Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235203

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor. Temozolomide (TMZ) is the first-line chemotherapeutic drug for treating GBM. However, drug resistance is still a challenging issue in GBM therapy. Our preliminary results showed upregulation of androgen receptor (AR) gene expression in human GBM tissues. This study was designed to evaluate the effects of enzalutamide, a specific inhibitor of the AR, on killing drug-resistant and -sensitive glioblastoma cells and the possible mechanisms. Data mining from The Cancer Genome Atlas (TCGA) database revealed upregulation of AR messenger (m)RNA and protein expressions in human GBM tissues, especially in male patients, compared to normal human brains. In addition, expressions of AR mRNA and protein in human TMZ-sensitive U87 MG and -resistant U87 MG-R glioblastoma cells were elevated compared to normal human astrocytes. Exposure of human U87 MG and U87 MG-R cells to enzalutamide concentration- and time-dependently decreased cell viability. As to the mechanism, enzalutamide killed these two types of glioblastoma cells via an apoptotic mechanism. Specifically, exposure to enzalutamide augmented enzyme activities of caspase-9 rather than those of caspase-8. Moreover, enzalutamide successively triggered an elevation in levels of the proapoptotic Bax protein, a reduction in the mitochondrial membrane potential, release of cytochrome c, cascade activation of caspases-3 and -6, DNA fragmentation, and cell apoptosis in human TMZ-sensitive and -resistant glioblastoma cells. Pretreatment with Z-VEID-FMK, an inhibitor of caspase-6, caused significant attenuations in enzalutamide-induced morphological shrinkage, DNA damage, and apoptotic death. Taken together, this study showed that enzalutamide could significantly induce apoptotic insults to human drug-resistant and -sensitive glioblastoma cells via an intrinsic Bax-mitochondrion-cytochrome c-caspase cascade activation pathway. Enzalutamide has the potential to be a drug candidate for treating GBM by targeting the AR signaling axis.


Subject(s)
Brain Neoplasms , Glioblastoma , Apoptosis , Benzamides , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Caspase 6/metabolism , Caspase 6/pharmacology , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cytochromes c/metabolism , Glioblastoma/metabolism , Humans , Male , Mitochondria/metabolism , Nitriles , Phenylthiohydantoin , RNA/metabolism , RNA, Messenger/metabolism , Receptors, Androgen/metabolism , Temozolomide/pharmacology , bcl-2-Associated X Protein/metabolism
2.
Biomarkers ; 27(7): 637-647, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35735023

ABSTRACT

INTRODUCTION: Protective effect of royal jelly (RJ) on fluoride-induced nephrotoxicity was investigated in this study. METHODS: 42 healthy male Wistar rats (n = 42, 8 weeks of age) were divided equally into 6 groups with 7 rats in each; (1) Group-1: Controls fed with standard diet; (2) Group-2: RJ [100 mg/kg] bw (body weight), by oral gavage; (3) Group-3: Fluoride [50 mg/kg] bw, in drinking water; (4) Group-4: Fluoride [100 mg/kg] bw, in drinking water; (5) Group-5: RJ [100 mg/kg] bw, by oral gavage + Fluoride [50 mg/kg] bw, in drinking water; (6) Group-6: RJ [100 mg/kg] bw, by oral gavage + Fluoride [100 mg/kg] bw, in drinking water. After 8 weeks, all rats were decapitated and their kidney tissues were removed for further analysis. The protein expression levels of caspase-3, caspase-6, caspase-9, Bcl-2, Bax, VEGF, GSK-3, BDNF, COX-2 and TNF-α proteins in kidney tissue were analysed by western blotting technique. RESULTS: RJ increased Bcl-2, COX-2, GSK-3, TNF-α and VEGF protein levels and a decreased caspase-3, caspase -6, caspase-9, Bax and BDNF protein levels in fluoride-treated rats. CONCLUSION: RJ application may have a promising therapeutical potential in the treatment of many diseases in the future by reducing kidney damage.


Subject(s)
Fatty Acids , Kidney Diseases , Animals , Male , Rats , Antioxidants/metabolism , bcl-2-Associated X Protein/metabolism , Biomarkers , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Caspase 3/metabolism , Caspase 6/metabolism , Caspase 6/pharmacology , Caspase 9/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Fluorides/toxicity , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Kidney , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Fatty Acids/pharmacology
3.
Hepatology ; 76(4): 1105-1120, 2022 10.
Article in English | MEDLINE | ID: mdl-35152446

ABSTRACT

BACKGROUND AND AIMS: NAFLD represents an increasing health problem in association with obesity and diabetes with no effective pharmacotherapies. Growing evidence suggests that several FGFs play important roles in diverse aspects of liver pathophysiology. Here, we report a previously unappreciated role of FGF4 in the liver. APPROACH AND RESULTS: Expression of hepatic FGF4 is inversely associated with NAFLD pathological grades in both human patients and mouse models. Loss of hepatic Fgf4 aggravates hepatic steatosis and liver damage resulted from an obesogenic high-fat diet. By contrast, pharmacological administration of recombinant FGF4 mitigates hepatic steatosis, inflammation, liver damage, and fibrogenic markers in mouse livers induced to develop NAFLD and NASH under dietary challenges. Such beneficial effects of FGF4 are mediated predominantly by activating hepatic FGF receptor (FGFR) 4, which activates a downstream Ca2+ -Ca2+ /calmodulin-dependent protein kinase kinase beta-dependent AMP-activated protein kinase (AMPK)-Caspase 6 signal axis, leading to enhanced fatty acid oxidation, reduced hepatocellular apoptosis, and mitigation of liver damage. CONCLUSIONS: Our study identifies FGF4 as a stress-responsive regulator of liver pathophysiology that acts through an FGFR4-AMPK-Caspase 6 signal pathway, shedding light on strategies for treating NAFLD and associated liver pathologies.


Subject(s)
Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Caspase 6/metabolism , Caspase 6/pharmacology , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Fibroblast Growth Factor 4/metabolism , Fibroblast Growth Factor 4/pharmacology , Fibroblast Growth Factor 4/therapeutic use , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/therapeutic use
4.
Anticancer Res ; 37(4): 1697-1704, 2017 04.
Article in English | MEDLINE | ID: mdl-28373431

ABSTRACT

BACKGROUND: Mitochondria are central to apoptosis. However, apoptosis progression involving mitochondria is not fully understood. A factor involved in mitochondria-mediated apoptosis is 7A6 antigen. 7A6 localizes to mitochondria from the cytosol during apoptosis, which seems to involve 'effector' caspases. In this study, we investigated the precise role of effector caspases in 7A6 localization to mitochondria during apoptosis. MATERIALS AND METHODS: Human T-cell lymphoma Jurkat cells were treated with an antibody against FAS. 7A6 localization was analyzed by confocal laser scanning microscopy and flow cytometry. Caspases activation was determined by western blot analysis. RESULTS: 7A6 localization to mitochondria during anti-FAS-induced apoptosis was significantly reduced by the caspase-6 inhibitor, N-acetyl-Val-Glu-Ile-Asp-aldehyde, but not by the caspase-3 inhibitor, N-acetyl-Asp-Asn-Leu-Asp-aldehyde, nor caspase-7/3 inhibitor, N-acetyl-Asp-Gln-Thr-Asp-aldehyde. Moreover, caspase-6 down-regulation suppressed 7A6 localization to mitochondria. CONCLUSION: Caspase-6 regulates 7A6 localization to mitochondria during anti-FAS-induced apoptosis of Jurkat cells.


Subject(s)
Apoptosis/drug effects , Caspase 6/pharmacology , Membrane Proteins/metabolism , Mitochondria/pathology , fas Receptor/metabolism , Blotting, Western , Caspase Inhibitors/pharmacology , Flow Cytometry , Humans , Jurkat Cells , Mitochondria/drug effects , Mitochondria/metabolism
5.
ASN Neuro ; 5(5): e00125, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24102621

ABSTRACT

IF (intermediate filament) proteins can be cleaved by caspases to generate proapoptotic fragments as shown for desmin. These fragments can also cause filament aggregation. The hypothesis is that disease-causing mutations in IF proteins and their subsequent characteristic histopathological aggregates could involve caspases. GFAP (glial fibrillary acidic protein), a closely related IF protein expressed mainly in astrocytes, is also a putative caspase substrate. Mutations in GFAP cause AxD (Alexander disease). The overexpression of wild-type or mutant GFAP promotes cytoplasmic aggregate formation, with caspase activation and GFAP proteolysis. In this study, we report that GFAP is cleaved specifically by caspase 6 at VELD²²5 in its L12 linker domain in vitro. Caspase cleavage of GFAP at Asp²²5 produces two major cleavage products. While the C-GFAP (C-terminal GFAP) is unable to assemble into filaments, the N-GFAP (N-terminal GFAP) forms filamentous structures that are variable in width and prone to aggregation. The effect of N-GFAP is dominant, thus affecting normal filament assembly in a way that promotes filament aggregation. Transient transfection of N-GFAP into a human astrocytoma cell line induces the formation of cytoplasmic aggregates, which also disrupt the endogenous GFAP networks. In addition, we generated a neo-epitope antibody that recognizes caspase-cleaved but not the intact GFAP. Using this antibody, we demonstrate the presence of the caspase-generated GFAP fragment in transfected cells expressing a disease-causing mutant GFAP and in two mouse models of AxD. These findings suggest that caspase-mediated GFAP proteolysis may be a common event in the context of both the GFAP mutation and excess.


Subject(s)
Caspase 6/pharmacology , Cytoskeleton/metabolism , Glial Fibrillary Acidic Protein/drug effects , Glial Fibrillary Acidic Protein/metabolism , Proteolysis/drug effects , Alexander Disease/genetics , Alexander Disease/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cytoskeleton/drug effects , Disease Models, Animal , Female , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/genetics , Humans , Mice , Mice, Transgenic , Mutagenesis, Site-Directed , Mutation/genetics , Peptides/pharmacology , Protein Binding/drug effects , Protein Binding/genetics
6.
Mol Med ; 18: 445-54, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22245800

ABSTRACT

α-1 Antitrypsin (A1AT) is a serpin with a major protective effect against cigarette smoke-induced emphysema development, and patients with mutations of the A1AT gene display a markedly increased risk for developing emphysema. We reported that A1AT protects lung endothelial cells from apoptosis and inhibits caspase-3 activity. It is not clear if cigarette smoking or A1AT mutations alter the caspase-3 inhibitory activity of A1AT and if this serpin alters the function of other caspases. We tested the hypothesis that the caspase-3 inhibitory activity of A1AT is impaired by cigarette smoking and that the A1AT RCL, the key antiprotease domain of the serpin, is required for its interaction with the caspase. We examined the caspase-3 inhibitory activity of human A1AT purified from plasma of actively smoking and nonsmoking individuals, either affected or unaffected with chronic obstructive pulmonary disease. We also tested the caspase inhibitory activity of two mutant forms of A1AT, the recombinant human piZZ and the RCL-deleted (RCL-null) A1AT forms. A1AT purified from the blood of active smokers exhibited marked attenuation in its caspase-3 inhibitory activity, independent of disease status. In vitro exposure of the normal (MM) form of A1AT to cigarette smoke extract reduced its ability to interact with caspase-3, measured by isothermal titration calorimetry, as did the deletion of the RCL, but not the ZZ point mutation. In cell-free assays A1AT was capable of inhibiting all executioner caspases, -3, -7 and especially -6, but not the initiator or inflammatory caspases. The inhibitory effect of A1AT against caspase-6 was tested in vivo, where overexpression of both human MM and ZZ-A1AT via adeno-associated virus transduction significantly protected against apoptosis and against airspace damage induced by intratracheal instillation of caspase-6 in mice. These data indicate a specific inhibitory effect of A1AT on executioner caspases, which is profoundly attenuated by active exposure to cigarette smoking and is dependent on the protein RCL, but is not affected by the PiZZ mutation.


Subject(s)
Caspase 3/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/metabolism , alpha 1-Antitrypsin Deficiency/metabolism , Adult , Aged , Animals , Caspase 6/pharmacology , Caspase 7/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...