


Subject(s)
Carya/parasitology , Flight, Animal , Moths/physiology , Pheromones/physiology , Analysis of Variance , Animals , Female , Male , Population Density , United States
4.
Pest Manag Sci ; 66(11): 1236-42, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20715019

ABSTRACT

BACKGROUND: Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. RESULTS: Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. CONCLUSION: Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability.


Subject(s)
Aphids/physiology , Carya/drug effects , Plant Growth Regulators/pharmacology , Animals , Carya/parasitology , Feeding Behavior , Gibberellins/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Pest Control , Phenylurea Compounds/pharmacology , Plant Diseases/parasitology , Pyridines/pharmacology
5.
J Evol Biol ; 23(5): 945-56, 2010 May.
Article in English | MEDLINE | ID: mdl-20345822

ABSTRACT

Host-associated differentiation (HAD) is the formation of genetically divergent host-associated sub-populations. Evidence of HAD has been reported for multiple insect herbivores to date, but published studies testing more than one herbivore for any given host-plant species pair is limited to herbivores on goldenrods. This limits the number of pair-wise comparisons that can be made about insect life-history traits that might facilitate or inhibit host-race development in general. Two traits previously proposed to facilitate HAD include endophagy and parthenogenesis. We tested for HAD in two herbivores, a quasi-endophagous caterpillar and a parthenogenetic aphid, feeding on two closely related species of hickories. We found that the quasi-endophage is panmictic, whereas the parthenogen exhibits HAD on their sympatric host plants, pecan and water hickory, at a geographic mesoscale. This is an important first step in the characterization of HAD in multiple insect herbivores using North American hickories, a host-plant system with many shared parthenogens.


Subject(s)
Aphids/genetics , Carya/parasitology , Genetic Speciation , Host-Pathogen Interactions/genetics , Moths/genetics , Parthenogenesis/genetics , Amplified Fragment Length Polymorphism Analysis , Analysis of Variance , Animals , Aphids/physiology , Bayes Theorem , Cluster Analysis , Genetic Variation , Models, Genetic , Moths/physiology , Species Specificity , Texas
6.
Environ Entomol ; 38(6): 1690-6, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20021765

ABSTRACT

Mate finding is a key lifecycle event for the pecan nut casebearer, Acrobasis nuxvorella Neunzig, as it is for virtually all Lepidoptera, many of which rely on long-range, species-specific sex pheromones, regulated largely by circadian clocks. Adult male moths were trapped at discrete time intervals during the first two seasonal flights for 6 yr to determine times of peak activity associated with male response to pheromones. From 1997 to 2002, the Harris-Coble automated clockwork timing trap was used for hourly time-segregated sampling. Analysis of variance with linear contrasts determined that circadian response of A. nuxvorella males to pecan nut casebearer pheromone began at approximately 2100 hours, the first hour of total darkness, lasting for 6-7 h. It peaked from midnight to 0400 hours and ended at the onset of morning twilight, approximately 0500 hours. The hours of peak activity are hours of minimal bat predation. The study shows that pecan nut casebearer males become responsive to pheromone several hours before females start calling and remain responsive for at least 1 h after they stop. The extended response period conforms to studies of other polygamous Lepidoptera in which a selective advantage is conferred on early responding males in scramble competition for available females.


Subject(s)
Circadian Rhythm , Moths/physiology , Sex Attractants/physiology , Sexual Behavior, Animal , Animals , Carya/parasitology , Female , Flight, Animal , Insect Control/instrumentation , Male
7.
J Econ Entomol ; 102(3): 1262-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19610447

ABSTRACT

The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), is a foliar feeder of pecan, Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae). The pest causes chlorosis of leaflet lamina, physiological damage to foliage and trees, and commonly limits the profitability of commercial pecan orchard enterprises. However, key aspects of this host-pest interaction are poorly understood. We report here the effects of M. caryaefoliae feeding on the foliar activity of oxidative (i.e., catalase, lipoxygenase [LOX]-1 and 3, and peroxidase) and hydrolytic (i.e., esterase) enzymes in relation to the degree of aphid resistance among pecan varieties. The 2-yr study showed that M. caryaefoliae-infested foliage exhibited elevated peroxidase activity only in susceptible ('Desirable', 'Sumner', and 'Schley'), but not in resistant ('Cape Fear', 'Gloria Grande', and 'Money Maker') genotypes. Susceptible genotypes also exhibited more severe leaf chlorosis in response to M. caryaefoliae feeding than the resistant genotypes; however, the aphid feeding did not influence catalase or esterase activity in all varieties, except the increase of esterase activity in Desirable and Gloria Grande. Melanocallis caryaefoliae feeding also influences activity of two lipoxygenase isozymes, with LOX3 being more frequently induced than LOX1. Foliar LOX3 activity was more frequently induced by M. caryaefoliae feeding in the moderately resistant 'Oconee' and highly resistant Money Maker and Cape Fear than in the susceptible genotypes. Therefore, the elevation of peroxidase is likely to be associated with aphid susceptibility and contributed to the severe leaf chlorosis, whereas the increase of LOX3 activity might be associated with aphid resistance in pecan. These findings contribute to our understanding of the etiology of M. caryaefoliae-elicited leaf chlorosis on pecan foliage. Such information may also be used to develop enzyme markers for identifying black pecan aphid resistance and/or susceptibility in pecan germplasm.


