Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.577
Filter
1.
Sci Rep ; 14(1): 21759, 2024 09 18.
Article in English | MEDLINE | ID: mdl-39294294

ABSTRACT

Rosacea is a chronic inflammatory skin disease that typically affects the central facial area. Its main clinical symptoms include paroxysmal flushing, telangiectasia, and non-temporary erythema. Cell-free adipose tissue extracts (ATEs) are liquid components extracted from human adipose tissue that contain large amounts of growth factors. Despite the scar-reducing, anti-aging, and wound-healing effects of ATEs, the efficacy of ATEs in rosacea remains unknown. Therefore, the anti-rosacea effects of ATEs were investigated in human cathelicidin peptide (LL-37) induced rosacea mice and capsaicin (CAP)-stimulated HaCaT keratinocytes. In vitro, ATEs significantly reduced TRPV1 expression, intracellular calcium ions influx and the release of inflammatory factors (such as KLK5, IL-6, IL-8 and TNF-α) after intervening in CAP-stimulated cells. The in vivo results revealed that ATEs alleviated rosacea symptoms, such as erythema score, erythema area, transepidermal water loss, abnormal epidermal thickness, mast cell infiltration and telangiectasia upon downregulating TRPV1 and CD31 expression. Moreover, the up-regulated TRPV1 protein expression was also recovered by ATEs administration in vivo and in vitro. Meanwhile, ATEs demonstrated good biocompatibility. In summary, ATEs could be a potential therapeutic agent for rosacea by regulating inflammation and alleviating telangiectasia.


Subject(s)
Adipose Tissue , Rosacea , TRPV Cation Channels , TRPV Cation Channels/metabolism , Rosacea/drug therapy , Rosacea/metabolism , Rosacea/pathology , Animals , Humans , Mice , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Keratinocytes/metabolism , Keratinocytes/drug effects , Down-Regulation/drug effects , Capsaicin/pharmacology , HaCaT Cells , Cathelicidins , Male , Disease Models, Animal , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism
2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273387

ABSTRACT

We developed a synthesis strategy involving a diazo transfer reaction and subsequent click reaction to conjugate a murine cathelicidin-related antimicrobial peptide (CRAMP18-35) to chitosan and hydroxypropyl chitosan (HPC), confirmed the structure, and investigated the antimicrobial activity. Chitosan azide and HPC-azide were prepared with a low degree of azidation by reacting the parent chitosan and HPC with imidazole sulfonyl azide hydrochloride. CRAMP18-35 carrying an N-terminal pentynoyl group was successfully grafted onto chitosan and HPC via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The chitosan-peptide conjugates were characterized by IR spectroscopy and proton NMR to confirm the conversion of the azide to 1,2,3-triazole and to determine the degree of substitution (DS). The DS of the chitosan and HPC CRAMP18-35 conjugates was 0.20 and 0.13, respectively. The antibacterial activity of chitosan-peptide conjugates was evaluated for activity against two species of Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and two species of Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). The antimicrobial peptide conjugates were selectively active against the Gram-negative bacteria and lacking activity against Gram-positive bacteria.


Subject(s)
Alkynes , Anti-Bacterial Agents , Azides , Chitosan , Copper , Cycloaddition Reaction , Microbial Sensitivity Tests , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Copper/chemistry , Azides/chemistry , Catalysis , Alkynes/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cathelicidins , Animals , Staphylococcus aureus/drug effects , Mice , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development
3.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 1-9, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39262269

ABSTRACT

Rift Valley Fever Virus (RVFV) is an arbovirus that circulates among animals and can be transmitted to humans. Mosquitoes are the primary vectors that allow RVFV to spread vertically and horizontally. Egypt was exposed to frequent outbreaks with devastating economic consequences. RVFV has a high incidence of worldwide dissemination and no specific vaccine or therapy. Linear Human Cathelicidin (LL-37), is a natural antimicrobial peptide with antiviral activity against numerous viruses. In addition to immunomodulatory effects, LL-37 directly influences viral encapsulation. This study aimed to evaluate the antiviral activity of LL-37 against RVFV in vitro. The post-entry and pre-incubation of LL-37 within Vero cells were assessed in the absence and presence of RVFV. LL-37 activity was assessed using a TCID50 endpoint test, qRT-PCR, and a western blot. When genomic RVFV was quantified, it resulted in a 48% direct inactivation of the viral envelope and a 36% reduction when the virus was pre-incubated with LL-37 before infection. LL-37 decreased viral infection by 75% and protected Vero cells against RVFV infection by 47% at a 1.25 µg/ml dosage. These findings imply that LL-37 exerts antiviral efficacy against RVFV by restricting virus entrance through direct disruption of the virus envelope and indirectly by triggering an immunological response. The effect of LL-37 is time-dependent. As a result, LL-37 may provide rapid and affordable therapies for RVFV infection in Egypt, both during outbreaks and as a preventive strategy.


