Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.830
Filter
1.
Food Res Int ; 186: 114365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729700

ABSTRACT

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Subject(s)
Antioxidants , Catechin , Chenopodium quinoa , Emulsions , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Hydrolysates , Chenopodium quinoa/chemistry , Hydrogen-Ion Concentration , Emulsions/chemistry , Protein Hydrolysates/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Antioxidants/chemistry , Hydrogen Bonding , Plant Proteins/chemistry , Lipids/chemistry
2.
Appl Microbiol Biotechnol ; 108(1): 322, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713216

ABSTRACT

Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.


Subject(s)
Antioxidants , Biflavonoids , Phenols , Plant Extracts , Schisandra , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/chemistry , Chromatography, High Pressure Liquid , Schisandra/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Catechin/chemistry , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Bioreactors
3.
J Oleo Sci ; 73(5): 709-716, 2024.
Article in English | MEDLINE | ID: mdl-38692893

ABSTRACT

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from Green Tea, is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. Besides other biological activities, this natural compound exhibits anti-cariogenic effects. However, EGCG has low physical-chemical stability and poor bioavailability. Thus, the purpose of this study was to develop and characterize lipid-chitosan hybrid nanoparticle with EGCG and to evaluate its in vitro activity against cariogenic planktonic microorganisms. Lipid-chitosan hybrid nanoparticle (LCHNP-EGCG) were prepared by emulsion and sonication method in one step and characterized according to diameter, polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (EE), mucoadhesion capacity and morphology. Strains of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei were treated with LCHNP- EGCG, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated. LCHNP-EGCG exhibited a size of 217.3 ± 5.1 nm with a low polydispersity index (0.17) and positive zeta potential indicating the presence of chitosan on the lipid nanoparticle surface (+33.7 mV). The LCHNP-EGCG showed a spherical morphology, high stability and a mucoadhesive property due to the presence of chitosan coating. In addition, the EGCG encapsulation efficiency was 96%. A reduction of almost 15-fold in the MIC and MBC against the strains was observed when EGCG was encapsulated in LCHNP, indicating the potential of EGCG encapsulation in lipid-polymer hybrid nanoparticles. Taking the results together, the LCHNP-EGCG could be an interesting system to use in dental care due to their nanometric size, mucoadhesive properties high antibacterial activity against relevant planktonic microorganisms.


Subject(s)
Anti-Bacterial Agents , Catechin , Catechin/analogs & derivatives , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Streptococcus mutans , Catechin/pharmacology , Catechin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Streptococcus mutans/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Streptococcus sobrinus/drug effects , Lacticaseibacillus casei/drug effects , Lipids/chemistry , Plankton/drug effects , Dental Caries/microbiology , Dental Caries/prevention & control , Drug Carriers/chemistry , Particle Size , Emulsions , Sonication
4.
Sci Rep ; 14(1): 10424, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710752

ABSTRACT

The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.


Subject(s)
Alkaloids , Amino Acids , Anti-Bacterial Agents , Catechin , Tea , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Catechin/analysis , Tea/chemistry , Amino Acids/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Alkaloids/analysis , Alkaloids/chemistry , Food Storage/methods , Escherichia coli/drug effects , Camellia sinensis/chemistry
5.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731582

ABSTRACT

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catechin , Combretum , Microbial Sensitivity Tests , Plant Extracts , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catechin/pharmacology , Catechin/chemistry , Combretum/chemistry , Plant Leaves/chemistry , Sugars , Humans
6.
Food Chem ; 453: 139568, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754353

ABSTRACT

Starch retrogradation is of great importance to the quality of starch-based food. This study investigated the effect of partial gelatinization (PG) synergizing with polyphenol (epicatechin, EC; epigallocatechin gallate, EGCG) on the multi-scale structure and short/long-term retrogradation of corn starch (CS). The PG synergizing with EC/EGCG substantially suppressed the short/long-term retrogradation properties of CS. These could be confirmed by the decreased storage modulus and viscosity, the relative crystallinity (1.54%, 3.56%), and the retrogradation degree (9.99%, 20.18%) of CS during storage for 1, 14 days after PG synergizing with EGCG and EC, respectively. This is because PG treatment promoted the hydrogen bond interaction between disordered starch molecules and EC/EGCG. These were proven by the larger aggregation, more and brighter fluorescents, and the reduced long/short-range order structures in CS after PG synergizing with EC/EGCG. This study is helpful for the development of foods with enhanced nutrition and low-retrogradation.


Subject(s)
Catechin , Starch , Zea mays , Catechin/chemistry , Catechin/analogs & derivatives , Starch/chemistry , Zea mays/chemistry , Viscosity
7.
J Agric Food Chem ; 72(21): 12251-12259, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38745378

ABSTRACT

A novel technique for generating tetramethylpyrazine (TTMP) was proposed, carried out on a phenolics-Fenton coupled redox cycling system in an acetoin-ammonium acetate (AA-ACT) pattern reaction. The TTMP generation employing the Fenton system is a first-order reaction that significantly increased the reaction rate, especially in the early stages, distinguishing it from the original zero-order kinetics reaction pattern. Further, the Fenton reaction effectively promotes the TTMP generation at lower temperature, and epigallocatechin gallate (EGCG) could reset the Fenton reaction, accomplishing the redox cycle. We have discovered a novel class of intermediate products, N-substituted amides, which act as a "reservoir" and transform into amino acid, then undergo aromatization to generate TTMP. The results provide a useful supplement for intelligent synthesis route design, and a new approach for understanding the transformation pathways of pyrazines.


Subject(s)
Hydrogen Peroxide , Oxidation-Reduction , Phenols , Pyrazines , Pyrazines/chemistry , Pyrazines/metabolism , Phenols/chemistry , Hydrogen Peroxide/chemistry , Kinetics , Iron/chemistry , Catechin/chemistry , Catechin/analogs & derivatives
8.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792205

ABSTRACT

This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.


Subject(s)
Acetic Acid , Catechin , Deep Eutectic Solvents , Hydrophobic and Hydrophilic Interactions , Solid Phase Extraction , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction/methods , Acetic Acid/chemistry , Catechin/chemistry , Catechin/analysis , Deep Eutectic Solvents/chemistry , Adsorption
9.
Colloids Surf B Biointerfaces ; 239: 113971, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759296

ABSTRACT

The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2 %-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2 %-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2 %-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.


Subject(s)
Alginates , Catechin , Cell Proliferation , Hydrogels , Skull , Tissue Scaffolds , Zinc , Zinc/chemistry , Zinc/pharmacology , Alginates/chemistry , Alginates/pharmacology , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Skull/drug effects , Skull/injuries , Skull/pathology , Animals , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Cell Differentiation/drug effects , Osteogenesis/drug effects , Bone Regeneration/drug effects , Cell Adhesion/drug effects
10.
Biomed Mater ; 19(4)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38815600

ABSTRACT

Excessive reactive oxygen species (ROS) in the microenvironment of osteoporosis (OP) not only accelerate the bone absorption, but also affect the osteogenic and mineralized effect of osteoblasts. Procyanidins (PC) have been reported to have anti-oxidation effects, but low bioavailability. This study aimed to explore the effect of magnesium oxide nanoparticles (MgO-PC NPs)-loaded PC on the osteogenesis and mineralization of osteoblasts that stimulated by H2O2. PC was loaded onto MgO NPs and characterized by transmission electron microscopy, energy dispersive spectroscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. After primary screening by cytotoxicity assay, MgO-PC NPs containing 20 µM of PC were chosen for further studies. In H2O2-stimulated osteoblasts, dichlorodihydrofluorescein diacetate probe, Cell Counting Kit-8, quantitative real-time polymerase chain reaction, alkaline phosphatase staining/activity and Alizarin red staining were used to detect the ROS production, cell viability and osteogenic and mineralized markers of osteoblasts. PC was loaded onto MgO NPs to successfully receive MgO-PC NPs with a diameter of about 144 nm and negative potential. PC can sustain release from MgO-PC NPs for at least 16 d. The controlled release of PC from MgO-PC NPs can effectively eliminate ROS and thereby promoted the cell activity. Most importantly, the osteogenesis and mineralization of osteoblasts under oxidative stress were also significantly reversed by MgO-PC NPS. Thus, these findings indicate that MgO-PC NPs may be developed as a potential therapeutic strategy for OP.


Subject(s)
Biflavonoids , Catechin , Cell Survival , Hydrogen Peroxide , Magnesium Oxide , Nanoparticles , Osteoblasts , Osteogenesis , Oxidative Stress , Proanthocyanidins , Reactive Oxygen Species , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Catechin/chemistry , Catechin/pharmacology , Oxidative Stress/drug effects , Magnesium Oxide/chemistry , Reactive Oxygen Species/metabolism , Animals , Cell Survival/drug effects , Biflavonoids/pharmacology , Biflavonoids/chemistry , Osteogenesis/drug effects , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Delayed-Action Preparations/chemistry , Mice , Calcification, Physiologic/drug effects , Spectroscopy, Fourier Transform Infrared
11.
ACS Appl Mater Interfaces ; 16(22): 28276-28289, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788676

ABSTRACT

In this work, microspheres were developed by cross-linking glutaraldehyde in an aqueous gelatin solution with a surfactant and solvent. A poly(vinyl alcohol) (PVA) solution was produced and combined with catechin-loaded microspheres. Different microsphere concentrations (0%, 5%, 10%, and 15%) were applied to the PVA microneedles. The moisture content, particle size, swelling, and drug release percentage of microneedles were studied using various microsphere concentrations. Fourier transform infrared and scanning electron microscopy (SEM) investigations validated the structure of gelatin microspheres as well as their decoration in microneedles. The SEM scans revealed that spherical microspheres with a wrinkled and folded morphology were created, with no physical holes visible on the surface. The gelatin microspheres generated had a mean particle size of 20-30 µm. Ex vivo release analysis indicated that microneedles containing 10% microspheres released the most catechin, with 42.9% at 12 h and 84.4% at 24 h.


Subject(s)
Catechin , Microspheres , Needles , Catechin/chemistry , Particle Size , Polyvinyl Alcohol/chemistry , Drug Liberation , Gelatin/chemistry , Drug Delivery Systems/instrumentation
12.
Carbohydr Polym ; 338: 122205, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763727

ABSTRACT

Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Emulsions , Escherichia coli , Fruit , Mannans , alpha-Cyclodextrins , alpha-Cyclodextrins/chemistry , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Mannans/chemistry , Mannans/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fruit/chemistry , Emulsions/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli/drug effects , Food Preservation/methods , Staphylococcus aureus/drug effects , Food Packaging/methods , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Drug Liberation
13.
Int J Nanomedicine ; 19: 4299-4317, 2024.
Article in English | MEDLINE | ID: mdl-38766654

ABSTRACT

Background: Inhibition of amyloid ß protein fragment (Aß) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods: The interaction between EGCG and Aß42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aß42 aggregation. Results: EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aß42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aß42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion: Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Catechin , Gold , Metal Nanoparticles , Molecular Docking Simulation , Peptide Fragments , Tea , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Catechin/chemistry , Catechin/pharmacology , Catechin/analogs & derivatives , Tea/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Gold/chemistry , Ligands , Peptide Fragments/chemistry , Peptide Fragments/antagonists & inhibitors , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Protein Aggregates/drug effects
14.
Food Chem ; 448: 139138, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569407

ABSTRACT

Tea cream formed in hot and strong tea infusion while cooling deteriorates quality and health benefits of tea. However, the interactions among temporal contributors during dynamic formation of tea cream are still elusive. Here, by deletional recombination experiments and molecular dynamics simulation, it was found that proteins, caffeine (CAF), and phenolics played a dominant role throughout the cream formation, and the contribution of amino acids was highlighted in the early stage. Furthermore, CAF was prominent due to its extensive binding capacity and the filling complex voids property, and caffeine-theaflavins (TFs) complexation may be the core skeleton of the growing particles in black tea infusion. In addition to TFs, the unidentified phenolic oxidation-derived products (PODP) were confirmed to contribute greatly to the cream formation.


Subject(s)
Caffeine , Camellia sinensis , Catechin , Molecular Dynamics Simulation , Tea , Tea/chemistry , Caffeine/chemistry , Caffeine/metabolism , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/growth & development , Catechin/chemistry , Catechin/metabolism , Biflavonoids/chemistry , Biflavonoids/metabolism , Phenols/chemistry , Phenols/metabolism , Food Handling , Hot Temperature
15.
Food Chem ; 448: 139140, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574720

ABSTRACT

Theabrownins (TBs) are heterogeneous mixtures of water-soluble brown tea pigments, and important constituents to evaluate the quality of dark tea. TBs have numerous hydroxyl and carboxyl groups and are formed by the oxidative polymerization of tea polyphenols. Many biological activities attributed to TBs, including antioxidant, anti-obesity, and lipid-regulating, have been demonstrated. This review summarizes the research progress made on the formation mechanism and physicochemical properties of TBs. It also discusses their protective effects against various diseases and associated potential molecular mechanisms. Additionally, it examines the signaling pathways mediating the bioactivities of TBs and highlights the difficulties and challenges of TBs research as well as their research prospects and applications.


Subject(s)
Antioxidants , Humans , Antioxidants/chemistry , Animals , Camellia sinensis/chemistry , Tea/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Catechin/chemistry , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology
16.
Int J Pharm ; 656: 124095, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38588757

ABSTRACT

Reactive oxygen species (ROS) play a vital role in wound healing process by fighting against invaded bacteria. However, excess ROS at the wound sites lead to oxidative stress that can trigger deleterious effects, causing cell death, tissue damage and chronic inflammation. Therefore, we fabricated a core-shell structured nanomedicine with antibacterial and antioxidant properties via a facile and green strategy. Specifically, Prussian blue (PB) nanozyme was fabricated and followed by coating a layer of epigallocatechin-3-gallate (EGCG)-derived polymer via polyphenolic condensation reaction and self-assembly process, resulting in PB@EGCG. The introduction of PB core endowed EGCG-based polyphenol nanoparticles with excellent NIR-triggered photothermal properties. Besides, owing to multiple enzyme-mimic activity of PB and potent antioxidant capacity of EGCG-derived polymer, PB@EGCG exhibited a remarkable ROS-scavenging ability, mitigated intracellular ROS level and protected cells from oxidative damage. Under NIR irradiation (808 nm, 1.5 W/cm2), PB@EGCG (50 µg/mL) exerted synergistic EGCG-derived polymer-photothermal antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). In vivo therapeutic effect was evaluated using a S. aureus-infected rat model indicated PB@EGCG with a prominent bactericidal ability could modulate the inflammatory microenvironment and accelerate wound healing. Overall, this dual-functional nanomedicine provides a promising strategy for efficient antibacterial therapy.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Catechin/analogs & derivatives , Escherichia coli , Ferrocyanides , Nanoparticles , Polymers , Reactive Oxygen Species , Staphylococcus aureus , Catechin/chemistry , Catechin/pharmacology , Catechin/administration & dosage , Ferrocyanides/chemistry , Animals , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Rats , Polymers/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/administration & dosage , Antioxidants/chemistry , Male , Rats, Sprague-Dawley , Humans , Staphylococcal Infections/drug therapy , Mice , Photothermal Therapy/methods , Oxidative Stress/drug effects
17.
Sci Rep ; 14(1): 9799, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684743

ABSTRACT

This study investigated the potential anxiolytic properties of flavan-3-ols and aromatic resins through a combined computational and experimental approach. Network pharmacology techniques were utilized to identify potential anxiolytic targets and compounds by analyzing protein-protein interactions and KEGG pathway data. Molecular docking and simulation studies were conducted to evaluate the binding interactions and stability of the identified targets. Behavioral tests, including the elevated plus maze test, open field test, light-dark test, actophotometer, and holeboard test, were used to assess anxiolytic activity. The compound-target network analysis revealed complex interactions involving 306 nodes and 526 edges, with significant interactions observed and an average node degree of 1.94. KEGG pathway analysis highlighted pathways such as neuroactive ligand-receptor interactions, dopaminergic synapses, and serotonergic synapses as being involved in anxiety modulation. Docking studies on EGCG (Epigallocatechin gallate) showed binding energies of -9.5 kcal/mol for MAOA, -9.2 kcal/mol for SLC6A4, and -7.4 kcal/mol for COMT. Molecular dynamic simulations indicated minimal fluctuations, suggesting the formation of stable complexes between small molecules and proteins. Behavioral tests demonstrated a significant reduction in anxiety-like behavior, as evidenced by an increased number of entries into and time spent in the open arm of the elevated plus maze test, light-dark test, open field center activity, hole board head dips, and actophotometer beam interruptions (p < 0.05 or p < 0.01). This research provides a comprehensive understanding of the multi-component, multi-target, and multi-pathway intervention mechanisms of flavan-3-ols and aromatic resins in anxiety treatment. Integrated network and behavioral analyses collectively support the anxiolytic potential of these compounds and offer valuable insights for future research in this area.


Subject(s)
Anti-Anxiety Agents , Anxiety , Catechin , Catechin/analogs & derivatives , Flavonoids , Molecular Docking Simulation , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/chemistry , Anxiety/drug therapy , Catechin/pharmacology , Catechin/chemistry , Molecular Dynamics Simulation , Male , Network Pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Behavior, Animal/drug effects , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Mice , Protein Binding
18.
Biochem Biophys Res Commun ; 714: 149976, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38677007

ABSTRACT

BACKGROUND: The systemic treatment of advanced hepatocellular carcinoma is currently facing a bottleneck. EGCG, the primary active compound in green tea, exhibits anti-tumor effects through various pathways. However, there is a lack of study on EGCG-induced immunogenic cell death (ICD) in hepatocellular carcinoma. METHODS: In a previous study, we successfully synthesized folate-modified thermosensitive nano-materials, encapsulated EGCG within nanoparticles using a hydration method, and established the EGCG nano-drug delivery system. The viability of HepG2 cells post-EGCG treatment was assessed via the MTT and EdU assays. Cell migration and invasion were evaluated through wound healing experiments, Transwell assays, and Annexin V-FITC/PI assay for apoptosis detection. Additionally, the expression levels of damage-associated molecular patterns (DAMPs) were determined using immunofluorescence, ATP measurement, RT-qPCR, and Western Blot. RESULTS: The drug sensitivity test revealed an IC50 value of 96.94 µg/mL for EGCG in HepG2 cells after 48 h. EGCG at a low concentration (50 µg/mL) significantly impeded the migration and invasion of HepG2 cells, showing a clear dose-dependent response. Moreover, medium to high EGCG concentrations induced cell apoptosis in a dose-dependent manner and upregulated DAMPs expression. Immunofluorescence analysis demonstrated a notable increase in CRT expression following low-concentration EGCG treatment. As EGCG concentration increased, cell viability decreased, leading to CRT exposure on the cell membrane. EGCG also notably elevated ATP levels. RT-qPCR and Western Blot analyses indicated elevated expression levels of HGMB1, HSP70, and HSP90 following EGCG intervention. CONCLUSION: EGCG not only hinders the proliferation, migration, and invasion of hepatocellular carcinoma cells and induces apoptosis, but also holds significant clinical promise in the treatment of malignant tumors by promoting ICD and DAMPs secretion.


Subject(s)
Carcinoma, Hepatocellular , Catechin , Catechin/analogs & derivatives , Folic Acid , Liver Neoplasms , Humans , Catechin/pharmacology , Catechin/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Hep G2 Cells , Folic Acid/chemistry , Folic Acid/pharmacology , Cell Movement/drug effects , Immunogenic Cell Death/drug effects , Nanospheres/chemistry , Apoptosis/drug effects , Cell Survival/drug effects , Temperature , Calreticulin/metabolism
19.
Int J Biol Macromol ; 267(Pt 2): 131460, 2024 May.
Article in English | MEDLINE | ID: mdl-38608991

ABSTRACT

The hydrophilic and low mechanical properties limited the application of starch-based films. In this work, a hydrophobic starch-based nanofiber mat was first successfully prepared from aqueous solution at room temperature by using electrospinning and glutaraldehyde (GTA) vapor phase crosslinking techniques for active packaging applications. Catechin (CAT) was immobilized in the nanofibers by electrospinning, resulting in higher thermal stability (Tdmax = 315.23 °C), antioxidant (DPPH scavenging activity = 94.31 ± 2.70 %) and antimicrobial (inhibition zone diameter = 15.6 ± 0.3 mm) of the fibers, which further demonstrated hydrogen bonding and electrostatic interaction between CAT and fibers. Nanofibers after GTA vapor phase crosslinking exhibited enhanced hydrophobicity (water contact angle: 15.6 ± 1.5° â†’ 93.5 ± 2.3°) and mechanical properties (tensile strength: 1.82 ± 0.06 MPa â†’ 7.64 ± 0.24 MPa, elastic modulus: 19.35 ± 0.63 MPa â†’ 45.34 ± 0.51 MPa). The results demonstrated that preparation of starch-based electrospun nanofiber mats in aqueous system at room temperature overcame the challenges of organic solvent pollution and thermosensitive material encapsulation, while GTA vapor phase crosslinking technique improved the hydrophobicity and mechanical properties of nanofiber mats, which facilitated the application of starch-based materials in the field of packaging.


Subject(s)
Catechin , Food Packaging , Hydrophobic and Hydrophilic Interactions , Nanofibers , Starch , Starch/chemistry , Nanofibers/chemistry , Food Packaging/methods , Catechin/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Cross-Linking Reagents/chemistry , Green Chemistry Technology , Tensile Strength
20.
Food Chem ; 449: 139186, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38574524

ABSTRACT

The autoxidation of tea catechins by dissolved oxygen proceeds in pH-neutral aqueous solutions, and the major products are oligomers. However, the reaction mechanisms have not been clarified. In this study, the autoxidation of (-)-epigallocatechin-3-O-gallate (1) was examined. The autoxidation with ß-cyclodextrin, which includes the A-ring of 1, significantly suppressed oligomer production and increased the formation of products generated by the oxidative cleavage of the B-ring, indicating the participation of the A-ring in the oligomerization. Further, the autoxidation of 1 in the presence of phloroglucinol, a mimic of the catechin A-ring, yielded products via the nucleophilic addition of phloroglucinol to the B-ring quinone of 1. These results indicated that the oxidative A-B ring couplings accounted for the major oligomerization mechanism.


Subject(s)
Catechin , Catechin/analogs & derivatives , Oxidation-Reduction , Catechin/chemistry , Molecular Structure , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...