Subject(s)
Aphids/physiology , Carya/enzymology , Carya/parasitology , Host-Parasite Interactions , Hydrolases/metabolism , Oxidoreductases/metabolism , Plant Diseases/parasitology , Animals , Feeding Behavior/physiology , Genotype , Georgia , Plant Leaves/enzymology , Plant Leaves/physiology
8.
Environ Entomol ; 37(1): 162-71, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18348807

ABSTRACT

The pecan weevil, Curculio caryae (Horn), is a key pest of pecans. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin is pathogenic to C. caryae. One approach to managing C. caryae may be application of B. bassiana directed toward adult weevils as they emerge from the soil to attack nuts in the tree canopy. Our objective was to compare different application methods for suppression of C. caryae adults. Treatments included direct application of B. bassiana (GHA strain) to soil under the tree canopy, soil application followed by cultivation, soil application in conjunction with a cover crop (Sudan grass), direct application to the tree trunk, and application to the trunk with an UV radiation-protecting adjuvant. The study was conducted in a pecan orchard in Byron, GA, in 2005 and 2006. Naturally emerging C. caryae adults, caught after crawling to the trunk, were transported to the laboratory to determine percentage mortality and signs of mycosis. When averaged over the 15-d sampling period, weevil mortality and signs of mycosis were greater in all treatments than in the nontreated control in 2005 and 2006; >75% average mortality was observed with the trunk application both years and in the trunk application with UV protection in 2005. Results indicated trunk applications can produce superior efficacy relative to ground application, particularly if the ground application is followed by cultivation. Efficacy in the cover crop treatment, however, did not differ from other application approaches. Future research should focus on elucidating the causes for treatment differences we observed and the extent to which B. bassiana-induced C. caryae mortality reduces crop damage.


Subject(s)
Beauveria/pathogenicity , Carya/parasitology , Pest Control, Biological/methods , Weevils/microbiology , Animals , Beauveria/growth & development , Mortality , Pest Control, Biological/standards , Random Allocation , Soil Microbiology
9.
Math Biosci ; 208(2): 469-94, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17306309

ABSTRACT

This paper develops a deterministic and a stochastic population size model based on power-law kinetics for the black-margined pecan aphid. The deterministic model in current use incorporates cumulative-size dependency, but its solution is symmetric. The analogous stochastic model incorporates the prolific reproductive capacity of the aphid. These models are generalized in this paper to include a delayed feedback mechanism for aphid death. Whereas the per capita aphid death rate in the current model is proportional to cumulative size, delayed feedback is implemented by assuming that the per capita rate is proportional to some power of cumulative size, leading to so-called power-law dynamics. The solution to the resulting differential equations model is a left-skewed abundance curve. Such skewness is characteristic of observed aphid data, and the generalized model fits data well. The assumed stochastic model is solved using Kolmogrov equations, and differential equations are given for low order cumulants. Moment closure approximations, which are simple to apply, are shown to give accurate predictions of the two endpoints of practical interest, namely (1) a point estimate of peak aphid count and (2) an interval estimate of final cumulative aphid count. The new models should be widely applicable to other aphid species, as they are based on three fundamental properties of aphid population biology.


Subject(s)
Aphids/physiology , Models, Biological , Animals , Aphids/pathogenicity , Carya/parasitology , Female , Male , Mathematics , Nonlinear Dynamics , Population Growth , Reproduction , Stochastic Processes
10.
J Chem Ecol ; 31(1): 213-7, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15839491

ABSTRACT

Stressed woody plants represent an ephemeral and unpredictable resource for larvae of some species of longhorned beetles (Coleoptera: Cerambycidae) because prime subcortical tissues are rapidly degraded by a guild of xylophagous competitors. Selection favors efficient mechanisms of host and mate location to expedite colonization of hosts by larvae. Based on previous research, we hypothesize that mate location in some species of the subfamily Cerambycinae involves three sequential behavioral stages: (1) both sexes are attracted to larval hosts by plant volatiles; (2) males attract females over shorter distances with pheromones; and (3) males recognize females by contact pheromones in their epicuticular wax layer. We already have evidence of second-stage and third-stage behaviors in three species in this subfamily whose xylophagous larvae feed in hardwood trees: Xylotrechus colonus, Megacyllene caryae, and Neoclytus mucronatus mucronatus. In this report, we evaluate the first behavioral stage of mate location behavior (i.e., independent response of both sexes to host plant volatiles) for the same three species. Supporting our hypothesis, both males and females responded to volatiles emanating from hickory logs in Y-tube olfactometer bioassays.


Subject(s)
Carya/chemistry , Carya/parasitology , Coleoptera/physiology , Animals , Female , Host-Parasite Interactions , Larva/physiology , Male , Odorants , Pheromones/physiology , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...