Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.422
Filter
1.
J Chem Inf Model ; 64(14): 5691-5700, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38946265

ABSTRACT

The Caspase-based fusion protein technology (CASPON) allows for universal cleavage of fusion tags from proteins of interest to reconstitute the native N-terminus. While the CASPON enzyme has been optimized to be promiscuous against a diversity of N-terminal peptides, the cleavage efficacy for larger proteins can be surprisingly low. We develop an efficient means to rationalize and predict the cleavage efficiency based on a structural representation of the intrinsically disordered N-terminal peptides and their putative interactions with the CASPON enzyme. The number of favorably interacting N-terminal conformations shows a very good agreement with the experimentally observed cleavage efficiency, in agreement with a conformational selection model. The method relies on computationally cheap molecular dynamics simulations to efficiently generate a diverse collection of N-terminal conformations, followed by a simple fitting procedure into the CASPON enzyme. It can be readily used to assess the CASPON cleavability a priori.


Subject(s)
Molecular Dynamics Simulation , Protein Conformation , Caspases/metabolism , Caspases/chemistry , Substrate Specificity , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Peptides/chemistry , Peptides/metabolism
2.
Theranostics ; 14(10): 3909-3926, 2024.
Article in English | MEDLINE | ID: mdl-38994036

ABSTRACT

Background: Aurora kinase A (AURKA) is a potent oncogene that is often aberrantly expressed during tumorigenesis, and is associated with chemo-resistance in various malignancies. However, the role of AURKA in chemo-resistance remains largely elusive. Methods: The cleavage of AURKA upon viral infection or apoptosis stimuli was assesed by immunoblotting assays in several cancer cells or caspase deficient cell line models. The effect of AURKA cleavage at Asp132 on mitosis was explored by live cell imaging and immunofluorescence staining experiments. The role of Asp132-cleavage of AURKA induced by the chemotherapy drug paclitaxel was investigated using TUNEL, immunohistochemistry assay in mouse tumor xenograft model and patient tissues. Results: The proteolytic cleavage of AURKA at Asp132 commonly occurs in several cancer cell types, regardless of viral infection or apoptosis stimuli. Mechanistically, caspase 3/7/8 cleave AURKA at Asp132, and the Asp132-cleaved forms of AURKA promote cell apoptosis by disrupting centrosome formation and bipolar spindle assembly in metaphase during mitosis. The AURKAD132A mutation blocks the expression of cleaved caspase 3 and EGR1, which leads to reduced therapeutic effects of paclitaxel on colony formation and malignant growth of tumor cells in vitro and in vivo using a murine xenograft model and cancer patients. Conclusions: This study reveals that caspase-mediated AURKAD132 proteolysis is essential for paclitaxel to elicit cell apoptosis and indicates that AURKAD132 is a potential key target for chemotherapy.


Subject(s)
Apoptosis , Aurora Kinase A , Paclitaxel , Paclitaxel/pharmacology , Aurora Kinase A/metabolism , Animals , Humans , Apoptosis/drug effects , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Caspases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Neoplasm , Mitosis/drug effects , Proteolysis/drug effects , Female , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
3.
Mar Drugs ; 22(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38921562

ABSTRACT

Experiments conducted on triple-negative breast cancer have shown that fucoidan from Lessonia trabeculata (FLt) exhibits cytotoxic and antitumor properties. However, further research is necessary to gain a complete understanding of its bioactivity and level of cytotoxicity. The cytotoxic effect of FLt was determined by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Apoptosis was analyzed using annexin V and caspase 3/7 staining kit and DNA fragmentation. In addition, transcriptional expression of antiapoptotic (Bcl-2 and XIAP) and proapoptotic (caspase 8, caspase 9, and AIF) genes were analyzed in TNBC 4T1 cells. After 72 h of culture, the IC50 for FLt was 561 µg/mL, while doxorubicin (Dox) had an IC50 of 0.04 µg/mL. In addition, assays for FLt + Dox were performed. Annexin V and caspase 3/7 revealed that FLt induces early and late-stage apoptosis. DNA fragmentation results support necrotic death of 4T1 cells. Similarly, transcripts that prevent cell death were decreased, while transcripts that promote cell death were increased. This study showed that FLt induces apoptosis by both caspase-dependent and caspase-independent mechanisms. These findings suggest that FLt may have potential applications in breast cancer treatment. Further research will provide more information to elucidate the mechanism of action of FLt.


Subject(s)
Apoptosis , Caspases , Polysaccharides , Apoptosis/drug effects , Cell Line, Tumor , Polysaccharides/pharmacology , Animals , Female , Caspases/metabolism , Mice , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Humans , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , DNA Fragmentation/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Kelp
4.
Plant Physiol Biochem ; 213: 108850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917737

ABSTRACT

The importance of metacaspases in programmed cell death and tissue differentiation is known, but their significance in disease stress response, particularly in a crop plant, remained enigmatic. We show the tomato metacaspase expression landscape undergoes differential reprogramming during biotrophic and necrotrophic modes of pathogenesis; also, the metacaspase activity dynamics correlate with the disease progression. These stresses have contrasting effects on the expression pattern of SlMC8, a Type II metacaspase, indicating that SlMC8 is crucial for stress response. In accordance, selected biotic stress-related transcription factors repress SlMC8 promoter activity. Interestingly, SlMC8 exhibits maximum proteolysis at an acidic pH range of 5-6. Molecular dynamics simulation identified the low pH-driven protonation event of Glu246 as critical to stabilize the interaction of SlMC8 with its substrate. Mutagenesis of Glu246 to charge-neutral glutamine suppressed SlMC8's proteolytic activity, corroborating the importance of the amino acid in SlMC8 activation. The glutamic acid residue is found in an equivalent position in metacaspases having acidic pH dependence. SlMC8 overexpression leads to heightened ROS levels, cell death, and tolerance to PstDC3000, and SlMC8 repression reversed the phenomena. However, the overexpression of SlMC8 increases tomato susceptibility to necrotrophic Alternaria solani. We propose that SlMC8 activation due to concurrent changes in cellular pH during infection contributes to the basal resistance of the plant by promoting cell death at the site of infection, and the low pH dependence acts as a guard against unwarranted cell death. Our study confirms the essentiality of a low pH-driven Type II metacaspase in tomato biotic stress-response regulation.


Subject(s)
Plant Diseases , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/enzymology , Hydrogen-Ion Concentration , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Caspases/metabolism , Caspases/genetics , Gene Expression Regulation, Plant
5.
Immunity ; 57(6): 1192-1194, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865965

ABSTRACT

Bacterial lipopolysaccharide (LPS) is implicated in disrupting the blood-brain barrier (BBB). In a recent issue of Nature, Wei et al. now show that LPS activates the inflammatory caspases (4, 5, and 11) and gasdermin D (GSDMD) in brain endothelial cells, which triggers their pyroptotic cell death and disrupts the BBB.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Lipopolysaccharides , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/immunology , Animals , Humans , Endothelial Cells/metabolism , Endothelial Cells/immunology , Lipopolysaccharides/immunology , Caspases/metabolism , Pyroptosis , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Mice
6.
Wiley Interdiscip Rev RNA ; 15(3): e1862, 2024.
Article in English | MEDLINE | ID: mdl-38837618

ABSTRACT

Cell death plays a crucial role in various physiological and pathological processes. Until recently, programmed cell death was mainly attributed to caspase-dependent apoptosis. However, emerging evidence suggests that caspase-independent cell death (CICD) mechanisms also contribute significantly to cellular demise. We and others have reported and functionally characterized numerous long noncoding RNAs (lncRNAs) that modulate caspase-dependent apoptotic pathways potentially in a pathway-dependent manner. However, the interplay between lncRNAs and CICD pathways has not been comprehensively documented. One major reason for this is that most CICD pathways have been recently discovered with some being partially characterized at the molecular level. In this review, we discuss the emerging evidence that implicates specific lncRNAs in the regulation and execution of CICD. We summarize the diverse mechanisms through which lncRNAs modulate different forms of CICD, including ferroptosis, necroptosis, cuproptosis, and others. Furthermore, we highlight the intricate regulatory networks involving lncRNAs, protein-coding genes, and signaling pathways that orchestrate CICD in health and disease. Understanding the molecular mechanisms and functional implications of lncRNAs in CICD may unravel novel therapeutic targets and diagnostic tools for various diseases, paving the way for innovative strategies in disease management and personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Subject(s)
Cell Death , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Animals , Cell Death/genetics , Caspases/metabolism , Caspases/genetics , Signal Transduction , Apoptosis/genetics
7.
Nitric Oxide ; 149: 18-31, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38823434

ABSTRACT

Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.


Subject(s)
Caspases , Oxidation-Reduction , Humans , Caspases/metabolism , Animals , Nitric Oxide/metabolism , Protein Processing, Post-Translational , Cysteine/metabolism
8.
Bioorg Chem ; 150: 107563, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38885547

ABSTRACT

In this study, seven isoniazid-hydrazone derivatives (3a-g) were synthesized and their structures elucidated by chromatographic techniques, and then the antiproliferative effects of these compounds on various cancer cells were tested. The advanced anticancer mechanism of the most potent compound was then investigated. Antiproliferative activities of the synthesized compounds were evaluated on human breast cancer MCF-7, lung cancer A-549, colon cancer HT-29, and non-cancerous mouse fibroblast 3T3-L1 cell lines by XTT assay. Flow cytometry analysis were carried out to determine cell cycle distribution, apoptosis, mitochondrial membrane potential, multi-caspase activity, and expression of PI3K/AKT signaling pathway. The XTT results showed that all the title molecules displayed cytotoxic activity at varying strengths in different dose ranges, and among them, the strongest cytotoxic effect and high selectivity were exerted by 3d against MCF-7 cells with the IC50 value of 11.35 µM and selectivity index of 8.65. Flow cytometry results revealed that compound 3d induced apoptosis through mitochondrial membrane disruption and multi-caspase activation in MCF-7 cells. It also inhibited the cell proliferation via inhibition of expression of PI3K/AKT and arrested the cell cycle at G0/G1 phase. In conclusion, all these data disclosed that among the synthesized compounds, 3d is notable for in vivo anticancer studies.


Subject(s)
Antineoplastic Agents , Apoptosis , Caspases , Cell Cycle Checkpoints , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hydrazones , Isoniazid , Mitochondria , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Apoptosis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Cycle Checkpoints/drug effects , Structure-Activity Relationship , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Caspases/metabolism , Isoniazid/pharmacology , Isoniazid/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Mice , Animals
9.
Physiol Plant ; 176(3): e14401, 2024.
Article in English | MEDLINE | ID: mdl-38899462

ABSTRACT

Metacaspases are cysteine proteases present in plants, fungi and protists. While the association of metacaspases with cell death is studied in a range of organisms, their native substrates are largely unknown. Here, we explored the in vivo proteolytic landscape of the two metacaspases, CrMCA-I and CrMCA-II, present in the green freshwater alga Chlamydomonas reinhardtii, using mass spectrometry-based degradomics approach, during control conditions and salt stress. Comparison between the cleavage events of CrMCA-I and CrMCA-II in metacaspase mutants revealed unique cleavage preferences and substrate specificity. Degradome analysis demonstrated the relevance of the predicted metacaspase substrates to the physiology of C. reinhardtii cells and its adaptation during salt stress. Functional enrichment analysis indicated an involvement of CrMCA-I in the catabolism of carboxylic acids, while CrMCA-II plays an important role in photosynthesis and translation. Altogether, our findings suggest distinct cellular functions of the two metacaspases in C. reinhardtii during salt stress response.


Subject(s)
Chlamydomonas reinhardtii , Proteolysis , Salt Stress , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/enzymology , Chlamydomonas reinhardtii/metabolism , Proteolysis/drug effects , Caspases/metabolism , Caspases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
10.
Apoptosis ; 29(7-8): 938-966, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824481

ABSTRACT

Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.


Subject(s)
Caspases , Mice, Knockout , Animals , Caspases/metabolism , Caspases/genetics , Mice , Humans , Apoptosis , Inflammation/enzymology , Disease Models, Animal
11.
mBio ; 15(7): e0297523, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38837391

ABSTRACT

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.


Subject(s)
Caspases , Inflammation , Substrate Specificity , Caspases/metabolism , Caspases/genetics , Humans , Inflammation/metabolism , Animals , Catalytic Domain , Pyroptosis
12.
Adv Immunol ; 162: 59-108, 2024.
Article in English | MEDLINE | ID: mdl-38866439

ABSTRACT

Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.


Subject(s)
Apoptosis , Mitochondria , Mitochondrial Membranes , Proto-Oncogene Proteins c-bcl-2 , Humans , Animals , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Inflammation/immunology , Caspases/metabolism , Signal Transduction , Neoplasms/immunology , Neoplasms/metabolism
13.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727308

ABSTRACT

Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase-Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa.


Subject(s)
Apoptosis , Cell Proliferation , Indole Alkaloids , Mitogen-Activated Protein Kinase 14 , Molecular Docking Simulation , Humans , A549 Cells , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Molecular Dynamics Simulation , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism
14.
J Theor Biol ; 590: 111857, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38797470

ABSTRACT

Resisting apoptosis is a hallmark of cancer. For this reason, it may be possible to force cancer cells to die by targeting components along the apoptotic signaling pathway. However, apoptosis signaling is challenging to understand due to dynamic and complex behaviors of ligands, receptors, and intracellular signaling components in response to cancer therapy. In this work, we forecast the apoptotic response based on the combined impact of these features. We expanded a previously established mathematical model of caspase-mediated apoptosis to include extracellular activation and receptor dynamics. In addition, three potential threshold values of caspase-3 necessary for the activation of apoptosis were selected to forecast which cells become apoptotic over time. We first vary ligand and receptor levels with the number of intracellular signaling proteins remaining consistent. Then, we vary the intracellular protein molecules in each simulated tumor cell to forecast the response of a heterogeneous population. By leveraging the benefits of computational modeling, we investigate the combined effect of several factors on the onset of apoptosis. This work provides quantitative insights for how the apoptotic signaling response can be forecasted, and precisely triggered, amongst heterogeneous cells via extracellular activation.


Subject(s)
Apoptosis , Models, Biological , Neoplasms , Signal Transduction , Humans , Neoplasms/pathology , Neoplasms/metabolism , Caspases/metabolism , Caspase 3/metabolism
15.
Cell Rep ; 43(5): 114251, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38761374

ABSTRACT

Phagocytic macrophages are crucial for innate immunity and tissue homeostasis. Most tissue-resident macrophages develop from embryonic precursors that populate every organ before birth to lifelong self-renew. However, the mechanisms for versatile macrophage differentiation remain unknown. Here, we use in vivo genetic and cell biological analysis of the Drosophila larval hematopoietic organ, the lymph gland that produces macrophages. We show that the developmentally regulated transient activation of caspase-activated DNase (CAD)-mediated DNA strand breaks in intermediate progenitors is essential for macrophage differentiation. Insulin receptor-mediated PI3K/Akt signaling regulates the apoptosis signal-regulating kinase 1 (Ask1)/c-Jun kinase (JNK) axis to control sublethal levels of caspase activation, causing DNA strand breaks during macrophage development. Furthermore, caspase activity is also required for embryonic-origin macrophage development and efficient phagocytosis. Our study provides insights into developmental signaling and CAD-mediated DNA strand breaks associated with multifunctional and heterogeneous macrophage differentiation.


Subject(s)
Cell Differentiation , DNA Damage , Drosophila Proteins , Macrophages , Phagocytosis , Animals , Macrophages/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Signal Transduction , Caspases/metabolism , Enzyme Activation , Deoxyribonucleases/metabolism , Drosophila melanogaster/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism
16.
Placenta ; 151: 37-47, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703713

ABSTRACT

Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.


Subject(s)
Apoptosis , Caspases , Placenta , Animals , Female , Humans , Pregnancy , Caspases/metabolism , Placenta/pathology , Placenta/metabolism , Placenta Diseases/pathology , Placenta Diseases/metabolism , Placentation/physiology , Pre-Eclampsia/pathology , Pre-Eclampsia/metabolism , Trophoblasts/physiology , Trophoblasts/pathology
17.
Microsc Microanal ; 30(3): 521-538, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38709559

ABSTRACT

Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites. Buparvaquone (BPQ), a member of this class, is the only drug licensed for the treatment of theileriosis. BPQ has shown promising antileishmanial activity but its mode of action is largely unknown. The aim of this study was to evaluate the ultrastructural and physiological effects of BPQ for elucidating the mechanisms underlying the in vitro antiproliferative activity in Leishmania donovani. Transmission and scanning electron microscopy analyses of BPQ-treated parasites revealed ultrastructural effects characteristic of apoptosis-like cell death, which include alterations in the nucleus, mitochondrion, kinetoplast, flagella, and the flagellar pocket. Using flow cytometry, laser scanning confocal microscopy, and fluorometry, we found that BPQ induced caspase-independent apoptosis-like cell death by losing plasma membrane phospholipid asymmetry and cell cycle arrest at sub-G0/G1 phase. Depolarization of the mitochondrial membrane leads to the generation of oxidative stress and impaired ATP synthesis followed by disruption of intracellular calcium homeostasis. Collectively, these findings provide valuable mechanistic insights and demonstrate BPQ's potential for development as an antileishmanial agent.


Subject(s)
Antiprotozoal Agents , Apoptosis , Leishmania donovani , Mitochondria , Naphthoquinones , Leishmania donovani/drug effects , Leishmania donovani/physiology , Mitochondria/drug effects , Mitochondria/ultrastructure , Apoptosis/drug effects , Antiprotozoal Agents/pharmacology , Naphthoquinones/pharmacology , Caspases/metabolism , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
18.
Biomolecules ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785927

ABSTRACT

Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.


Subject(s)
Caspases , Inflammation , Humans , Animals , Inflammation/metabolism , Inflammation/genetics , Caspases/metabolism , Caspases/genetics , Caspases/chemistry , Evolution, Molecular , Lipopolysaccharides , Caspases, Initiator/metabolism , Caspases, Initiator/genetics , Inflammasomes/metabolism , Gram-Negative Bacteria
19.
Retrovirology ; 21(1): 8, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693565

ABSTRACT

The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.


Subject(s)
CD4-Positive T-Lymphocytes , Disease Models, Animal , HIV Infections , HIV-1 , Animals , Mice , HIV Infections/immunology , HIV Infections/virology , HIV Infections/drug therapy , HIV-1/physiology , HIV-1/drug effects , Humans , CD4-Positive T-Lymphocytes/immunology , Lymphoid Tissue/virology , Lymphoid Tissue/immunology , Viral Load/drug effects , Spleen/virology , Spleen/immunology , Lymph Nodes/immunology , Lymph Nodes/virology , Caspases/metabolism , Caspase Inhibitors/pharmacology , Anti-Retroviral Agents/therapeutic use
20.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791309

ABSTRACT

The protein scaffold that includes the caspases is ancient and found in all domains of life. However, the stringent specificity that defines the caspase biologic function is relatively recent and found only in multicellular animals. During the radiation of the Chordata, members of the caspase family adopted roles in immunity, events coinciding with the development of substrates that define the modern innate immune response. This review focuses on the switch from the non-inflammatory cellular demise of apoptosis to the highly inflammatory innate response driven by distinct members of the caspase family, and the interplay between these two regulated cell death pathways.


Subject(s)
Caspases , Immunity, Innate , Pyroptosis , Humans , Caspases/metabolism , Animals , Evolution, Molecular , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...