Subject(s)
Antimicrobial Cationic Peptides , Antiviral Agents , Cathelicidins , Rift Valley fever virus , Chlorocebus aethiops , Vero Cells , Animals , Rift Valley fever virus/drug effects , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Egypt , Humans , Rift Valley Fever/drug therapy , Rift Valley Fever/prevention & control
4.
Colloids Surf B Biointerfaces ; 244: 114181, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39216443

ABSTRACT

Implant-associated infections impose great burden on patient health and public healthcare. Antimicrobial peptides and metal ions are generally incorporated onto implant surface to deter bacteria colonization. However, it is still challenging to efficiently prevent postoperative infections at non-cytotoxic dosages. Herein, a scaffold based on porous titanium coated with a mussel-inspired dual-diameter TiO2 nanotubes is developed for loading dual drugs of LL37 peptide and Zn2+ with different sizes and characteristics. Benefiting from in-situ formed polydopamine layer and dual-diameter nanotubular structure, the scaffold provides an efficient platform for controllable drugs elution: accelerated release under acidic condition and sustained release for up to 28 days under neutral/alkalescent circumstances. Such combination of dual drugs simultaneously enhanced antibacterial efficacy and osteogenesis. In antibacterial test, LL37 peptide serving as bacteria membrane puncture agent, and Zn2+ acting as ROS generator, cooperatively destroyed bacterial membrane integrity and subsequently damaged bacterial DNA, endowing dual-drug loaded scaffold with remarkable bactericidal efficiency of > 92 % in vitro and > 99 % in vivo. Noteworthily, dual-drug loaded scaffold promoted bone-implant osteointegration under infectious microenvironment, overmatching single-drug load ones. It provides a promising strategy on surface modification of implant for infected bone defect repairing.


Subject(s)
Anti-Bacterial Agents , Bivalvia , Titanium , Zinc , Titanium/chemistry , Titanium/pharmacology , Zinc/chemistry , Zinc/pharmacology , Porosity , Animals , Bivalvia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cathelicidins , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Microbial Sensitivity Tests , Surface Properties , Osteogenesis/drug effects , Drug Liberation , Staphylococcus aureus/drug effects , Particle Size , Indoles , Polymers
5.
Immunol Lett ; 269: 106906, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122093

ABSTRACT

The collaboration between the microbiota, mucosa, and intestinal epithelium is crucial for defending against pathogens and external antigens. Dysbiosis disrupts this balance, allowing pathogens to thrive and potentially enter the bloodstream, triggering immune dysregulation and potentially leading to sepsis. Antimicrobial peptides like LL-37 and CRAMP are pivotal in innate immune defense. Their expression varies with infection severity, exhibiting a dual pro- and anti-inflammatory response. Understanding this dynamic is key to comprehending sepsis progression. In our study, we examined the inflammatory response in CRAMP knockout mice post-cecal ligation and puncture (CLP). We assessed its impact on brain tissue damage and the intestinal microbiota. Our findings revealed higher gene expression of S100A8 and S100A9 in the prefrontal cortex of wild-type mice versus CRAMP-knockout mice. This trend was consistent in the hippocampus and cerebellum, although protein concentrations remained constant. Notably, there was a notable increase in Escherichia coli, Lactobacillus spp., and Enterococcus faecalis populations in wild-type mice 24 h post-CLP compared to the CRAMP-deficient group. These results align with our previous data suggesting that the absence of CRAMP may confer protection in this sepsis model.


Subject(s)
Brain-Gut Axis , Cathelicidins , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Knockout , Sepsis , Animals , Sepsis/immunology , Sepsis/etiology , Sepsis/metabolism , Sepsis/microbiology , Mice , Gastrointestinal Microbiome/immunology , Antimicrobial Cationic Peptides/metabolism , Dysbiosis/immunology , Male , Mice, Inbred C57BL , Brain/metabolism , Brain/immunology
6.
BMC Vet Res ; 20(1): 343, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095814

ABSTRACT

BACKGROUND: Cathelicidins are vital antimicrobial peptides expressed in diverse vertebrates, crucial for immunity. Despite being a new field, amphibian cathelicidin research holds promise. RESULTS: We isolated the cDNA sequence of the cathelicidin (Ll-CATH) gene from the liver transcriptome of the Chong'an Moustache Toad (Leptobrachium liui). We confirmed the authenticity of the cDNA sequence by rapid amplification of cDNA ends and reverse transcription PCR, and obtained the Ll-CATH amino acid sequence using the Open Reading Frame Finder, an online bioinformatics tool. Its translated protein contained a cathelin domain, signal peptide, and mature peptide, confirmed by amino acid sequence. The comparative analysis showed that the mature peptides were variable between the amphibian species, while the cathelin domain was conserved. The concentration of Ll-CATH protein and the expression of its gene varied in the tissues, with the spleen showing the highest levels. The expression levels of Ll-CATH in different tissues of toads was significantly increased post infection with Aeromonas hydrophila. Chemically synthesized Ll-CATH effectively combated Proteus mirabilis, Staphylococcus epidermidis, Vibrio harveyi, V. parahaemolyticus, and V. vulnificus; disrupted the membrane of V. harveyi, hydrolyzed its DNA. Ll-CATH induced chemotaxis and modulated the expression of pro-inflammatory cytokine genes in RAW264.7 macrophages. CONCLUSIONS: This study unveiled the antibacterial and immunomodulatory potential of amphibian cathelicidin, implying its efficacy against infections. Ll-CATH characterization expands our knowledge, emphasizing its in a bacterial infection therapy.


Subject(s)
Anti-Bacterial Agents , Anura , Cathelicidins , Animals , Anti-Bacterial Agents/pharmacology , Amino Acid Sequence , Immunologic Factors/pharmacology , Mice , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology
7.
Food Funct ; 15(17): 8916-8934, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39143863

ABSTRACT

Rosacea, a chronic inflammatory dermatological condition, is characterized by facial erythema and pustules. Recent investigations have delved into the interplay between the gut microbiota and rosacea pathogenesis, unveiling promising avenues for therapeutic intervention. In this study, we screened and isolated strains Ligilactobacillus salivarius 23-006 and Lacticaseibacillus paracasei 23-008 from the feces of healthy volunteers and evaluated the intervention effects of probiotics on rosacea by constructing an LL37 induced rosacea-like mouse model. Our results showed that both L. salivarius 23-006 and L. paracasei 23-008 were probiotic strains with favourable properties. In specific, we observed that both L. salivarius 23-006 and L. paracasei 23-008 alleviated skin lesions, reduced skin inflammatory infiltrates, and decreased the expression of inflammatory factors in mice, with the combination of L. salivarius 23-006 and L. paracasei 23-008 having the most significant effect. Moreover, the combination of strains reduced the expression of cathelicidin LL37 and rosacea-associated factors by inhibiting the TLR2/MyD88/NF-κB pathway. The 16S rRNA analysis showed that the combination enhanced the intestinal barrier, restored intestinal microbiota homeostasis, and up-regulated the abundance of Lactobacillus while down-regulating the abundance of Coprococcus and Oscillospira. We also explored the effects of postbiotics of L. salivarius 23-006 and L. paracasei 23-008 on rosacea. While postbiotics could also ameliorate the rosacea-like phenotype in mice via the TLR2/MyD88/NF-κB pathway, the effects were not as pronounced as those observed with probiotic treatment. However, the postbiotics still enhanced the intestinal barrier, up-regulated the Lactobacillus abundance, and modulated the intestinal microbiota. In conclusion, our study revealed that L. salivarius 23-006 and L. paracasei 23-008 improved rosacea by regulating the TLR2/MyD88/NF-κB pathway and intestinal microbiota, providing a theoretical basis for the treatment of rosacea.


Subject(s)
Cathelicidins , Myeloid Differentiation Factor 88 , NF-kappa B , Probiotics , Rosacea , Signal Transduction , Toll-Like Receptor 2 , Probiotics/pharmacology , Probiotics/administration & dosage , Rosacea/microbiology , Animals , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 2/metabolism , Mice , NF-kappa B/metabolism , Humans , Ligilactobacillus salivarius/physiology , Skin/microbiology , Antimicrobial Cationic Peptides , Female , Lacticaseibacillus paracasei/physiology , Male , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Mice, Inbred C57BL , Inflammation
8.
Mol Immunol ; 173: 100-109, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094445

ABSTRACT

Antimicrobial peptides (AMPs) are a promising alternative to antibiotics in the fight against multi-drug resistant and immune system-evading bacterial infections. Protegrins are porcine cathelicidins which have been identified in porcine leukocytes. Protegrin-1 is the best characterized family member and has broad antibacterial activity by interacting and permeabilizing bacterial membranes. Many host defense peptides (HDPs) like LL-37 or chicken cathelicidin 2 (CATH-2) have also been shown to have protective biological functions during infections. In this regard, it is interesting to study if Protegrin-1 has the immune modulating potential to suppress unnecessary immune activation by neutralizing endotoxins or by influencing the macrophage functionality in addition to its direct antimicrobial properties. This study showed that Protegrin-1 neutralized lipopolysaccharide- (LPS) and bacteria-induced activation of RAW macrophages by binding and preventing LPS from cell surface attachment. Furthermore, the peptide treatment not only inhibited bacterial phagocytosis by murine and porcine macrophages but also interfered with cell surface and intracellular bacterial survival. Lastly, Protegrin-1 pre-treatment was shown to inhibit the amastigote survival in Leishmania infected macrophages. These experiments describe an extended potential of Protegrin-1's protective role during microbial infections and add to the research towards clinical application of cationic AMPs.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , Lipopolysaccharides , Macrophages , Phagocytosis , Animals , Mice , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Immunologic Factors/pharmacology , Lipopolysaccharides/metabolism , Macrophages/immunology , Macrophages/drug effects , Phagocytosis/drug effects , RAW 264.7 Cells , Swine
9.
Eur J Pharm Biopharm ; 202: 114398, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972467

ABSTRACT

Human cathelicidin LL-37, a cationic host defense peptide (CHDP), has several important physiological roles, including antimicrobial activity, immune modulation, and wound healing, and is a being investigated as a therapeutic candidate for several indications. While the effects of endogenously produced LL-37 are well studied, the biodistribution of exogenously administered LL-37 are less known. Here we assess the biodistribution of a gallium-67 labeled variant of LL-37 using nuclear imaging techniques over a 48 h period in healthy mice. When administered as an intravenous bolus just over 20 µg, the LL-37-based radiotracer was rapidly cleared from the blood, largely by the liver, while an appreciable fraction of the dose temporarily distributed to the lungs. When administered subcutaneously at the same dose level, the radiotracer was absorbed systemically following a two-phase kinetic model and was predominately cleared renally. Uptake into sites rich in immune cells, such as the lymph nodes and the spleen, was observed for both routes of administration. Scans of free gallium-67 were also performed as controls. Important preclinical insights into the biodistribution of exogenously administered LL-37 were gained from this study, which can aid in the understanding of this and related cationic host-defense peptides.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , Gallium Radioisotopes , Animals , Antimicrobial Cationic Peptides/pharmacokinetics , Tissue Distribution , Mice , Gallium Radioisotopes/pharmacokinetics , Gallium Radioisotopes/administration & dosage , Single Photon Emission Computed Tomography Computed Tomography/methods , Humans , Female , Male , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/administration & dosage
10.
Int J Biol Macromol ; 277(Pt 1): 134091, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059543

ABSTRACT

This study introduces a novel 3D scaffold for bone regeneration, composed of silk fibroin, chitosan, nano-hydroxyapatite, LL-37 antimicrobial peptide, and pamidronate. The scaffold addresses a critical need in bone tissue engineering by simultaneously combating bone infections and promoting bone growth. LL-37 was incorporated for its broad-spectrum antimicrobial properties, while pamidronate was included to inhibit bone resorption. The scaffold's porous structure, essential for cell infiltration and nutrient diffusion, was achieved through a freeze-drying process. In vitro assessments using SEM and FTIR confirmed the scaffold's morphology and chemical integrity. Antimicrobial efficacy was tested against pathogens of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). In vivo studies in a murine model of infectious bone defect revealed the scaffold's effectiveness in reducing inflammation and bacterial load, and promoting bone regeneration. RNA sequencing of treated specimens provided insights into the molecular mechanisms underlying these observations, revealing significant gene expression changes related to bone healing and immune response modulation. The results indicate that the scaffold effectively inhibits bacterial growth and supports bone cell functions, making it a promising candidate for treating infectious bone defects. Future studies should focus on optimizing the release of therapeutic agents and evaluating the scaffold's clinical potential.


Subject(s)
Bone Regeneration , Cathelicidins , Pseudomonas aeruginosa , Staphylococcus aureus , Tissue Scaffolds , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Mice , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Diphosphonates/pharmacology , Diphosphonates/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Pamidronate/pharmacology , Tissue Engineering
11.
Tuberculosis (Edinb) ; 148: 102536, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38976934

ABSTRACT

Host-directed therapy (HDT) with vitamin D in tuberculosis (TB) is beneficial only if the subject is deficient in vitamin D. We investigated pulmonary delivery of 1,25-dihydroxy vitamin D3 (calcitriol) in mice infected with Mycobacterium tuberculosis (Mtb). We made two kinds of dry powder inhalations (DPI)- soluble particles or poly(lactide) (PLA) particles. We compared treatment outcomes when infected mice were dosed with a DPI alone or as an adjunct to standard oral anti-TB therapy (ATT). Mice infected on Day 0 were treated between Days 28-56 and followed up on Days 57, 71, and 85. Neither DPI significantly reduced Mtb colony forming units (CFU) in the lungs. Combining DPI with ATT did not significantly augment bactericidal activity in the lungs, but CFU were 2-log lower in the spleen. CFU showed a rising trend on stopping treatment, sharper in groups that did not receive calcitriol. Lung morphology and histology improved markedly in animals that received PLA DPI; with or without concomitant ATT. Groups receiving soluble DPI had high mortality. DPI elicited cathelicidin, interleukin (IL)-1 and induced autophagy on days 57, 71, and 85. Macrophage-targeted calcitriol is therefore bacteriostatic, evokes innate microbicidal mechanisms, and mitigates pathology arising from the host response to Mtb.


Subject(s)
Antitubercular Agents , Calcitriol , Disease Models, Animal , Lung , Macrophages , Mycobacterium tuberculosis , Animals , Calcitriol/pharmacology , Mycobacterium tuberculosis/drug effects , Lung/microbiology , Lung/drug effects , Lung/pathology , Lung/immunology , Lung/metabolism , Macrophages/drug effects , Macrophages/microbiology , Macrophages/immunology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Female , Administration, Inhalation , Cathelicidins , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Tuberculosis, Pulmonary/immunology , Polyesters , Host-Pathogen Interactions , Time Factors , Mice, Inbred C57BL , Spleen/drug effects , Spleen/microbiology , Spleen/pathology , Spleen/immunology , Drug Therapy, Combination , Antimicrobial Cationic Peptides/pharmacology , Mice
12.
Mediators Inflamm ; 2024: 5821996, 2024.
Article in English | MEDLINE | ID: mdl-39045230

ABSTRACT

Background: Psoriasis is a noncontagious auto-inflammatory chronic skin disease. So far, some of the inflammatory genes were upregulated in mouse model of psoriasis. This study examined changes in skin mRNA expression of L-kynureninase (Kynu), cathelicidin antimicrobial peptide (Camp), beta-defensin 2 (Defb2), and proenkephalin (Penk) in a mouse model of imiquimod-induced psoriasis. Materials and Methods: Tree groups of C57BL/6 female mice were allocated. The imiquimod (IMQ) cream was administered to the mice dorsal skin of the two groups to induce psoriatic inflammation. In the treatment group, IMQ was administered 10 min after hydrogel-containing M7 anti-IL-17A aptamer treatment. Vaseline (Vas) was administered to the negative control group. The psoriatic skin lesions were evaluated based on the psoriasis area severity index (PASI) score, histopathology, and mRNA expression levels of Kynu, Camp, Defb2, and Penk using real-time PCR. In order to assess the systemic response, the spleen and lymph node indexes were also evaluated. Results: The PASI and epidermal thickness scores were 6.01 and 1.96, respectively, in the IMQ group, and they significantly decreased after aptamer administration to 1.15 and 0.90, respectively (P < 0.05). Spleen and lymph node indexes showed an increase in the IMQ group, followed by a slight decrease after aptamer treatment (P > 0.05). Additionally, the mRNA expression levels of Kynu, Defb2, Camp, and Penk genes in the IMQ-treated region showed a significant 2.70, 4.56, 3.29, and 2.61-fold increase relative to the Vas mice, respectively (P < 0.05). The aptamer-treated region exhibited a significant decrease in these gene expression levels (P < 0.05). A positive correlation was found between Kynu, Penk, and Camp expression levels and erythema, as well as Camp expression with PASI, scaling, and thickness (P < 0.05). Conclusion: According to our results, it seems that Kynu, Camp, and Penk can be considered appropriate markers for the evaluation of psoriasis in IMQ-induced psoriasis. Also, the anti-IL-17 aptamer downregulated these important genes in this mouse model.


Subject(s)
Cathelicidins , Disease Models, Animal , Enkephalins , Imiquimod , Mice, Inbred C57BL , Protein Precursors , Psoriasis , beta-Defensins , Psoriasis/chemically induced , Psoriasis/metabolism , Animals , Mice , Female , beta-Defensins/metabolism , beta-Defensins/genetics , Protein Precursors/metabolism , Protein Precursors/genetics , Enkephalins/metabolism , Enkephalins/genetics , Antimicrobial Cationic Peptides/metabolism , Skin/metabolism , Skin/pathology , Skin/drug effects , Biomarkers/metabolism
13.
Skin Res Technol ; 30(7): e13630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988131

ABSTRACT

OBJECTIVE: To investigate the role of NEAT1 targeted regulation of miR-125/ADAM9 mediated NF-κB pathway in inflammatory response in rosacea. METHOD: HaCaT cell rosacea phenotype was induced by LL37. The connection targeted by NEAT1 and miR-125a-5p was confirmed by Double-Luciferase report analysis. qPCR was employed to assess the levels of expression for NEAT1, miR-125a-5p, and ADAM9 genes. The levels of expression for ADAM9/TLR2/NF-κB P65 pathway proteins in each batch of cells were determined by Western blotting. The levels of expression for inflammatory factors, including TNF-α, IL-1ß, IL-6, and IL-18, were measured through ELISA experimentation. RESULTS: LL37 could successfully induce HaCaT cells to exhibit rosacea phenotype. The luciferase report experiment confirmed that NEAT1 could target and bind miR-125a-5p and inhibit its expression. ADAM9 exhibited increased expression in LL37-induced HaCaT cells, showing a positive association with NEAT1 expression and inverse relationship with miR-125a-5p activation. LL37 treatment promoted the expression of ADAM9/TLR2/NF-κB P65 pathway proteins. Silencing ADAM9 can inhibit the inflammatory signaling pathway and reduce the level of TNF-α, IL-1ß, IL-6, and IL-18 in HaCaT cells. CONCLUSION: NEAT1 can suppress the production of miR-125a-5p and activate the TLR2/NF-κB inflammatory pathway mediated by ADAM9, thereby promoting the inflammatory response in rosacea.


Subject(s)
ADAM Proteins , Membrane Proteins , MicroRNAs , NF-kappa B , RNA, Long Noncoding , Rosacea , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Rosacea/metabolism , Rosacea/genetics , ADAM Proteins/metabolism , ADAM Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , NF-kappa B/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Signal Transduction , HaCaT Cells , Cathelicidins , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics
14.
J Infect Dis ; 230(1): 172-182, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052704

ABSTRACT

Concerns regarding toxicity and resistance of current drugs in visceral leishmaniasis have been reported. Antimicrobial peptides are considered to be promising candidates and among them human cathelicidin hCAP18/LL-37 showed significant parasite killing on drug-sensitive and resistant Leishmania promastigotes, in addition to its apoptosis-inducing role. Administration of hCAP18/LL-37 to infected macrophages also decreased parasite survival and increased the host favorable cytokine interleukin 12. However, 1,25-dihydroxyvitamin D3 (vitamin D3)-induced endogenous hCAP18/LL-37 production was hampered in infected THP-1 cells. Infection also suppressed the vitamin D3 receptor (VDR), transcription factor of hCAP18/LL-37. cAMP response element modulator (CREM), the repressor of VDR, was induced in infection, resulting in suppression of both VDR and cathelicidin expression. PGE2/cAMP/PKA axis was found to regulate CREM induction during infection and silencing CREM in infected cells and BALB/c mice led to decreased parasite survival. This study documents the antileishmanial potential of cathelicidin and further identifies CREM as a repressor of cathelicidin in Leishmania infection.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , Cyclic AMP Response Element Modulator , Leishmania donovani , Leishmaniasis, Visceral , Macrophages , Mice, Inbred BALB C , Leishmania donovani/drug effects , Animals , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Humans , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/drug therapy , Mice , Macrophages/parasitology , Macrophages/metabolism , THP-1 Cells , Cyclic AMP Response Element Modulator/metabolism , Cyclic AMP Response Element Modulator/genetics , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Antiprotozoal Agents/pharmacology , Female
15.
Int J Pharm ; 661: 124341, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880252

ABSTRACT

Chronic wounds have become a growing concern as they can have a profound impact on individuals, potentially resulting in mortality. It is crucial to prevent and manage bacterial infections, particularly drug-resistant ones. Antimicrobial peptides, such as LL-37, can firmly eliminate pathogens. Additionally, the process of angiogenesis, facilitated by growth factors like VEGF, is essential for tissue repair and wound healing. To enhance the stability and bioavailability of therapeutic agents, targeted delivery strategies utilizing Chitosan-based carriers have been employed. Electrospun biopolymers in advanced wound dressings have revolutionized wound care by providing a more effective and efficient solution for promoting tissue regeneration and speeding up the healing process. The present investigation utilized Chitosan nanoparticles to encapsulate the recombinant LL37 peptide and VEGF. An in-depth investigation was carried out to analyze the biophysical and morphological traits of the LL37-CSNPs and VEGF-CSNPs. The first support layer consisted of PCL electrospun nanofiber, followed by the electrospinning of PVA/CsLL37, PVA/CsVEGF, and PVA/CsLL37/CsVEGF onto the PCL layer. An in vitro examination assessed the fabricated nanofibers' morphological, mechanical, and biological characteristics. The antimicrobial effects were tested on methicillin-resistant Staphylococcus aureus (MRSA). The in vivo experiments assessed the antibacterial and wound-healing capabilities of the nanofibers. The findings validated the continuous release of LL37 and VEGF. The composite material PCL/PVA/CsLL37/CsVEGF demonstrated potent bactericidal and antioxidant characteristics. The cytotoxic assay demonstrated the biocompatibility of the fabricated nano mats and their potential to accelerate fibroblast cell proliferation. The efficacy of PVA/CsLL37/CsVEGF in promoting wound healing was confirmed through an in vivo wound healing assay. Furthermore, the histological analysis provided evidence of faster epidermal formation and improved antibacterial activity in wounds covered with PVA/CsLL37/CsVEGF. Adding LL37 and VEGF to the composite material improves the immune response and promotes blood vessel formation, accelerating wound healing and decreasing inflammation.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Bandages , Cathelicidins , Chitosan , Nanofibers , Nanoparticles , Polyesters , Vascular Endothelial Growth Factor A , Wound Healing , Chitosan/chemistry , Nanofibers/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Wound Healing/drug effects , Animals , Nanoparticles/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Antimicrobial Cationic Peptides/pharmacology , Polyesters/chemistry , Polyvinyl Alcohol/chemistry , Mice , Humans , Cell Proliferation/drug effects , Rats , Male , Cell Line
16.
Sci Rep ; 14(1): 13497, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866982

ABSTRACT

Antimicrobial peptides (AMPs) have sparked significant interest as potential anti-cancer agents, thereby becoming a focal point in pursuing novel cancer-fighting strategies. These peptides possess distinctive properties, underscoring the importance of developing more potent and selectively targeted versions with diverse mechanisms of action against human cancer cells. Such advancements would offer notable advantages compared to existing cancer therapies. This research aimed to examine the toxicity and selectivity of the nrCap18 peptide in both cancer and normal cell lines. Furthermore, the rate of cellular death was assessed using apoptosis and acridine orange/ethidium bromide (AO/EB) double staining at three distinct incubation times. Additionally, the impact of this peptide on the cancer cell cycle and migration was evaluated, and ultimately, the expression of cyclin-dependent kinase 4/6 (CDK4/6) genes was investigated. The results obtained from the study demonstrated significant toxicity and selectivity in cancer cells compared to normal cells. Moreover, a strong progressive increase in cell death was observed over time. Furthermore, the peptide exhibited the ability to halt the progression of cancer cells in the G1 phase of the cell cycle and impede their migration by suppressing the expression of CDK4/6 genes.


Subject(s)
Apoptosis , Breast Neoplasms , Cathelicidins , Cyclin-Dependent Kinase 4 , Humans , Animals , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Apoptosis/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Female , Rabbits , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cyclin-Dependent Kinase 6/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Peptides/pharmacology , Peptides/chemistry , Gene Expression Regulation, Neoplastic/drug effects
17.
FASEB J ; 38(11): e23697, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38842874

ABSTRACT

Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , Diabetic Retinopathy , Extracellular Traps , Mice, Inbred C57BL , Neutrophils , Receptors, Formyl Peptide , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Extracellular Traps/metabolism , Animals , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Humans , Neutrophils/metabolism , Mice , Antimicrobial Cationic Peptides/metabolism , Male , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/genetics , Diabetes Mellitus, Experimental/metabolism , Signal Transduction , Reactive Oxygen Species/metabolism , Female , Middle Aged
18.
Arch Virol ; 169(7): 135, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839691

ABSTRACT

Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.


Subject(s)
Cathelicidins , Monocytes , Virus Replication , Vitamin D3 24-Hydroxylase , Zika Virus Infection , Zika Virus , Humans , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Cytokines/metabolism , Cytokines/genetics , Monocytes/virology , Monocytes/metabolism , Monocytes/immunology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Virus Replication/drug effects , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Zika Virus/physiology , Zika Virus Infection/virology , Zika Virus Infection/metabolism
19.
Sci Rep ; 14(1): 13928, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886476

ABSTRACT

Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.


Subject(s)
Cathelicidins , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Humans , Female , Male , Infant , Infant, Newborn , Respiratory Syncytial Virus, Human/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Nasal Mucosa/immunology
20.
Clin Immunol ; 265: 110287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909973

ABSTRACT

LL37 alone and in complex with self-DNA triggers inflammatory responses in myeloid cells and plays a crucial role in the development of systemic autoimmune diseases, like psoriasis and systemic lupus erythematosus. We demonstrated that LL37/self-DNA complexes induce long-term metabolic and epigenetic changes in monocytes, enhancing their responsiveness to subsequent stimuli. Monocytes trained with LL37/self-DNA complexes and those derived from psoriatic patients exhibited heightened glycolytic and oxidative phosphorylation rates, elevated release of proinflammatory cytokines, and affected naïve CD4+ T cells. Additionally, KDM6A/B, a demethylase of lysine 27 on histone 3, was upregulated in psoriatic monocytes and monocytes treated with LL37/self-DNA complexes. Inhibition of KDM6A/B reversed the trained immune phenotype by reducing proinflammatory cytokine production, metabolic activity, and the induction of IL-17-producing T cells by LL37/self-DNA-treated monocytes. Our findings highlight the role of LL37/self-DNA-induced innate immune memory in psoriasis pathogenesis, uncovering its impact on monocyte and T cell dynamics.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , DNA , Monocytes , Psoriasis , Humans , Monocytes/immunology , Monocytes/metabolism , Psoriasis/immunology , DNA/immunology , DNA/metabolism , Antimicrobial Cationic Peptides/metabolism , Histone Demethylases/metabolism , Histone Demethylases/genetics , CD4-Positive T-Lymphocytes/immunology , Cellular Reprogramming/immunology , Cytokines/metabolism , Cytokines/immunology , Immunity, Innate , Male , Epigenesis, Genetic , Female , Immunologic Memory , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Interleukin-17/metabolism , Interleukin-17/immunology , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL