Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110.724
Filter
1.
J Environ Sci (China) ; 150: 14-24, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306391

ABSTRACT

The mass production and widespread use of Pharmaceuticals and Personal Care Products (PPCPs) have posed a serious threat to the water environment and public health. In this work, a green metal-based Metal Organic Framework (MOF) Bi-NH2-BDC was prepared and characterized, and the adsorption characteristics of Bi-NH2-BDC were investigated with typical PPCPs-diclofenac sodium (DCF). It was found that DCF mainly covered the adsorbent surface as a single molecular layer, the adsorption reaction was a spontaneous, entropy-increasing exothermic process and the adsorption mechanisms between Bi-NH2-BDC and DCF were hydrogen bonding, π-π interactions and electrostatic interactions. In addition, Bi-NH2-BDC also had considerable photocatalytic properties, and its application in adsorbent desorption treatment effectively solved the problem of secondary pollution, achieving a green and sustainable adsorption desorption cycle.


Subject(s)
Bismuth , Diclofenac , Metal-Organic Frameworks , Water Pollutants, Chemical , Diclofenac/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Metal-Organic Frameworks/chemistry , Bismuth/chemistry , Catalysis , Water Purification/methods
2.
J Environ Sci (China) ; 150: 246-253, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306399

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2RR) to high value-added fuels or chemicals driven by the renewable energy is promising to alleviate global warming. However, the selective CO2 reduction to C2 products remains challenge. Cu-based catalyst with the specific Cu0 and Cu+ sites is important to generate C2 products. This work used nitrogen (N) to tune amounts of Cu0 and Cu+ sites in Cu2O catalysts and improve C2-product conversion. The controllable Cu0/Cu+ ratio of Cu2O catalyst from 0.16 to 15.19 was achieved by adjusting the N doping amount using NH3/Ar plasma treatment. The major theme of this work was clarifying a volcano curve of the ethylene Faraday efficiency as a function of the Cu0/Cu+ ratio. The optimal Cu0/Cu+ ratio was determined as 0.43 for selective electroreduction CO2 to ethylene. X-ray spectroscopy and density functional theory (DFT) calculations were employed to elucidate that the strong interaction between N and Cu increased the binding energy of NCu bond and stabilize Cu+, resulting in a 92.3% reduction in the potential energy change for *CO-*CO dimerization. This study is inspiring in designing high performance electrocatalysts for CO2 conversion.


Subject(s)
Carbon Dioxide , Copper , Ethylenes , Oxidation-Reduction , Copper/chemistry , Ethylenes/chemistry , Carbon Dioxide/chemistry , Catalysis , Nitrogen/chemistry , Electrochemical Techniques/methods , Models, Chemical
3.
J Environ Sci (China) ; 150: 188-201, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306395

ABSTRACT

To improve the activity of Co/Al2O3 catalysts in selective catalytic oxidation of ammonia (NH3-SCO), valence state and size of active centers of Al2O3-supported Co catalysts were adjusted by conducting H2 reduction pretreatment. The NH3-SCO activity of the adjusted 2Co/Al2O3 catalyst was substantially improved, outperforming other catalysts with higher Co-loading. Fresh Co/Al2O3 catalysts exhibited multitemperature reduction processes, enabling the control of the valence state of the Co-active centers by adjusting the reduction temperature. Changes in the state of the Co-active centers also led to differences in redox capacity of the catalysts, resulting in different reaction mechanisms for NH3-SCO. However, in situ diffuse reflectance infrared Fourier transform spectra revealed that an excessive O2 activation capacity caused overoxidation of NH3 to NO and NO2. The NH3-SCO activity of the 2Co/Al2O3 catalyst with low redox capacity was successfully increased while controlling and optimizing the N2 selectivity by modulating the active centers via H2 pretreatment, which is a universal method used for enhancing the redox properties of catalysts. Thus, this method has great potential for application in the design of inexpensive and highly active catalysts.


Subject(s)
Aluminum Oxide , Ammonia , Cobalt , Oxidation-Reduction , Ammonia/chemistry , Catalysis , Aluminum Oxide/chemistry , Cobalt/chemistry , Models, Chemical , Air Pollutants/chemistry
4.
J Environ Sci (China) ; 150: 267-276, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306402

ABSTRACT

The electrocatalytic reduction of carbon dioxide (CO2ER) into formate presents a compelling solution for mitigating dependence on fossil energy and green utilization of CO2. Bismuth (Bi) has been gaining recognition as a promising catalyst material for the CO2ER to formate. The performance of Bi catalysts (named as Bi-V) can be significantly improved when they possess single metal atom vacancy. However, creating larger-sized metal atom vacancies within Bi catalysts remains a significant challenge. In this work, Bi nanosheets with dual VBi0 vacancy (Bi-DV) were synthesized utilizing in situ electrochemical transformation, using BiOBr nanosheets with triple vacancy associates (VBi″'VO··VBi″', VBi″' and VO·· denote the Bi3+ and O2- vacancy, respectively) as a template. The obtained Bi-DV achieved higher CO2ER activity than Bi-V, showing Faradaic efficiency for formate production of >92% from -0.9 to -1.2 VRHE in an H-type cell, and the partial current density of formate reached up to 755 mA/cm2 in a flow cell. The comprehensive characterizations coupled with density functional theory calculations demonstrate that the dual VBi0 vacancy on the surface of Bi-DV expedite the reaction kinetics toward CO2ER, by reducing the thermodynamic barrier of *OCHO intermediate formation. This research provides critical insights into the potential of large atom vacancies to enhance electrocatalysis performance.


Subject(s)
Bismuth , Carbon Dioxide , Electrochemical Techniques , Formates , Nanostructures , Bismuth/chemistry , Formates/chemistry , Carbon Dioxide/chemistry , Nanostructures/chemistry , Catalysis , Electrochemical Techniques/methods , Oxidation-Reduction , Models, Chemical
5.
J Environ Sci (China) ; 150: 332-339, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306408

ABSTRACT

NH3-SCR (SCR: Selective catalytic reduction) is an effective technology for the de-NOx process from both mobile and stationary pollution sources, and the most commonly used catalysts are the vanadia-based catalysts. An innovative V2O5-CeO2/TaTiOx catalyst for NOx removal was prepared in this study. The influences of Ce and Ta in the V2O5-CeO2/TaTiOx catalyst on the SCR performance and physicochemical properties were investigated. The V2O5-CeO2/TaTiOx catalyst not only exhibited excellent SCR activity in a wide temperature window, but also presented strong resistance to H2O and SO2 at 275 ℃. A series of characterization methods was used to study the catalysts, including H2-temperature programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, etc. It was discovered that a synergistic effect existed between Ce and Ta species. The introduction of Ce and Ta enlarged the specific surface area, increased the amount of acid sites and the ratio of Ce3+, (V3++V4+) and Oα, and strengthened the redox capability which were related to synergistic effect between Ce and Ta species, significantly improving the NH3-SCR activity.


Subject(s)
Ammonia , Cerium , Titanium , Vanadium Compounds , Catalysis , Cerium/chemistry , Titanium/chemistry , Ammonia/chemistry , Vanadium Compounds/chemistry , Air Pollutants/chemistry , Oxidation-Reduction , Air Pollution/prevention & control
6.
J Environ Sci (China) ; 150: 490-502, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306423

ABSTRACT

The removal of ammonia nitrogen (NH4+-N) and bacteria from aquaculture wastewater holds paramount ecological and production significance. In this study, Pt/RuO2/g-C3N4 photocatalysts were prepared by depositing Pt and RuO2 particles onto g-C3N4. The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectrometer (UV-vis DRS). The photocatalysts were then applied to the removal of both NH4+-N and bacteria from simulated mariculture wastewater. The results clarified that the removals of both NH4+-N and bacteria were in the sequence of g-C3N4 < RuO2/g-C3N4 < Pt/g-C3N4 < Pt/RuO2/g-C3N4. This magnificent photocatalytic ability of Pt/RuO2/g-C3N4 can be interpreted by the transfer of holes from g-C3N4 to RuO2 to facilitate the in situ generation of HClO from Cl- in wastewater, while Pt extracts photogenerated electrons for H2 formation to enhance the reaction. The removal of NH4+-N and disinfection effect were more pronounced in simulated seawater than in pure water. The removal efficiency of NH4+-N increases with an increase in pH of wastewater, while the bactericidal effect was more significant under a lower pH in a pH range of 6-9. In actual seawater aquaculture wastewater, Pt/RuO2/g-C3N4 still exhibits effective removal efficiency of NH4+-N and bactericidal performance under sunlight. This study provides an alternative avenue for removement of NH4+-N and bacteria from saline waters under sunlight.


Subject(s)
Ammonia , Bacteria , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Ammonia/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Ruthenium/chemistry , Light , Aquaculture/methods , Platinum/chemistry , Catalysis , Graphite , Nitrogen Compounds
7.
J Environ Sci (China) ; 150: 503-514, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306424

ABSTRACT

Catalytic oxidation of NO at room temperature was carried out over nitrogen (N)-doped sludge char (SC) prepared from pyrolysis of municipal sewage sludge, and urea was adopted as nitrogen source. The effects of different N-doping methods (one-step and two-step method), dried sludge (DS)/urea mass ratios (5:1, 4:1, 3:1, 2:1, and 1:1), SC preparation procedures (pyrolysis only, pyrolysis with acid washing, and pyrolysis with KOH activation and acid washing), and different pyrolysis temperatures (500, 600, 700, and 800°C) on the catalytic oxidation of NO were compared to optimize the procedure for SC preparation. The results indicated that N-doping could obviously promote the catalytic performance of SC. The one-step method with simultaneous sludge pyrolysis (at 700°C), KOH activation, and N-doping (DS/urea of 3:1) was the optimal procedure for preparing the N-doped SC with the NO conversion rate of 54.7%, whereas the optimal NO conversion rate of SC without N-doping was only 47.3%. Urea worked both as carbon and nitrogen source, which could increase about 2.9%-16.5% of carbon and 24.8%-42.7% of nitrogen content in SC pyrolyzed at 700°C. N-doping significantly promoted microporosity of SC. The optimal N-doped SC showed specific surface areas of 571.38 m2/g, much higher than 374.34 m2/g of the optimal SC without N-doping. In addition, N-doping also increased amorphousness and surface basicity of SC through the formation of N-containing groups. Finally, three reaction paths, i.e. microporous reactor, active sites, and basic site control path, were proposed to explain the mechanism of N-doping on promoting the catalytic performance of NO.


Subject(s)
Nitrogen , Oxidation-Reduction , Sewage , Nitrogen/chemistry , Sewage/chemistry , Catalysis , Temperature , Waste Disposal, Fluid/methods , Nitric Oxide/chemistry , Models, Chemical , Charcoal/chemistry
8.
J Environ Sci (China) ; 150: 451-465, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306420

ABSTRACT

Nitrogen oxides (NOx) from diesel engine exhaust, is one of the major sources of environmental pollution. Currently, selective catalytic reduction with ammonia (NH3-SCR) is considered to be the most effective protocol for reducing NOx emissions. Nowadays, zeolite-based NH3-SCR catalysts have been industrialized and widespread used in this field. Nevertheless, with the increasingly stringent environmental regulations and implementation of the requirement of "zero emission" of diesel engine exhaust, it is extremely urgent to prepare catalysts with superior NH3-SCR activity and exceptional resistance to poisons (SO2, alkali metals, hydrocarbons, etc.). Core-shell structure zeolite-based catalysts (CSCs) have shown great promise in NH3-SCR of NOx in recent years by virtue of its relatively higher low-temperature activity, broader operation temperature window and outstanding resistance to poisons. This review mainly focuses on the recent progress of CSCs for NH3-SCR of NOx with three extensively investigated SSZ-13, ZSM-5, Beta zeolites as cores. The reaction mechanisms of resistance to sulfur poisoning, alkali metal poisoning, hydrocarbon poisoning, and hydrothermal aging are summarized. Moreover, the important role of interfacial effect between core and shell in the reaction of NH3-SCR was clarified. Finally, the future development and application outlook of CSCs are prospected.


Subject(s)
Air Pollutants , Nitrogen Oxides , Vehicle Emissions , Zeolites , Zeolites/chemistry , Nitrogen Oxides/chemistry , Catalysis , Air Pollutants/chemistry , Vehicle Emissions/analysis , Air Pollution/prevention & control , Ammonia/chemistry
9.
J Environ Sci (China) ; 150: 54-65, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306427

ABSTRACT

In this study, supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate (PMS) which successfully degrade bisphenol F (BPF). Among the supported catalysts (i.e., Pd/SiO2, Pd/CeO2, Pd/TiO2 and Pd/Al2O3), Pd/TiO2 exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content. Pd/TiO2 prepared by the deposition method leads to high Pd dispersion, which are the key factors for efficient BPF degradation. The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed. Density functional theory (DFT) calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles. The catalytic activities are strongly dependent on the structural features of the catalysts. Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.


Subject(s)
Benzhydryl Compounds , Palladium , Peroxides , Phenols , Palladium/chemistry , Phenols/chemistry , Catalysis , Benzhydryl Compounds/chemistry , Peroxides/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Adsorption
10.
J Environ Sci (China) ; 150: 704-718, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306441

ABSTRACT

Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement. Unfortunately, this method is significantly hindered in practical applications by the low efficiency and difficult recovery of the catalysts in a powdery form. Herein, a three-dimensional (3D) framework of Fe-incorporated Ni3S2 nanosheets in-situ grown on Ni foam (Fe-Ni3S2@NF) was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate (PMS) oxidation of organic compounds in water. A homogeneous growth environment enabled the uniform and scalable growth of Fe-Ni3S2 nanosheets on the Ni foam. Fe-Ni3S2@NF possessed outstanding activity and durability in activating PMS, as it effectively facilitated electron transfer from organic pollutants to PMS. Fe-Ni3S2@NF initially supplied electrons to PMS, causing the catalyst to undergo oxidation, and subsequently accepted electrons from organic compounds, returning to its initial state. The introduction of Fe into the Ni3S2 lattice enhanced electrical conductivity, promoting mediated electron transfer between PMS and organic compounds. The 3D conductive Ni foam provided an ideal platform for the nucleation and growth of Fe-Ni3S2, accelerating pollutant abatement due to its porous structure and high conductivity. Furthermore, its monolithic nature simplified the catalyst recycling process. A continuous flow packed-bed reactor by encapsulating Fe-Ni3S2@NF catalyst achieved complete pollutant abatement with continuous operation for 240 h, highlighting its immense potential for practical environmental remediation. This study presents a facile synthesis method for creating a novel type of monolithic catalyst with high activity and durability for decontamination through Fenton-like processes.


Subject(s)
Iron , Nickel , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical , Nickel/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Catalysis , Nanostructures/chemistry , Electron Transport
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124948, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39146630

ABSTRACT

Herein, a nanocomposite of Cu,Ce-containing phosphotungstates (Cu,Ce-PTs) with outstanding laccase-like activity was fabricated via a one-pot microwave-assisted hydrothermal method. Notably, it was discovered that both Fe3+ and Cr6+ could significantly enhance the electron transfer rates of Ce3+ and Ce4+, along with generous Cu2+ with high catalytic activity, thereby promoting the laccase-like activity of Cu,Ce-PTs. The proposed system can be used for the detection of Fe3+ and Cr6+ in a range of 0.667-333.33 µg/mL and 0.033-33.33 µg/mL with a low detection limit of 0.135 µg/mL and 0.0288 µg/mL, respectively. The proposed assay exhibits excellent reusability and selectivity and can be used in traditional Chinese medicine samples analysis.


Subject(s)
Cerium , Chromium , Colorimetry , Copper , Iron , Laccase , Copper/analysis , Copper/chemistry , Chromium/analysis , Colorimetry/methods , Laccase/metabolism , Laccase/chemistry , Iron/analysis , Iron/chemistry , Cerium/chemistry , Limit of Detection , Phosphotungstic Acid/chemistry , Nanocomposites/chemistry , Catalysis
12.
Biomaterials ; 313: 122793, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39226655

ABSTRACT

Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.


Subject(s)
Ferroptosis , Iron , Ferroptosis/drug effects , Animals , Catalysis , Humans , Iron/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Porosity , Mice , Cisplatin/chemistry , Cisplatin/therapeutic use , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Hydrogen Peroxide/chemistry , Tumor Microenvironment/drug effects , Mice, Nude , Female
13.
Biomaterials ; 312: 122755, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39151270

ABSTRACT

Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.


Subject(s)
Biomimetic Materials , Copper , Humans , Copper/chemistry , Biomimetic Materials/chemistry , Catalysis , Metal-Organic Frameworks/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Cerium/chemistry , Cell Line, Tumor , Animals , Click Chemistry/methods , Biomimetics/methods , Mice
14.
J Environ Sci (China) ; 147: 22-35, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003042

ABSTRACT

High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.


Subject(s)
Clay , Environmental Restoration and Remediation , Soil Pollutants , Soil , Clay/chemistry , Soil/chemistry , Catalysis , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Hot Temperature
15.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003064

ABSTRACT

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Subject(s)
Copper , Peroxides , Water Pollutants, Chemical , Copper/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Catalysis , Iron/chemistry , Rhodamines/chemistry , Oxidation-Reduction
16.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003068

ABSTRACT

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Subject(s)
Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Catalysis , Iron/chemistry
17.
J Environ Sci (China) ; 147: 561-570, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003071

ABSTRACT

In the present study, we investigated the influence of surface fluorine (F) on TiO2 for the photocatalytic oxidation (PCO) of toluene. TiO2 modified with different F content was prepared and tested. It was found that with the increasing of F content, the toluene conversion rate first increased and then decreased. However, CO2 mineralization efficiency showed the opposite trend. Based on the characterizations, we revealed that F substitutes the surface hydroxyl of TiO2 to form the structure of Ti-F. The presence of the appropriate amount of surface Ti-F on TiO2 greatly enhanced the separation of photogenerated carriers, which facilitated the generation of ·OH and promoted the activity for the PCO of toluene. It was further revealed that the increase of only ·OH promoted the conversion of toluene to ring-containing intermediates, causing the accumulation of intermediates and then conversely inhibited the ·OH generation, which led to the decrease of the CO2 mineralization efficiency. The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.


Subject(s)
Fluorides , Oxidation-Reduction , Titanium , Toluene , Toluene/chemistry , Titanium/chemistry , Catalysis , Fluorides/chemistry , Photochemical Processes , Models, Chemical
18.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003076

ABSTRACT

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Subject(s)
Cobalt , Manganese Compounds , Oxidation-Reduction , Oxides , Toluene , Oxides/chemistry , Manganese Compounds/chemistry , Catalysis , Cobalt/chemistry , Toluene/chemistry , Air Pollutants/chemistry
19.
J Environ Sci (China) ; 147: 652-664, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003080

ABSTRACT

Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.


Subject(s)
Environmental Restoration and Remediation , Oxygen , Petroleum , Soil Pollutants , Waste Disposal, Fluid , Wastewater , Soil Pollutants/chemistry , Soil Pollutants/analysis , Adsorption , Wastewater/chemistry , Oxygen/chemistry , Oxygen/analysis , Waste Disposal, Fluid/methods , Environmental Restoration and Remediation/methods , Soil/chemistry , Catalysis
20.
J Environ Sci (China) ; 147: 642-651, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003079

ABSTRACT

Nowadays, it is still a challenge to prepared high efficiency and low cost formaldehyde (HCHO) removal catalysts in order to tackle the long-living indoor air pollution. Herein, δ-MnO2 is successfully synthesized by a facile ozonation strategy, where Mn2+ is oxidized by ozone (O3) bubble in an alkaline solution. It presents one of the best catalytic properties with a low 100% conversion temperature of 85°C for 50 ppm of HCHO under a GHSV of 48,000 mL/(g·hr). As a comparison, more than 6 times far longer oxidation time is needed if O3 is replaced by O2. Characterizations show that ozonation process generates a different intermediate of tetragonal ß-HMnO2, which would favor the quick transformation into the final product δ-MnO2, as compared with the relatively more thermodynamically stable monoclinic γ-HMnO2 in the O2 process. Finally, HCHO is found to be decomposed into CO2 via formate, dioxymethylene and carbonate species as identified by room temperature in-situ diffuse reflectance infrared fourier transform spectroscopy. All these results show great potency of this facile ozonation routine for the highly active δ-MnO2 synthesis in order to remove the HCHO contamination.


Subject(s)
Formaldehyde , Manganese Compounds , Oxides , Ozone , Ozone/chemistry , Manganese Compounds/chemistry , Formaldehyde/chemistry , Oxides/chemistry , Air Pollutants/chemistry , Oxidation-Reduction , Temperature , Air Pollution, Indoor/prevention & control , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL