Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.740
Filter
1.
Bioorg Chem ; 148: 107488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797066

ABSTRACT

Progressive loss of dopaminergic neurons leads to the depletion of the striatal neurotransmitter dopamine, which is the main cause of Parkinson's disease (PD) motor symptoms. Simultaneous inhibition of the two key dopamine metabolic enzymes, catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAO-B), could potentially be a breakthrough in achieving clinical efficacy. Representative compound C12 exhibits good COMT inhibitory activity (IC50 = 0.37 µM), metal chelation ability, and BBB permeability. Furthermore, results from in vivo biological activity evaluations indicate that C12 can improve dopamine levels and ameliorate MPTP-induced PD symptoms in mice. Preliminary in vivo and in vitro study results highlight the potential of compound C12 in PD treatment.


Subject(s)
Dopamine , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Parkinson Disease , Animals , Mice , Dopamine/metabolism , Structure-Activity Relationship , Monoamine Oxidase/metabolism , Molecular Structure , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/chemical synthesis , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Catechol O-Methyltransferase/metabolism , Mice, Inbred C57BL , Male , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase Inhibitors/chemistry , Catechol O-Methyltransferase Inhibitors/chemical synthesis , Humans , Dose-Response Relationship, Drug , Antiparkinson Agents/pharmacology , Antiparkinson Agents/chemistry , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/therapeutic use
2.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700031

ABSTRACT

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Subject(s)
Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
3.
PLoS One ; 19(5): e0303343, 2024.
Article in English | MEDLINE | ID: mdl-38739620

ABSTRACT

BACKGROUND AND OBJECTIVES: Genetic variability in the dopaminergic system could contribute to age-related impairments in executive control. In this study, we examined whether genetic polymorphism for catechol-O-methyltransferase (COMT Val158Met) is related to performance on updating, shifting and inhibition tasks. METHODS: We administered a battery of executive tasks assessing updating, shifting and inhibition functions to 45 older and 55 younger healthy participants, and created composite z-scores associated to each function. Six groups were created based on genetic alleles (Val/Val, Val/Met, Met/Met) derived from the COMT gene and age (younger, older). Age and genotype effects were assessed with t-test and ANOVA (p<0.05). RESULTS: A lower performance was observed in the older group for the three executive processes, and more particularly for inhibition. Moreover, older participants homozygous for the Val allele have a lower performance on the inhibition composite in comparison to younger Val/Val. CONCLUSIONS: These results confirm presence of executive performance decrease in healthy aging. With regard to genetic effect, older participants seem particularly disadvantaged when they have a lower baseline dopamine level (i.e., Val/Val homozygous) that is magnified by aging, and when the executive measure emphasize the need of stable representations (as in inhibition task requiring to maintain active the instruction to not perform an automated process).


Subject(s)
Catechol O-Methyltransferase , Executive Function , Humans , Catechol O-Methyltransferase/genetics , Executive Function/physiology , Male , Female , Aged , Adult , Middle Aged , Young Adult , Polymorphism, Single Nucleotide , Alleles , Genotype , Aging/genetics , Aging/physiology
4.
Sci Rep ; 14(1): 11273, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760456

ABSTRACT

To investigate the association between three selected pain polymorphisms and clinical, functional, sensory-related, psychophysical, psychological or cognitive variables in a sample of women with fibromyalgia (FMS). One hundred twenty-three (n = 123) women with FMS completed demographic (age, height, weight), clinical (years with pain, intensity of pain at rest and during daily living activities), functional (quality of life, physical function), sensory-related (sensitization-associated and neuropathic-associated symptoms), psychophysical (pressure pain thresholds), psychological (sleep quality, depressive and anxiety level) and cognitive (pain catastrophizing, kinesiophobia) variables. Those three genotypes of the OPRM1 rs1799971, HTR1B rs6296 and COMT rs4680 single nucleotide polymorphisms were obtained by polymerase chain reactions from no-stimulated whole saliva collection. No significant differences in demographic, clinical, functional, sensory-related, psychophysical, psychological and cognitive variables according to OPRM1 rs1799971, HTR1B rs6296 or COMT rs4680 genotype were identified in our sample of women with FMS. A multilevel analysis did not either reveal any significant gene-to-gene interaction between OPRM1 rs1799971 x HTR1B rs6296, OPRM1 rs1799971 x COMT rs4680 and HTR1B rs6296 x COMT rs4680 for any of the investigated outcomes. This study revealed that three single nucleotide polymorphisms, OPRM1 rs1799971, HTR1B rs6296 or COMT rs4680, mostly associated with chronic pain were not involved in phenotyping features of FMS. Potential gene-to-gene interaction and their association with clinical phenotype in women with FMS should be further investigated in future studies including large sample sizes.


Subject(s)
Catechol O-Methyltransferase , Fibromyalgia , Polymorphism, Single Nucleotide , Receptor, Serotonin, 5-HT1B , Receptors, Opioid, mu , Humans , Fibromyalgia/genetics , Female , Catechol O-Methyltransferase/genetics , Receptors, Opioid, mu/genetics , Middle Aged , Adult , Receptor, Serotonin, 5-HT1B/genetics , Phenotype , Genotype , Genetic Predisposition to Disease , Quality of Life
5.
Sci Transl Med ; 16(742): eadj0395, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598615

ABSTRACT

Chronic primary pain conditions (CPPCs) affect over 100 million Americans, predominantly women. They remain ineffectively treated, in large part because of a lack of valid animal models with translational relevance. Here, we characterized a CPPC mouse model that integrated clinically relevant genetic (catechol-O-methyltransferase; COMT knockdown) and environmental (stress and injury) factors. Compared with wild-type mice, Comt+/- mice undergoing repeated swim stress and molar extraction surgery intervention exhibited pronounced multisite body pain and depressive-like behavior lasting >3 months. Comt+/- mice undergoing the intervention also exhibited enhanced activity of primary afferent nociceptors innervating hindpaw and low back sites and increased plasma concentrations of norepinephrine and pro-inflammatory cytokines interleukin-6 (IL-6) and IL-17A. The pain and depressive-like behavior were of greater magnitude and longer duration (≥12 months) in females versus males. Furthermore, increases in anxiety-like behavior and IL-6 were female-specific. The effect of COMT genotype × stress interactions on pain, IL-6, and IL-17A was validated in a cohort of 549 patients with CPPCs, demonstrating clinical relevance. Last, we assessed the predictive validity of the model for analgesic screening and found that it successfully predicted the lack of efficacy of minocycline and the CB2 agonist GW842166X, which were effective in spared nerve injury and complete Freund's adjuvant models, respectively, but failed in clinical trials. Yet, pain in the CPPC model was alleviated by the beta-3 adrenergic antagonist SR59230A. Thus, the CPPC mouse model reliably recapitulates clinically and biologically relevant features of CPPCs and may be implemented to test underlying mechanisms and find new therapeutics.


Subject(s)
Chronic Pain , Rats , Male , Humans , Female , Mice , Animals , Chronic Pain/drug therapy , Chronic Pain/genetics , Catechol O-Methyltransferase/genetics , Interleukin-17 , Interleukin-6 , Rats, Sprague-Dawley
6.
Sci Rep ; 14(1): 8424, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600209

ABSTRACT

Using deep learning has demonstrated significant potential in making informed decisions based on clinical evidence. In this study, we deal with optimizing medication and quantitatively present the role of deep learning in predicting the medication dosage for patients with Parkinson's disease (PD). The proposed method is based on recurrent neural networks (RNNs) and tries to predict the dosage of five critical medication types for PD, including levodopa, dopamine agonists, monoamine oxidase-B inhibitors, catechol-O-methyltransferase inhibitors, and amantadine. Recurrent neural networks have memory blocks that retain crucial information from previous patient visits. This feature is helpful for patients with PD, as the neurologist can refer to the patient's previous state and the prescribed medication to make informed decisions. We employed data from the Parkinson's Progression Markers Initiative. The dataset included information on the Unified Parkinson's Disease Rating Scale, Activities of Daily Living, Hoehn and Yahr scale, demographic details, and medication use logs for each patient. We evaluated several models, such as multi-layer perceptron (MLP), Simple-RNN, long short-term memory (LSTM), and gated recurrent units (GRU). Our analysis found that recurrent neural networks (LSTM and GRU) performed the best. More specifically, when using LSTM, we were able to predict levodopa and dopamine agonist dosage with a mean squared error of 0.009 and 0.003, mean absolute error of 0.062 and 0.030, root mean square error of 0.099 and 0.053, and R-squared of 0.514 and 0.711, respectively.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Levodopa/therapeutic use , Catechol O-Methyltransferase , Activities of Daily Living , Dopamine Agonists/therapeutic use , Neural Networks, Computer
7.
Sci Rep ; 14(1): 9799, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684743

ABSTRACT

This study investigated the potential anxiolytic properties of flavan-3-ols and aromatic resins through a combined computational and experimental approach. Network pharmacology techniques were utilized to identify potential anxiolytic targets and compounds by analyzing protein-protein interactions and KEGG pathway data. Molecular docking and simulation studies were conducted to evaluate the binding interactions and stability of the identified targets. Behavioral tests, including the elevated plus maze test, open field test, light-dark test, actophotometer, and holeboard test, were used to assess anxiolytic activity. The compound-target network analysis revealed complex interactions involving 306 nodes and 526 edges, with significant interactions observed and an average node degree of 1.94. KEGG pathway analysis highlighted pathways such as neuroactive ligand-receptor interactions, dopaminergic synapses, and serotonergic synapses as being involved in anxiety modulation. Docking studies on EGCG (Epigallocatechin gallate) showed binding energies of -9.5 kcal/mol for MAOA, -9.2 kcal/mol for SLC6A4, and -7.4 kcal/mol for COMT. Molecular dynamic simulations indicated minimal fluctuations, suggesting the formation of stable complexes between small molecules and proteins. Behavioral tests demonstrated a significant reduction in anxiety-like behavior, as evidenced by an increased number of entries into and time spent in the open arm of the elevated plus maze test, light-dark test, open field center activity, hole board head dips, and actophotometer beam interruptions (p < 0.05 or p < 0.01). This research provides a comprehensive understanding of the multi-component, multi-target, and multi-pathway intervention mechanisms of flavan-3-ols and aromatic resins in anxiety treatment. Integrated network and behavioral analyses collectively support the anxiolytic potential of these compounds and offer valuable insights for future research in this area.


Subject(s)
Anti-Anxiety Agents , Anxiety , Catechin , Catechin/analogs & derivatives , Flavonoids , Molecular Docking Simulation , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/chemistry , Anxiety/drug therapy , Catechin/pharmacology , Catechin/chemistry , Molecular Dynamics Simulation , Male , Network Pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Behavior, Animal/drug effects , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Mice , Protein Binding
8.
Metabolomics ; 20(3): 46, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641695

ABSTRACT

INTRODUCTION: Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES: We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS: The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS: The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS: PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.


Subject(s)
Heart Diseases , Phenylbutyrates , Sepsis , Shock, Septic , Amino Acids/metabolism , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/metabolism , Heart Diseases/drug therapy , Lipid Metabolism/drug effects , Metabolomics , Phenylbutyrates/pharmacology , Phenylbutyrates/therapeutic use , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Shock, Septic/complications , Shock, Septic/drug therapy , Animals , Mice , Disease Models, Animal , Catechol O-Methyltransferase/drug effects , Catechol O-Methyltransferase/metabolism , PPAR alpha/drug effects , PPAR alpha/metabolism
9.
Minerva Anestesiol ; 90(5): 386-396, 2024 05.
Article in English | MEDLINE | ID: mdl-38619184

ABSTRACT

BACKGROUND: Opioids are widely used in chronic non-cancer pain (CNCP) management. However, they remain controversial due to serious risk of causing opioid use disorder (OUD). Our main aim was to develop a predictive model for future clinical translation that include pharmacogenetic markers. METHODS: An observational study was conducted in 806 pre-screened Spanish CNCP patients, under long-term use of opioids, to compare cases (with OUD, N.=137) with controls (without OUD, N.=669). Mu-opioid receptor 1 (OPRM1, A118G, rs1799971) and catechol-O-methyltransferase (COMT, G472A, rs4680) genetic variants plus cytochrome P450 2D6 (CYP2D6) liver enzyme phenotypes were analyzed. Socio-demographic, clinical and pharmacological outcomes were also registered. A logistic regression model was performed. The model performance and diagnostic accuracy were calculated. RESULTS: OPRM1-AA genotype and CYP2D6 poor and ultrarapid metabolizers together with three other potential predictors: 1) age; 2) work disability; 3) oral morphine equivalent daily dose (MEDD), were selected with a satisfactory diagnostic accuracy (sensitivity: 0.82 and specificity: 0.85), goodness of fit (P=0.87) and discrimination (0.89). Cases were ten-year younger with lower incomes, more sleep disturbances, benzodiazepines use, and history of substance use disorder in front of controls. CONCLUSIONS: Functional polymorphisms related to OPRM1 variant and CYP2D6 phenotypes may predict a higher OUD risk. Established risk factors such as young age, elevated MEDD and lower incomes were identified. A predictive model is expected to be implemented in clinical setting among CNCP patients under long-term opioids use.


Subject(s)
Chronic Pain , Opioid-Related Disorders , Humans , Male , Female , Chronic Pain/drug therapy , Chronic Pain/genetics , Middle Aged , Opioid-Related Disorders/genetics , Adult , Retrospective Studies , Cohort Studies , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/adverse effects , Pharmacogenetics , Receptors, Opioid, mu/genetics , Cytochrome P-450 CYP2D6/genetics , Catechol O-Methyltransferase/genetics , Aged , Genotype
10.
Sci Rep ; 14(1): 9920, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689006

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting over 3% of those over 65. It's caused by reduced dopaminergic neurons and Lewy bodies, leading to motor and non-motor symptoms. The relationship between COMT gene polymorphisms and PD is complex and not fully elucidated. Some studies have reported associations between certain COMT gene variants and PD risk, while others have not found significant associations. This study investigates how COMT gene variations impact cortical thickness changes in PD patients over time, aiming to link genetic factors, especially COMT gene variations, with PD progression. This study analyzed data from 44 PD patients with complete 4-year imaging follow-up from the Parkinson Progression Marker Initiative (PPMI) database. Magnetic resonance imaging (MRI) scans were acquired using consistent methods across 9 different MRI scanners. COMT single-nucleotide polymorphisms (SNPs) were assessed based on whole genome sequencing data. Longitudinal image analysis was conducted using FreeSurfer's processing pipeline. Linear mixed-effect models were employed to examine the interaction effect of genetic variations and time on cortical thickness, while controlling for covariates and subject-specific variations. The rs165599 SNP stands out as a potential contributor to alterations in cortical thickness, showing a significant reduction in overall mean cortical thickness in both hemispheres in homozygotes (Left: P = 0.023, Right: P = 0.028). The supramarginal, precentral, and superior frontal regions demonstrated significant bilateral alterations linked to rs165599. Our findings suggest that the rs165599 variant leads to earlier manifestation of cortical thinning during the course of the disease. However, it does not result in more severe cortical thinning outcomes over time. There is a need for larger cohorts and control groups to validate these findings and consider genetic variant interactions and clinical features to elucidate the specific mechanisms underlying COMT-related neurodegenerative processes in PD.


Subject(s)
Catechol O-Methyltransferase , Magnetic Resonance Imaging , Parkinson Disease , Polymorphism, Single Nucleotide , Humans , Catechol O-Methyltransferase/genetics , Parkinson Disease/genetics , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Male , Female , Aged , Longitudinal Studies , Middle Aged , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Disease Progression , Brain Cortical Thickness , Genetic Predisposition to Disease
11.
Biosci Biotechnol Biochem ; 88(6): 665-670, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38561637

ABSTRACT

Bee pollen is an apicultural product collected by honeybees from flower stamens and used as a functional food worldwide. In the present study, we aim to elucidate the functions of Australian bee pollen. Australian bee pollen extracts and their main components were tested for catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAOB) inhibitory activities. These enzymes are key neurotransmitters involved in Parkinson's disease and depression. Myricetin (5), tricetin (6), and luteolin (7) exhibited high COMT inhibitory activities (half maximal inhibitory concentration [IC50] = 23.3, 13.8, and 47.4 µM, respectively). In contrast, 5, 7, and annulatin (8) exhibited MAOB inhibitory activities (IC50 = 89.7, 32.8, and 153 µM, respectively). Quantitative analysis via high-performance liquid chromatography revealed that 5 was abundant in Australian bee pollen extracts. Our findings suggest that 5 contributes to the COMT and MAOB inhibitory activities of Australian bee pollen.


Subject(s)
Catechol O-Methyltransferase , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Pollen , Pollen/chemistry , Bees , Animals , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Catechol O-Methyltransferase/metabolism , Australia , Catechol O-Methyltransferase Inhibitors/pharmacology
12.
Food Funct ; 15(10): 5287-5299, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38639730

ABSTRACT

Catechol-O-methyltransferase (COMT) plays a central role in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs and hormones having catecholic structures. Its inhibitors are used in clinical practice to treat Parkinson's disease. In this study, a fluorescence-based visualization inhibitor screening method was developed to assess the inhibition activity on COMT both in vitro and in living cells. Following the screening of 94 natural products, Pu-erh tea extract exhibited the most potent inhibitory effect on COMT with an IC50 value of 0.34 µg mL-1. In vivo experiments revealed that Pu-erh tea extract substantially hindered COMT-mediated levodopa metabolism in rats, resulting in a significant increase in levodopa levels and a notable decrease in 3-O-methyldopa in plasma. Subsequently, the chemical components of Pu-erh tea were analyzed using UHPLC-Q-Exactive Orbitrap HRMS, identifying 24 major components. Among them, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate exhibited potent inhibition of COMT activity with IC50 values from 93.7 nM to 125.8 nM and were the main bioactive constituents in Pu-erh tea responsible for its COMT inhibition effect. Inhibition kinetics analyses and docking simulations revealed that these compounds competitively inhibit COMT-mediated O-methylation at the catechol site. Overall, this study not only explained how Pu-erh tea catechins inhibit COMT, suggesting Pu-erh tea as a potential dietary intervention for Parkinson's disease, but also introduced a new strategy for discovering COMT inhibitors more effectively.


Subject(s)
Catechin , Catechol O-Methyltransferase Inhibitors , Catechol O-Methyltransferase , Levodopa , Plant Extracts , Rats, Sprague-Dawley , Tea , Animals , Rats , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase/metabolism , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Levodopa/metabolism , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Camellia sinensis/chemistry , Molecular Docking Simulation
13.
Medicine (Baltimore) ; 103(17): e37980, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669362

ABSTRACT

The aim of this observational study was to investigate the effects of catechol-O-methyltransferase (COMT) and ATP-binding cassette transporter B1 (ABCB1) gene polymorphisms on the postoperative analgesic effect of sufentanil in Chinese Han pediatric patients with fractures. A total of 185 pediatric patients who underwent fracture surgery were included. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the polymorphisms of COMT and ABCB1 genes. Sufentanil was used for postoperative analgesia. The pain level of the patients was evaluated using the face, legs, activity, cry, and consolability scale before surgery, during awakening, at 2, 6, 12, and 24 hours after surgery. The postoperative Ramsay sedation score, sufentanil consumption, and incidence of adverse reactions were also recorded. Pediatric patients with different genotypes of ABCB1 and COMT showed no statistically significant differences in general data such as age, gender, weight, height, surgical duration, and American Society of Anesthesiologists classification (P > .05). There were no statistically significant differences in sedation scores after surgery between different genotypes of ABCB1 and COMT (P > .05). Among patients with CC genotype in ABCB1, the pain scores and total consumption of sufentanil at awakening, 2 and 6 hours after surgery were higher compared to TT and CT genotypes (P < .05), while there were no statistically significant differences between TT and CT genotypes (P > .05). Among patients with AA genotype in COMT, the pain scores and total consumption of sufentanil at awakening, 2, 6, 12, and 24 hours after surgery were higher compared to AG and GG genotypes (P < .05), while there were no statistically significant differences between AG and GG genotypes (P > .05). There were no statistically significant differences in adverse reactions between different genotypes of ABCB1 and COMT (P > .05). The polymorphisms of COMT gene rs4680 and ABCB1 gene rs1045642 are associated with the analgesic effect and consumption of sufentanil in pediatric patients after fracture surgery.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Analgesics, Opioid , Catechol O-Methyltransferase , Fractures, Bone , Pain, Postoperative , Sufentanil , Humans , Sufentanil/therapeutic use , Sufentanil/administration & dosage , Catechol O-Methyltransferase/genetics , Pain, Postoperative/drug therapy , Pain, Postoperative/genetics , Male , Female , ATP Binding Cassette Transporter, Subfamily B/genetics , Child , Fractures, Bone/surgery , Fractures, Bone/genetics , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Genotype , Child, Preschool , Pain Measurement , Polymorphism, Genetic , Adolescent , Polymorphism, Single Nucleotide
14.
Dev Neuropsychol ; 49(3): 138-151, 2024.
Article in English | MEDLINE | ID: mdl-38461456

ABSTRACT

To identify if COMT polymorphisms interact with executive functions as predictors of math skills, we assessed 38 adolescents (mean age = 16.4 ± 0.80 years, IQ > 80) from a larger study of high-school students screened for their mathematical abilities. Adolescents were genotyped for the COMT Val158Met polymorphism (grouped as Met/Met or Val-carriers) and completed the WRAT math achievement test, working-memory, inhibitory-control, and shifting tasks. Met/Met-carriers achieved higher WRAT scores than the Val-carriers (W = 229, p = .009). Genotype group was a moderate-to-strong predictor of WRAT scores (ß = 0.56 to 0.74). No genotype/executive-function interaction was detected. Our findings suggest that the rs4680 Met/Met genotype is positively associated with math achievement.


Subject(s)
Cognition , Executive Function , Adolescent , Humans , Genotype , Memory, Short-Term , Catechol O-Methyltransferase/genetics
15.
Genes (Basel) ; 15(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38540358

ABSTRACT

Gambling Disorder (GD) is characterised by a harmful, enduring, and recurrent involvement in betting-related behaviours. Therefore, GD shares similar biological mechanisms and symptoms to substance use disorders (SUD). Therefore, in this study, we chose the behavioural addictions group. During the examination and recruitment to the study, it turned out that all the people undergoing treatment for gambling addiction were also addicted to amphetamines, which is consistent with the biological mechanism related to cerebral neurotransmission. The aim of the study was to investigate the association of the COMT gene polymorphism with behavioral addiction. The study group consisted of 307 participants: 107 men with gambling disorder and amphetamine dependency (mean age = 27.51, SD = 5.25) and 200 non-addicted, nor dependent, free from neuro-psychiatric disorders control group men (mean age = 20.20, SD = 4.51). Both groups were subjected to psychometric evaluation using the State-Trait Anxiety Inventory and the NEO Five-Factor Personality Inventory. Genomic DNA was extracted from venous blood following standard protocols. Determination of the rs4680 polymorphism in the COMT gene was performed using the real-time PCR technique. Statistically significant differences in the frequency of rs4680 genotypes were found in the tested sample of subjects compared with the control group (p = 0.03543). Subjects with gambling disorder and amphetamine use disorder compared to the control group obtained higher scores in the assessment of the STAI trait scale (p = 0.0019), state scale (p < 0.0000), and NEO-FFI Neuroticism scale (p < 0.0000). Significantly lower results were obtained for the NEO-FFI Agreeability scale (p < 0.0000). Additionally, a significant statistical impact of gambling disorder and amphetamine use disorder, and the COMT rs4680 genotype was demonstrated for the score of the STAI trait (p = 0.0351) and state (p = 0.0343) and the NEO-FFI Conscientiousness scale (p = 0.0018). We conclude that COMT and its polymorphic variant influence the development of addiction. Still, considering its multifactorial and polygenic nature, it should be combined with other factors such as personality.


Subject(s)
Behavior, Addictive , Substance-Related Disorders , Adult , Humans , Male , Young Adult , Amphetamine , Behavior, Addictive/diagnosis , Behavior, Addictive/genetics , Catechol O-Methyltransferase/genetics , Personality/genetics , Polymorphism, Genetic/genetics , Female
16.
Biol Pharm Bull ; 47(3): 660-668, 2024.
Article in English | MEDLINE | ID: mdl-38508741

ABSTRACT

Flopropione (Flo) has been used for gallstone and urolithiasis as a spasmolytic agent almost exclusively in Japan. According to the package insert, its main mechanism is catechol-O-methyltransferase (COMT) inhibition and anti-serotonergic effect. This is obviously contrary to pharmacological common sense, but it is described that way in pharmacology textbooks and occurs in questions in the National Examination for Pharmacists in Japan. As this is a serious problem in education, we re-examined the action of Flo. The guinea pig ureter was hardly contracted by serotonin, but noradrenaline (NA) elicited repetitive twitch contraction, which was inhibited by Flo. The sphincter of Oddi (SO) exhibited a spontaneous repetitive twitch contraction, which was inhibited by NA and Flo. The inhibitory effect of NA was reversed by α- and ß-blockers, whereas that of Flo was not. Entacapone, a representative COMT inhibitor, did not affect the movement of the ureter and the SO. Nifedipine suppressed carbachol-induced contraction of the taenia coli, spontaneous movement of the SO, and NA-induced contraction of the ureter to almost the same extent, whereas Flo did not inhibit the taenia coli, but inhibited the contraction of the SO and the ureter. The inhibitory pattern of Flo resembled that of the ryanodine receptor agonist 4-chloro-m-cresol and the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate. It is concluded that COMT inhibition or serotonin inhibition is not involved in the spasmolytic action of Flo. Flo might act on ryanodine receptors and/or IP3 receptors, which are responsible for periodic Ca release from Ca stores, to disrupt coordinated Ca dynamics.


Subject(s)
Muscle Contraction , Parasympatholytics , Propiophenones , Animals , Guinea Pigs , Parasympatholytics/pharmacology , Catechol O-Methyltransferase/pharmacology , Serotonin/pharmacology , Catechols/pharmacology , Calcium/pharmacology
17.
CNS Spectr ; 29(3): 166-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38487834

ABSTRACT

OBJECTIVE: The catechol-o-methyltransferase (COMT) inhibitor tolcapone constitutes a potentially useful probe of frontal cortical dopaminergic function. The aim of this systematic review was to examine what is known of effects of tolcapone on human cognition in randomized controlled studies. METHODS: The study protocol was preregistered on the Open Science Framework. A systematic review was conducted using PubMed to identify relevant randomized controlled trials examining the effects of tolcapone on human cognition. Identified articles were then screened against inclusion and exclusion criteria. RESULTS: Of the 22 full-text papers identified, 13 randomized control trials were found to fit the pre-specified criteria. The most consistent finding was that tolcapone modulated working memory; however, the direction of effect appeared to be contingent on the COMT polymorphism (more consistent evidence of improvement in Val-Val participants). There were insufficient nature and number of studies for meta-analysis. CONCLUSION: The cognitive improvements identified upon tolcapone administration, in some studies, are likely to be due to the level of dopamine in the prefrontal cortex being shifted closer to its optimum, per an inverted U model of prefrontal function. However, the results should be interpreted cautiously due to the small numbers of studies. Given the centrality of cortical dopamine to understanding human cognition, studies using tolcapone in larger samples and across a broader set of cognitive domains would be valuable. It would also be useful to explore the effects of different dosing regimens (different doses; and single versus repeated administration).


Subject(s)
Catechol O-Methyltransferase Inhibitors , Catechol O-Methyltransferase , Cognition , Tolcapone , Humans , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase Inhibitors/therapeutic use , Cognition/drug effects , Catechol O-Methyltransferase/genetics , Benzophenones/pharmacology , Benzophenones/therapeutic use , Adult , Memory, Short-Term/drug effects , Randomized Controlled Trials as Topic
18.
Carbohydr Polym ; 332: 121909, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431413

ABSTRACT

COMT inhibitors are commonly used to improve the effectiveness of levodopa in treating Parkinson's disease by inhibiting its conversion to 3-O-methyldopa. Because of the serious side effect of nitrocatechol COMT inhibitors, it is necessary to develop non-nitrocatechol COMT inhibitors with a higher safety profile. Heparin has been observed to bind to COMT. However, the exact functional significance of this interaction is not fully understood. In this study, the contribution of different substitution of heparin to its binding with COMT was investigated. In vitro and in vivo, heparin oligosaccharides can bind to COMT and inhibit its activity. Furthermore, we enriched the functional heparin oligosaccharides that bind to COMT and identified the sequence UA2S-GlcN(S/Ac)6(S/H)-UA2S-GlcNS6(S/H)-UA2(S/H)-GlcNS6S as the characteristic structural domain of these functional oligosaccharides. This study has elucidated the relationship between the structure of heparin oligosaccharides and their activity against COMT, providing valuable insights for the development of non-nitrocatechol COMT inhibitors with improved safety and efficacy.


Subject(s)
Catechol O-Methyltransferase , Parkinson Disease , Humans , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/therapeutic use , Heparin/therapeutic use , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase Inhibitors/therapeutic use , Levodopa , Parkinson Disease/drug therapy
19.
Anaesth Crit Care Pain Med ; 43(2): 101361, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408640

ABSTRACT

BACKGROUND: The Catechol-O-methyltransferase (COMT) gene, responsible for encoding an enzyme crucial in the metabolism of catecholamines, is known to play a significant role in pain perception. Polymorphisms within this gene, particularly the COMT rs4680 genotypes, have been linked to various acute pain phenotypes. This prospective cohort study examines interactions among the genetic polymorphism COMT rs4680 genotypes, preoperative knee pain, and pain catastrophizing in chronic postsurgical pain (CPSP) at 3, 6, and 12 months post-total knee arthroplasty (TKA). STUDY DESIGN: A total of 280 patients undergoing primary unilateral TKA participated, sharing demographic details, preoperative knee pain levels, psychological variables (pain catastrophizing), and COMT rs4680 genotyping via venous blood samples. Telephone interviews at specified intervals enabled the application of binary logistic regressions and interaction models. RESULTS: Significant influences of preoperative knee pain and pain catastrophizing on postsurgical outcomes were observed. Specifically, at the first time point (T1, 3 months post-TKA), a notable moderation effect was identified in preoperative knee pain (R2 change = 0.026, p = 0.026). The Johnson-Neyman regions of significance (RoS) indicated these moderation effects were significant above a threshold of 17.18 (p = 0.05), accounting for 26.4%. At the third time point (T3, 12 months post-TKA), a complex three-way interaction among genotypes (GG, GA, and AA carriers) was evident, resulting in an R2 change of 0.051 (p = 0.009). Here, the RoS for pain catastrophizing was above 32.74 for 30.5% of GG genotype carriers, above 22.38 for 50.8% of GA carriers, and below 11.94 for 63.2% of AA carriers. CONCLUSION: This study illuminates the significant role of the COMT Val158Met rs4680 polymorphism in susceptibility to prolonged pain following TKA. It also elucidates how these genetic genotypes interplay with preoperative knee pain and pain catastrophizing. Such intricate genetic-psychological-pain relationships necessitate additional investigation to confirm these findings and potentially guide post-TKA pain management strategies.


Subject(s)
Arthroplasty, Replacement, Knee , Chronic Pain , Humans , Catechol O-Methyltransferase/genetics , Prospective Studies , Reactive Oxygen Species , Genotype , Pain, Postoperative/genetics , Catastrophization/genetics , Chronic Pain/genetics
20.
Psychiatry Clin Neurosci ; 78(5): 300-308, 2024 May.
Article in English | MEDLINE | ID: mdl-38403942

ABSTRACT

AIM: Pain is reconstructed by brain activities and its subjectivity comes from an interplay of multiple factors. The current study aims to understand the contribution of genetic factors to the neural processing of pain. Focusing on the single-nucleotide polymorphism (SNP) of opioid receptor mu 1 (OPRM1) A118G (rs1799971) and catechol-O-methyltransferase (COMT) val158met (rs4680), we investigated how the two pain genes affect pain processing. METHOD: We integrated a genetic approach with functional neuroimaging. We extracted genomic DNA information from saliva samples to genotype the SNP of OPRM1 and COMT. We used a percept-related model, in which two different levels of perceived pain intensities ("low pain: mildly painful" vs "high pain: severely painful") were employed as experimental stimuli. RESULTS: Low pain involves a broader network relative to high pain. The distinct effects of pain genes were observed depending on the perceived pain intensity. The effects of low pain were found in supramarginal gyrus, angular gyrus, and anterior cingulate cortex (ACC) for OPRM1 and in middle temporal gyrus for COMT. For high pain, OPRM1 affected the insula and cerebellum, while COMT affected the middle occipital gyrus and ACC. CONCLUSION: OPRM1 primarily affects sensory and cognitive components of pain processing, while COMT mainly influences emotional aspects of pain processing. The interaction of the two pain genes was associated with neural patterns coding for high pain and neural activation in the ACC in response to pain. The proteins encoded by the OPRM1 and COMT may contribute to the firing of pain-related neurons in the human ACC, a critical center for subjective pain experience.


Subject(s)
Catechol O-Methyltransferase , Pain , Polymorphism, Single Nucleotide , Receptors, Opioid, mu , Humans , Catechol O-Methyltransferase/genetics , Receptors, Opioid, mu/genetics , Male , Adult , Female , Young Adult , Pain/genetics , Pain/physiopathology , Magnetic Resonance Imaging , Pain Perception/physiology , Brain/physiopathology , Functional Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...