Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.733
Filter
1.
Mol Biol Rep ; 51(1): 723, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833199

ABSTRACT

BACKGROUND: Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS: First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 µM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS: Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.


Subject(s)
Antioxidants , Glioblastoma , NF-E2-Related Factor 2 , Oxidation-Reduction , Oxidative Stress , Silymarin , Silymarin/pharmacology , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cell Line, Tumor , Oxidation-Reduction/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Catalase/metabolism , Catalase/genetics
2.
Braz Oral Res ; 38: e042, 2024.
Article in English | MEDLINE | ID: mdl-38747829

ABSTRACT

The aim of this study was to investigate the DNA methylation profile in genes encoding catalase (CAT) and superoxide dismutase (SOD3) enzymes, which are involved in oxidative stress mechanisms, and in genes encoding pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor-alpha (TNF-α) in the oral mucosa of oncopediatric patients treated with methotrexate (MTX®). This was a cross-sectional observational study and the population comprised healthy dental patients (n = 21) and those with hematological malignancies (n = 64) aged between 5 and 19 years. Oral conditions were evaluated using the Oral Assessment Guide and participants were divided into 4 groups: 1- healthy individuals; 2- oncopediatric patients without mucositis; 3- oncopediatric patients with mucositis; 4- oncopediatric patients who had recovered from mucositis. Methylation of DNA from oral mucosal cells was evaluated using the Methylation-Specific PCR technique (MSP). For CAT, the partially methylated profile was the most frequent and for SOD3 and IL6, the hypermethylated profile was the most frequent, with no differences between groups. For TNF-α, the hypomethylated profile was more frequent in the group of patients who had recovered from mucositis. It was concluded that the methylation profiles of CAT, SOD3, and IL6 are common profiles for oral cells of children and adolescents and have no association with oral mucositis or exposure to chemotherapy with MTX®. Hypomethylation of TNF-α is associated with oral mucosal recovery in oncopediatric patients who developed oral mucositis during chemotherapy.


Subject(s)
Catalase , DNA Methylation , Interleukin-6 , Methotrexate , Mouth Mucosa , Stomatitis , Superoxide Dismutase , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Child , Cross-Sectional Studies , Adolescent , Child, Preschool , Male , Female , Young Adult , Interleukin-6/genetics , Interleukin-6/analysis , Catalase/genetics , Mouth Mucosa/drug effects , Superoxide Dismutase/genetics , Methotrexate/therapeutic use , Methotrexate/adverse effects , Stomatitis/genetics , Stomatitis/chemically induced , Promoter Regions, Genetic/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/drug therapy , Reference Values , Antimetabolites, Antineoplastic/adverse effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Polymerase Chain Reaction , Statistics, Nonparametric , Mucositis/genetics , Mucositis/chemically induced , Case-Control Studies
3.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722391

ABSTRACT

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Subject(s)
Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
4.
Mol Biol Rep ; 51(1): 685, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796672

ABSTRACT

BACKGROUND: In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS: This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS: When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.


Subject(s)
DNA, Mitochondrial , Drosophila melanogaster , Mitochondria , Oxidative Stress , Animals , Oxidative Stress/drug effects , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Carmine/metabolism , Carmine/adverse effects , Glutathione/metabolism , DNA Damage/drug effects , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Food Coloring Agents/adverse effects , Food Coloring Agents/toxicity , Catalase/metabolism , Catalase/genetics
5.
Exp Parasitol ; 261: 108751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604302

ABSTRACT

Anisakiasis is a parasitic disease transmitted through the consumption of raw or undercooked fish and cephalopods that are infected with larvae of Anisakis simplex (sensu stricto) or Anisakis pegreffii. The purpose of this study was to investigate how A. simplex (s. s.) responds to the influence of anthelmintics such as ivermectin (IVM) and pyrantel (PYR). In vitro experiments were conducted using larvae at two developmental stages of A. simplex (s. s.) (L3 and L4) obtained from Baltic herring (Clupea harengus membras). Larvae were cultured with different concentrations of IVM or PYR (1.56, 3.125, and 6.25 µg/mL) for various durations (3, 6, 9, and 12 h) under anaerobic conditions (37 °C, 5% CO2). The gene expression of actin, ABC transporter, antioxidant enzymes, γ-aminobutyric acid receptors, and nicotinic acetylcholine receptors, as well as the oxidative status were analyzed. The results showed that A. simplex (s. s.) L3 stage had lower mobility when cultured with PYR compared to IVM. The analysis of relative gene expression revealed significant differences in the mRNA level of ABC transporters after treatment with IVM and PYR, compared to the control group. Similar patterns were observed in the gene expression of antioxidant enzymes in response to both drugs. Furthermore, the total antioxidant capacity (TAC) and glutathione S-transferase (GST) activity were higher in the treatment groups than in the control group. These findings suggest a relationship between the expression of the studied genes, including those related to oxidative metabolism, and the effectiveness of the tested drugs.


Subject(s)
Anisakis , Anthelmintics , Ivermectin , Larva , Pyrantel , Animals , Anisakis/drug effects , Anisakis/genetics , Anisakis/growth & development , Ivermectin/pharmacology , Larva/drug effects , Larva/genetics , Anthelmintics/pharmacology , Pyrantel/pharmacology , Actins/metabolism , Actins/genetics , Actins/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/drug effects , Xenobiotics/pharmacology , Xenobiotics/metabolism , Gene Expression/drug effects , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Anisakiasis/parasitology , Anisakiasis/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/drug effects , Catalase/genetics , Catalase/metabolism , Catalase/drug effects , Fishes/parasitology , Fish Diseases/parasitology
6.
Gene ; 919: 148510, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38679184

ABSTRACT

BACKGROUND: Genetic background of healthy or pathological styles of aging and human lifespan is determined by joint gene interactions. Lucky combinations of antioxidant gene polymorphisms can result in a highly adaptive phenotype, providing a successful way to interact with external triggers. Our purpose was to identify the polygenic markers of survival and longevity in the antioxidant genes among elderly people with physiological and pathological aging. METHODS: In a 20-year follow-up study of 2350 individuals aged 18-114 years residing in the Volga-Ural region of Russia, sex-adjusted association analyses of MTHFR rs1801133, MSRA rs10098474, PON1 rs662, PON2 rs7493, SOD1 rs2070424, NQO1 rs1131341 and CAT rs1001179 polymorphic loci with longevity were carried out. Survival analysis was subsequently performed using the established single genes and gene-gene combinations as cofactors. RESULTS: The PON1 rs662*G allele was defined as the main longevity marker in women (OR = 1.44, p = 3E-04 in the log-additive model; HR = 0.77, p = 1.9E-04 in the Cox-survival model). The polymorphisms in the MTHFR, MSRA, PON2, SOD1, and CAT genes had an additive effect on longevity. A strong protective effect of combined MTHFR rs1801133*C, MSRA rs10098474*T, PON1 rs662*G, and PON2 rs7493*C alleles against mortality was obtained in women (HR = 0.81, p = 5E-03). The PON1 rs662*A allele had a meaningful impact on mortality for both long-lived men with cerebrovascular accidents (HR = 1.76, p = 0.027 for the PON1 rs662*AG genotype) and women with cardiovascular diseases (HR = 1.43, p = 0.002 for PON1 rs662*AA genotype). The MTHFR rs1801133*TT (HR = 1.91, p = 0.036), CAT rs1001179*TT (HR = 2.83, p = 0.031) and SOD1 rs2070424*AG (HR = 1.58, p = 0.018) genotypes were associated with the cancer mortality. CONCLUSION: In our longitudinal 20-year study, we found the combinations of functional polymorphisms in antioxidant genes involved in longevity and survival in certain clinical phenotypes in the advanced age.


Subject(s)
Aryldialkylphosphatase , Longevity , Methylenetetrahydrofolate Reductase (NADPH2) , NAD(P)H Dehydrogenase (Quinone) , Polymorphism, Single Nucleotide , Superoxide Dismutase-1 , Humans , Female , Male , Aryldialkylphosphatase/genetics , Longevity/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , Follow-Up Studies , Adult , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Adolescent , Aged , Superoxide Dismutase-1/genetics , Catalase/genetics , Aged, 80 and over , Russia , Young Adult , Antioxidants/metabolism
7.
J Hazard Mater ; 470: 134212, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583205

ABSTRACT

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Subject(s)
Aldo-Keto Reductases , Cadmium , Oryza , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/metabolism , Aldehydes/metabolism , Catalase/metabolism , Catalase/genetics , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Malondialdehyde/metabolism , Stress, Physiological , Pyruvaldehyde/metabolism , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Inactivation, Metabolic
8.
Environ Toxicol Pharmacol ; 108: 104452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663648

ABSTRACT

Individuals working in diverse fields are consistently exposed to work-related pollutants that can impact their overall health. The current study investigated the presence of pollutants in seven different occupational groups and their impact on human health. Biochemical and genetic approaches were employed. Heavy metals were determined by ICP-MS technique. Oxidative stress biochemical markers and molecular analysis of the glutathione transferases gene SNPs (GSTT1, GSTM1, GSTP1), catalase (CAT, rs7943316), and superoxide dismutase (SOD, rs17880487) was carried out. The results revealed a significantly higher quantity of Cd among five occupational groups. Catalase, malonaldehyde, and glutathione was significantly dysregulated. Molecular analysis of the gene SNPs suggests a probable relationship between the antioxidants and the phenotypic expression of the CAT, GSTP1, GSTT1, and GSTM1 SNPs. It is concluded that chronic exposure to occupational contaminants like Cd affects human health through oxidative stress in association with some of their gene SNPs.


Subject(s)
Catalase , Glutathione S-Transferase pi , Glutathione Transferase , Metals, Heavy , Occupational Exposure , Oxidative Stress , Polymorphism, Single Nucleotide , Superoxide Dismutase , Humans , Glutathione Transferase/genetics , Catalase/genetics , Glutathione S-Transferase pi/genetics , Metals, Heavy/toxicity , Superoxide Dismutase/genetics , Adult , Male , Antioxidants/metabolism , Malondialdehyde , Glutathione/metabolism
9.
J Biotechnol ; 387: 12-22, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522773

ABSTRACT

5-hydroxyvaleric acid (5-HV) is a versatile C5 intermediate of bio-based high-value chemical synthesis pathways. However, 5-HV production faces a few shortcomings involving the supply of cofactors, especially α-ketoglutaric acid (α-KG). Herein, we established a two-cell biotransformation system by introducing L-glutamate oxidase (GOX) to regenerate α-KG. Additionally, the catalase KatE was adapted to inhibit α-KG degradation by the H2O2 produced during GOX reaction. We searched for the best combination of genes and vectors and optimized the biotransformation conditions to maximize GOX effectiveness. Under the optimized conditions, 5-HV pathway with GOX showed 1.60-fold higher productivity than that of without GOX, showing 11.3 g/L titer. Further, the two-cell system with GOX and KatE was expanded to produce poly(5-hydroxyvaleric acid) (P(5HV)), and it reached at 412 mg/L of P(5HV) production and 20.5% PHA contents when using the biotransformation supernatant. Thus, the two-cell biotransformation system with GOX can potentially give the practical and economic alternative of 5-HV production using bio-based methods. We also propose direct utilization of 5-HV from bioconversion for P(5HV) production.


Subject(s)
Amino Acid Oxidoreductases , Biotransformation , Ketoglutaric Acids , Sugar Acids , Ketoglutaric Acids/metabolism , L-Amino Acid Oxidase/metabolism , L-Amino Acid Oxidase/genetics , Hydrogen Peroxide/metabolism , Catalase/metabolism , Catalase/genetics , Valerates/metabolism
10.
Clin Toxicol (Phila) ; 62(2): 101-106, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38512019

ABSTRACT

BACKGROUND: Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS: To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS: Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION: The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS: This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION: Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Epilepsy , Humans , Female , Male , Child , Valproic Acid/adverse effects , Sex Characteristics , Catalase/genetics , Epilepsy/drug therapy , Glutathione , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics
11.
Microbiol Spectr ; 12(4): e0213323, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38466098

ABSTRACT

The incidence of isoniazid (INH) resistant Mycobacterium tuberculosis is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in M. tuberculosis strains collected from the same patients during the standard course of treatment. Three M. tuberculosis strains were collected from a patient before and during antituberculosis (anti-TB) therapy. The strains were characterized using phenotypic drug susceptibility tests, Mycobacterial Interspersed Repeated Unit-Variable-Number Tandem Repeats (MIRU-VNTR), and whole-genome sequencing (WGS) to identify mutations associated with INH resistance. To validate the role of the novel mutations in INH resistance, the mutated katG genes were electroporated into a KatG-deleted M. tuberculosis strain (GA03). Three-dimensional structures of mutated KatG were modeled to predict their impact on INH binding. The pre-treatment strain was susceptible to INH. However, two INH-resistant strains were isolated from the patient after anti-TB therapy. MIRU-VNTR and WGS revealed that the three strains were clonally identical. A missense mutation (P232L) and a nonsense mutation (Q461Stop) were identified in the katG of the two post-treatment strains, respectively. Transformation experiments showed that katG of the pre-treatment strain restored INH susceptibility in GA03, whereas the mutated katG genes from the post-treatment strains rendered negative catalase activity and INH resistance. The protein model indicated that P232L reduced INH-KatG binding affinity while Q461Stop truncated gene transcription. Our results showed that the two katG mutations, P232L and Q461Stop, accounted for the co-emergence of INH-resistant clones during anti-TB therapy. The inclusion of these mutations in the design of molecular assays could increase the diagnostic performance.IMPORTANCEThe evolution of drug-resistant strains of Mycobacterium tuberculosis within the lung lesions of a patient has a detrimental impact on treatment outcomes. This is particularly concerning for isoniazid (INH), which is the most potent first-line antimycobacterial drug. However, the precise genetic factors responsible for drug resistance in patients have not been fully elucidated, with approximately 15% of INH-resistant strains harboring unknown genetic factors. This raises concerns about the emergence of drug-resistant clones within patients, further contributing to the global epidemic of resistance. In this study, we revealed the presence of two novel katG mutations, which emerged independently due to the stress exerted by antituberculosis (anti-TB) treatment on a parental strain. Importantly, we experimentally demonstrated the functional significance of both mutations in conferring resistance to INH. Overall, this research sheds light on the genetic mechanisms underlying the evolution of INH resistance within patients and provides valuable insights for improving diagnostic performance by targeting specific mutations.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Catalase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tuberculosis, Multidrug-Resistant/microbiology , Mutation , Microbial Sensitivity Tests
12.
Diabetes ; 73(5): 653-658, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38387049

ABSTRACT

Reactive oxygen species (ROS) are formed by virtually all tissues. In normal concentrations they facilitate many physiologic activities, but in excess they cause oxidative stress and tissue damage. Local antioxidant enzyme synthesis in cells is regulated by the cytoplasmic KEAP-1/Nrf2 complex, which is stimulated by ROS, to release Nrf2 for entry into the nucleus, where it upregulates antioxidant gene expression. Major antioxidant enzymes include glutathione peroxidase (GPx), catalase (CAT), superoxide dismutases (SOD), hemoxygenases (HO), and peroxiredoxins (Prdx). Notably, the pancreatic islet ß-cell does not express GPx or CAT, which puts it at greater risk for ROS damage caused by postprandial hyperglycemia. Experimentally, overexpression of GPx in ß-cell lines and isolated islets, as well as in vivo studies using genetic models of type 2 diabetes (T2D), has demonstrated enhanced protection against hyperglycemia and oxidative stress. Oral treatment of diabetic rodents with ebselen, a GPx mimetic that is approved for human clinical use, reproduced these findings. Prdx detoxify hydrogen peroxide and reduce lipid peroxides. This suggests that pharmacologic development of more potent, ß-cell-specific antioxidants could be valuable as a treatment for oxidative stress due to postprandial hyperglycemia in early T2D in humans.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Humans , Antioxidants/therapeutic use , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/drug therapy , Rodentia/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Catalase/genetics , Catalase/metabolism , Superoxide Dismutase/genetics , Hyperglycemia/drug therapy , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism
13.
Antonie Van Leeuwenhoek ; 117(1): 42, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411793

ABSTRACT

Pleurotus tuber-regium (Fr.) Sing. can evade oxygen by forming sclerotia under oxidative stress, consequently averting the development of hyperoxidative state, during which the expression level of catalase gene (PtCat) is significantly up-regulated. To investigate the relationship between the catalase gene and sclerotia formation, over-expression and interference strains of the PtCat gene were obtained by Agrobacterium tumefaciens-mediated transformation for phenotypic analysis. In the absence of hydrogen peroxide (H2O2) stress, a minor difference was observed in the mycelial growth rate and the activity of antioxidant enzymes between the over-expression and interference strains. However, when exposed to 1-2 mM H2O2, the colony diameter of the over-expression strain was approximately 2-3× that of the interference strain after 8 days of culturing. The catalase activity of the over-expression strain increased by 1000 U/g under 2 mM H2O2 stress, while the interference strain increased by only 250 U/g. After one month of cultivation, the interference strain formed an oval sclerotium measuring 3.5 cm on the long axis and 2 cm on the short axis, while the over-expression strain did not form sclerotia. Therefore, it is concluded that catalase activity regulates the formation of sclerotia in P. tuber-regium.


Subject(s)
Hydrogen Peroxide , Pleurotus , Catalase/genetics , Pleurotus/genetics , Oxidative Stress , Antioxidants
14.
Cell Biochem Funct ; 42(2): e3935, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379260

ABSTRACT

50% of cases of infertility are caused by male factor, which acquired or congenital problems may bring on. Male infertility can be caused by oligospermia and asthenozoospermia, which are common. Since the same mutations that cause azoospermia in some people also cause oligozoospermia in others, oligozoospermia may be thought of as a less severe form of azoospermia. Studies have demonstrated telomere length, catalase activity, super oxide dismutase (SOD), and DNA fragmentation can be influential factors for male infertility. The amount of apoptosis, oxidative stress factors, telomere length, and DNA fragmentation were some aspects of healthy sperm that we chose to look into in this study and compare to oligospermia individuals. Oligospermia patients (n = 24) and fertile men (n = 27) semen samples were collected, and the apoptosis rate of sperms in both groups was analyzed (Flow cytometry). Also, gene expression of apoptotic and antiapoptotic markers and telomere length were examined (real-time polymerase chain reaction). The sperm DNA fragmentation kit was used to determine DNA fragmentation and to evaluate catalase and SOD activity; the specific kits and methods were utilized. Higher expression levels of caspase3 (p = .0042), caspase8 (p = .0145), caspase9 (p = .0275), and BAX (p = .0202) mRNA were observed in patients who had oligospermia. In contrast, lower mRNA expression of BCL-2 (p = .0009) was detected in this group. In addition, telomere length was decreased in the oligospermia group (p < .0001) compared to the health group. Moreover, the frequency of apoptosis is induced in patients (p = .0026). The catalase activity is low (p = .0008), but the SOD activity is high (p = .0015) in the patient group. As a result of our findings, we may list the sperm cell apoptosis rate, telomere length, the degree of sperm DNA fragmentation, and lastly, the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma among the principal diagnostic characteristics for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Oligospermia/genetics , Oligospermia/metabolism , Reactive Oxygen Species/metabolism , Catalase/genetics , Catalase/metabolism , Azoospermia/metabolism , Semen/metabolism , Spermatozoa/metabolism , Infertility, Male/genetics , Infertility, Male/diagnosis , Infertility, Male/metabolism , Antioxidants/metabolism , DNA Fragmentation , Apoptosis , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Telomere/metabolism , RNA, Messenger/metabolism
15.
Commun Biol ; 7(1): 245, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424181

ABSTRACT

PRKN is a key gene involved in mitophagy in Parkinson's disease. However, recent studies have demonstrated that it also plays a role in the development and metastasis of several types of cancers, both in a mitophagy-dependent and mitophagy-independent manner. Despite this, the potential effects and underlying mechanisms of Parkin on bladder cancer (BLCA) remain unknown. Therefore, in this study, we investigated the expression of Parkin in various BLCA cohorts derived from human. Here we show that PRKN expression was low and that PRKN acts as a tumor suppressor by inhibiting the proliferation and migration of BLCA cells in a mitophagy-independent manner. We further identified Catalase as a binding partner and substrate of Parkin, which is an important antioxidant enzyme that regulates intracellular ROS levels during cancer progression. Our data showed that knockdown of CAT led to increased intracellular ROS levels, which suppressed cell proliferation and migration. Conversely, upregulation of Catalase decreased intracellular ROS levels, promoting cell growth and migration. Importantly, we found that Parkin upregulation partially restored these effects. Moreover, we discovered that USP30, a known Parkin substrate, could deubiquitinate and stabilize Catalase. Overall, our study reveals a novel function of Parkin and identifies a potential therapeutic target in BLCA.


Subject(s)
Protein Kinases , Urinary Bladder Neoplasms , Humans , Catalase/genetics , Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Urinary Bladder Neoplasms/genetics
16.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339126

ABSTRACT

Borna disease virus 1 (BoDV1) causes a persistent infection in the mammalian brain. Peroxisomes and mitochondria play essential roles in the cellular antiviral immune response, but the effect of BoDV1 infection on peroxisomal and mitochondrial dynamics and their respective antioxidant capacities is still not clear. Using different mouse lines-i.e., tumor necrosis factor-α transgenic (TNFTg; to pro-inflammatory status), TNF receptor-1 knockout (TNFR1ko), and TNFR2ko mice in comparison to wild-type (Wt) mice-we analyzed the abundances of both organelles and their main antioxidant enzymes, catalase and superoxide dismutase 2 (SOD2), in neurons of the hippocampal, cerebral, and cerebellar cortices. In TNFTg mice, a strong increase in mitochondrial (6.9-fold) and SOD2 (12.1-fold) abundances was detected; meanwhile, peroxisomal abundance increased slightly (1.5-fold), but that of catalase decreased (2.9-fold). After BoDV1 infection, a strong decrease in mitochondrial (2.1-6.5-fold), SOD2 (2.7-9.1-fold), and catalase (2.7-10.3-fold) abundances, but a slight increase in peroxisomes (1.3-1.6-fold), were detected in Wt and TNFR2ko mice, whereas no changes occurred in TNFR1ko mice. Our data suggest that the TNF system plays a crucial role in the biogenesis of both subcellular organelles. Moreover, TNFR1 signaling mediated the changes in peroxisomal and mitochondrial dynamics after BoDV1 infection, highlighting new mechanisms by which BoDV1 may achieve immune evasion and viral persistence.


Subject(s)
Borna disease virus , Receptors, Tumor Necrosis Factor, Type I , Mice , Animals , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha/physiology , Catalase/genetics , Antioxidants , Mitochondrial Dynamics , Mice, Knockout , Neurons , Mice, Inbred C57BL , Mammals
17.
Pest Manag Sci ; 80(7): 3116-3125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38334193

ABSTRACT

BACKGROUND: Temperature is a primary factor that determines the eco-geographical distribution and population development of invasive insects. Temperature stress leads to various negative effects, including excess reactive oxygen species (ROS), and catalase (CAT) is a key enzyme against ROS in the antioxidant pathway. The whitefly Bemisia tabaci MED is a typical invasive pest that causes damage worldwide. Our previous studies have shown that CAT promotes whitefly adaptation to high temperature by eliminating ROS. However, the mechanism underlying the low-temperature adaptation of whiteflies is still unknown. RESULTS: In this study, we investigated the role of CAT in the low-temperature tolerance of B. tabaci MED by analyzing its survival rate, reproduction, and ROS levels at 25 °C (as a control, suitable temperature), 20 °C (moderately decreased temperature), and 4 °C (severely decreased temperature). Silencing of BtCAT1, BtCAT2, or BtCAT3 reduced the viability of whiteflies under a short-term severely decreased temperature (4 °C), which manifested as decreases in survival and fecundity accompanied by significant increases in ROS levels. Moreover, even at a moderately decreased temperature (20 °C), silencing of BtCAT1 led to high ROS levels and low survival rates in adults. CONCLUSION: Silencing of BtCATs significantly increased the sensitivity of B. tabaci MED to low temperatures. BtCAT1 is likely more essential than other BtCATs for low-temperature tolerance in whiteflies. © 2024 Society of Chemical Industry.


Subject(s)
Catalase , Cold Temperature , Hemiptera , Reactive Oxygen Species , Animals , Hemiptera/genetics , Hemiptera/physiology , Catalase/metabolism , Catalase/genetics , Reactive Oxygen Species/metabolism , Gene Silencing , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Male
18.
Pest Manag Sci ; 80(7): 3258-3268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38358092

ABSTRACT

BACKGROUND: Detoxifying enzymes are likely involved in lignin feeding and immune defense mechanisms within termites, rendering them potential targets for biological control. However, investigations into the dual functionality of termite detoxification enzymes in vivo have not been documented. RESULTS: In this study, the complete cDNA of the catalase gene (Cfcat) derived from Coptotermes formosanus Shiraki was amplified. CFCAT comprises an open reading frame spanning 1527 bp, encoding a 508-amino acid sequence. The highest expression was observed in the epidermal tissues (including the fat body and hemolymph) followed by the foregut/salivary gland. Furthermore, we confirmed the catalase activity of the recombinant Cfcat protein. Using RNA interference (RNAi) technology, the importance of Cfcat in the lignin-feeding of C. formosanus was demonstrated, and the role of Cfcat in innate immunity was investigated. Survival assays showed that Cfcat RNAi significantly increased the susceptibility of C. formosanus to Metarhizium anisopliae. Irrespective of the infection status, Cfcat inhibition had a significant impact on multiple factors of humoral and intestinal immunity in C. formosanus. Notably, Cfcat RNAi exhibited a more pronounced immunosuppressive effect on humoral immunity than on intestinal immunity. CONCLUSION: Cfcat plays an important role in the regulation of innate immunity and lignin feeding in C. formosanus. Cfcat RNAi can weaken the immune response of termites against M. anisopliae, which may aid the biocontrol efficiency of M. anisopliae against C. formosanus. This study provides a theoretical basis and technical reference for the development of a novel biocontrol strategy targeting detoxifying enzymes of termites. © 2024 Society of Chemical Industry.


Subject(s)
Catalase , Insect Proteins , Isoptera , Lignin , Animals , Isoptera/immunology , Isoptera/microbiology , Isoptera/genetics , Lignin/metabolism , Catalase/genetics , Catalase/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Metarhizium/physiology , Metarhizium/genetics , Insect Control , Immunity, Innate , RNA Interference , Amino Acid Sequence
19.
Free Radic Biol Med ; 213: 266-273, 2024 03.
Article in English | MEDLINE | ID: mdl-38278309

ABSTRACT

Yellow fever (YF) presents a wide spectrum of severity, with clinical manifestations in humans ranging from febrile and self-limited to fatal cases. Although YF is an old disease for which an effective and safe vaccine exists, little is known about the viral- and host-specific mechanisms that contribute to liver pathology. Several studies have demonstrated that oxidative stress triggered by viral infections contributes to pathogenesis. We evaluated whether yellow fever virus (YFV), when infecting human hepatocytes cells, could trigger an imbalance in redox homeostasis, culminating in oxidative stress. YFV infection resulted in a significant increase in reactive oxygen species (ROS) levels from 2 to 4 days post infection (dpi). When measuring oxidative parameters at 4 dpi, YFV infection caused oxidative damage to lipids, proteins, and DNA, evidenced by an increase in lipid peroxidation/8-isoprostane, carbonyl protein, and 8-hydroxy-2'-deoxyguanosine, respectively. Furthermore, there was a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), in addition to a reduction in the ratio of reduced to oxidized glutathione (GSH/GSSG), indicating a pro-oxidant environment. However, no changes were observed in the enzymatic activity of the enzyme catalase (CAT) or in the gene expression of SOD isoforms (1/2/3), CAT, or GPx. Therefore, our results show that YFV infection generates an imbalance in redox homeostasis, with the overproduction of ROS and depletion of antioxidant enzymes, which induces oxidative damage to cellular constituents. Moreover, as it has been demonstrated that oxidative stress is a conspicuous event in YFV infection, therapeutic strategies based on antioxidant biopharmaceuticals may be new targets for the treatment of YF.


Subject(s)
Antioxidants , Yellow Fever , Humans , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Yellow fever virus/metabolism , Glutathione/metabolism , Oxidative Stress , Oxidation-Reduction , Catalase/genetics , Catalase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Glutathione Disulfide/metabolism , Hepatocytes/metabolism , Lipid Peroxidation , Glutathione Peroxidase/metabolism , 8-Hydroxy-2'-Deoxyguanosine/metabolism
20.
Asian Pac J Cancer Prev ; 25(1): 175-184, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285782

ABSTRACT

BACKGROUND: The antioxidant enzymes are important cellular components involved in detoxification of reactive oxygen species (ROS) and protect cells from ROS induced oxidative damage. Single nucleotide polymorphisms (SNPs) of antioxidant enzyme coding genes such as superoxide dismutase (SOD) and catalase (CAT) may alter the enzyme activity which can influence susceptibility towards carcinogenesis.  Therefore, the present study was planned to investigate possible SNPs of SOD (SOD1 (Cu,Zn-SOD), SOD2(Mn-SOD), SOD3(EC-SOD) and CAT genes and their possible association with breast cancer risk in rural Indian women. METHODS: In this case-control study, the association of SOD and CAT gene polymorphism was studied by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The study was conducted among 400 clinically breast cancer patients and 400 healthy women in a population of South-Western Maharashtra. The logistic regression analysis was carried out to calculate Odds ratio (OR) with 95% confidence interval and p-value, where p ≤0.05 was considered as statistically significant. RESULTS: The results of analysis of genotype frequency distribution showed significant association of rs4880 SNP of Mn-SOD with BC risk at homozygous variant (CC/CC) genotype (OR 2.46; 95%CI, 1.61-3.75; p<0.0001) and corresponding frequency of variant (C) allele (OR 1.53; 95%CI, 1.25-1.86; p<0.0001). In CAT gene polymorphisms the variant (T/T) was increased significantly in BC cases as compared to controls (OR 3.45; 95%CI, 2.17-5.50; p<0.0001) along with its variant (T) allele (OR 2.01; 95%CI, 1.63-2.48; p<0.0001). CONCLUSIONS: The results implied that, C/C genotype of SOD2-1183T/C polymorphism and T/T genotype of CAT-262 C/T polymorphism may be associated with an increased breast cancer risk. However, SOD1-251 A/G and SOD3-172 G/A polymorphisms did not show any significant difference in variant homozygous genotypes of patients compared to controls.


Subject(s)
Breast Neoplasms , Catalase , Polymorphism, Single Nucleotide , Superoxide Dismutase-1 , Female , Humans , Antioxidants , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Case-Control Studies , Catalase/genetics , Genetic Predisposition to Disease , Genotype , India/epidemiology , Reactive Oxygen Species , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...