Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.273
Filter
2.
Sci Adv ; 10(23): eadm9441, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838143

ABSTRACT

Unlike aquaporins or potassium channels, ammonium transporters (Amts) uniquely discriminate ammonium from potassium and water. This feature has certainly contributed to their repurposing as ammonium receptors during evolution. Here, we describe the ammonium receptor Sd-Amt1, where an Amt module connects to a cytoplasmic diguanylate cyclase transducer module via an HAMP domain. Structures of the protein with and without bound ammonium were determined to 1.7- and 1.9-Ångstrom resolution, depicting the ON and OFF states of the receptor and confirming the presence of a binding site for two ammonium cations that is pivotal for signal perception and receptor activation. The transducer domain was disordered in the crystals, and an AlphaFold2 prediction suggests that the helices linking both domains are flexible. While the sensor domain retains the trimeric fold formed by all Amt family members, the HAMP domains interact as pairs and serve to dimerize the transducer domain upon activation.


Subject(s)
Ammonium Compounds , Cation Transport Proteins , Ammonium Compounds/metabolism , Ammonium Compounds/chemistry , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Signal Transduction , Models, Molecular , Binding Sites , Crystallography, X-Ray , Protein Domains , Protein Binding , Amino Acid Sequence
3.
Nat Commun ; 15(1): 4775, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839750

ABSTRACT

The metal ion transporter SLC39A8 is associated with physiological traits and diseases, including blood manganese (Mn) levels and inflammatory bowel diseases (IBD). The mechanisms by which SLC39A8 controls Mn homeostasis and epithelial integrity remain elusive. Here, we generate Slc39a8 intestinal epithelial cell-specific-knockout (Slc39a8-IEC KO) mice, which display markedly decreased Mn levels in blood and most organs. Radiotracer studies reveal impaired intestinal absorption of dietary Mn in Slc39a8-IEC KO mice. SLC39A8 is localized to the apical membrane and mediates 54Mn uptake in intestinal organoid monolayer cultures. Unbiased transcriptomic analysis identifies alkaline ceramidase 1 (ACER1), a key enzyme in sphingolipid metabolism, as a potential therapeutic target for SLC39A8-associated IBDs. Importantly, treatment with an ACER1 inhibitor attenuates colitis in Slc39a8-IEC KO mice by remedying barrier dysfunction. Our results highlight the essential roles of SLC39A8 in intestinal Mn absorption and epithelial integrity and offer a therapeutic target for IBD associated with impaired Mn homeostasis.


Subject(s)
Alkaline Ceramidase , Cation Transport Proteins , Inflammatory Bowel Diseases , Intestinal Mucosa , Manganese , Mice, Knockout , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Manganese/metabolism , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Alkaline Ceramidase/metabolism , Alkaline Ceramidase/genetics , Humans , Mice, Inbred C57BL , Homeostasis , Male , Colitis/metabolism , Colitis/genetics , Colitis/pathology , Intestinal Absorption , Epithelial Cells/metabolism
4.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Lipase , Mice, Inbred C57BL , Animals , Mice , Male , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipase/metabolism , Lipase/genetics , Obesity/metabolism , Lipolysis , Uncoupling Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Adipocytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lipogenesis , Acyltransferases
5.
Neuromolecular Med ; 26(1): 21, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750318

ABSTRACT

Numerous studies have explored the various functions of Slc40a1 in cancer development. However, the role of Slc40a1 in primary glioblastoma requires further investigation. Initially, we observed that GBM patients with high Slc40a1 expression had a more favorable prognosis than those with low Slc40a1 expression, as evidenced by an analysis of the TIMER database. Subsequent analysis using the cancer genome atlas (TCGA) database enabled us to identify potential underlying mechanisms involved. Further analyses, including GO, KEGG, GSEA, immune infiltration, and correlation analyses, revealed that Slc40a1 primarily affected cytokine interactions, particularly with Ccl14 and Il18, resulting in changes in the immune microenvironment and ultimately leading to a better prognosis in GBM patients. We validated our findings by examining a tissue microarray with 180 samples and confirmed that GBM patients with high SLC40A1 protein expression exhibited more favorable prognostic outcomes than those with low SLC40A1 protein expression. Immunofluorescence analysis also revealed a significant correlation between SLC40A1 protein expression and the protein expression of IL18 and CCL14. These findings suggest that Slc40a1 may play a role in GBM pathogenesis by modulating the tumor immune microenvironment through the regulation of Il18 and Ccl14. Hence, targeting Slc40a1 might offer potential benefits for immunotherapeutic interventions and prognostic assessments in GBM patients.


Subject(s)
Brain Neoplasms , Gene Expression Regulation, Neoplastic , Glioblastoma , Tumor Microenvironment , Glioblastoma/immunology , Glioblastoma/genetics , Humans , Tumor Microenvironment/immunology , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Prognosis , Female , Male , Interleukin-18/genetics , Cytokines , Cation Transport Proteins/genetics , Middle Aged , Aged
6.
BMC Pediatr ; 24(1): 338, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755601

ABSTRACT

BACKGROUND: Transient symptomatic zinc deficiency (TSZD), an acquired type of zinc deficiency, is a rare, but probably underrecognized disease, extremely in breastfed premature with low birthweight infants. Its clinical manefestations are similar to Acrodermatitis enteropathica (AE), which is a genetic zinc absorption disorder caused by SLC39A4 gene mutations. This gene encodes a member of the zinc/iron-regulated transporter-like protein (ZIP) family. The encoded protein localizes to cell membranes and is required for zinc uptake in the intestine. TSZD is often misdiagnosed as AE because of their extremely similar manefestations, characterized by a typical rash. Therefore, the differention between them is still a clinical challenging. CASE PRESENTATION: Here, we present a case of TSZD in a 4 month and 23 days female Chinese Yi-ethnic premature with AE-like skin lesions, mainly presenting periorificial, perianal and perineal crusted, eroded, erythemato-squamous eruption. Laboratory examination showed the patient's blood zinc level was significantly decreased. Further sequencing of the SLC39A4 gene showed no mutation in the infant and her parents. Skin lesions significantly improved after 6 days of initial zinc supplementation (3 mg/kg/d), and maintenance treatment with 1 mg/kg/day of zinc was discontinued after 8 months without recurrence. CONCLUSIONS: The clinical manifestations of TSZD and AE are extremely similar, leading to a high rate of clinical misdiagnosis. While genetic analysis of the SLC39A4 gene is a reliable method for differentiating TSZD from AE. It is recommended that SLC39A4 gene test should be performed as far as possible in children with AE-like rash.


Subject(s)
Acrodermatitis , Zinc , Humans , Zinc/deficiency , Zinc/blood , Acrodermatitis/diagnosis , Acrodermatitis/genetics , Acrodermatitis/etiology , Female , Infant , Diagnosis, Differential , China , Cation Transport Proteins/genetics , Infant, Premature , Infant, Newborn , Infant, Premature, Diseases/diagnosis , Infant, Premature, Diseases/genetics , Infant, Premature, Diseases/blood , East Asian People
7.
Biomolecules ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786002

ABSTRACT

The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy-Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy-Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy-Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai.


Subject(s)
Diarrhea , Animals , Swine/genetics , China , Diarrhea/genetics , Diarrhea/veterinary , Fucosyltransferases/genetics , Cation Transport Proteins/genetics , Breeding , Galactoside 2-alpha-L-fucosyltransferase , Mucin-4/genetics , Genotype
8.
Arq Neuropsiquiatr ; 82(5): 1-9, 2024 May.
Article in English | MEDLINE | ID: mdl-38811021

ABSTRACT

BACKGROUND: Wilson disease (WD) is an autosomal recessive disorder that leads to organ toxicity due to copper overload. Early diagnosis is complicated by the rarity and diversity of manifestations. OBJECTIVE: To describe the diagnostic features and response to treatment in our cohort of WD patients. METHODS: This was a retrospective analysis of 262 WD patients stratified by clinical presentation, complementary exams, ATP7B genotyping, and response to treatment. RESULTS: Symptoms occurred at an average age of 17.4 (7-49) years, and patients were followed up for an average of 9.6 (0-45) years. Patients presented mainly with hepatic (36.3%), neurologic (34.7%), and neuropsychiatric (8.3%) forms. Other presentations were hematologic, renal, or musculoskeletal, and 16.8% of the patients were asymptomatic. Kayser-Fleischer rings occurred in 78.3% of the patients, hypoceruloplasminemia in 98.3%, and elevated cupruria/24h in 73.0%, with an increase after D-penicillamine in 54.0%. Mutations of the ATP7B gene were detected in 84.4% of alleles. Brain magnetic resonance imaging showed abnormalities in the basal ganglia in 77.7% of patients. D-penicillamine was the first choice in 93.6% of the 245 patients, and 21.1% of these patients were switched due to adverse effects. The second-line therapies were zinc and trientine. The therapeutic response did not differ significantly between the drugs (p = 0.2). Nine patients underwent liver transplantation and 82 died. CONCLUSION: Wilson disease is diagnosed at a late stage, and therapeutic options are limited. In people under 40 years of age with compatible manifestations, WD could be considered earlier in the differential diagnosis. There is a need to include ATP7B genotyping and therapeutic alternatives in clinical practice.


ANTECEDENTES: A doença de Wilson (DW) é um distúrbio autossômico recessivo caracterizado por acúmulo de cobre lesivo aos órgãos. O diagnóstico precoce é dificultado pela raridade e diversidade de apresentações. OBJETIVO: Descrever características ao diagnóstico e resposta ao tratamento em uma coorte de DW. MéTODOS: Análise retrospectiva de 262 casos de DW quanto à apresentação clínica, exames complementares, genotipagem e resposta ao tratamento. RESULTADOS: Os sintomas surgiram em uma média aos 17,4 (7­49) anos, e os pacientes foram acompanhados por uma média de 9,6 (0­45) anos. Os pacientes apresentaram principalmente formas hepáticas (36,3%), neurológicas (34,7%) e neuropsiquiátricas (8,3%). Outras apresentações foram hematológicas, renais e musculoesqueléticas. Apenas 16,8% eram assintomáticos. Anéis de Kayser-Fleischer ocorreram em 78,3% dos pacientes, hipoceruloplasminemia em 98,3%, e cuprúria elevada/24h em 73,0%, com aumento após D-penicilamina em 54,0%. Mutações do gene ATP7B foram detectadas em 84,4% dos alelos pesquisados. A ressonância magnética cerebral mostrou alterações em gânglios da base em 77,7% dos pacientes. O tratamento com D-penicilamina foi a escolha inicial em 93,6% dos 245 casos e foi trocado em 21,1% devido a efeitos adversos. Terapias de segunda linha foram zinco e trientina. A resposta terapêutica não diferiu significativamente entre os medicamentos (p = 0,2). Nove pacientes receberam transplante hepático e 82 faleceram. CONCLUSãO: O diagnóstico da DW ainda ocorre em estágios tardios, e as opções terapêuticas são limitadas. A DW deve ser considerada precocemente no diagnóstico diferencial de pessoas com menos de 40 anos com manifestações compatíveis. É necessário incorporar na prática clínica a genotipagem do ATP7B e alternativas terapêuticas à penicilamina.


Subject(s)
Copper-Transporting ATPases , Hepatolenticular Degeneration , Penicillamine , Humans , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/therapy , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/drug therapy , Retrospective Studies , Female , Male , Adolescent , Child , Adult , Copper-Transporting ATPases/genetics , Young Adult , Penicillamine/therapeutic use , Treatment Outcome , Middle Aged , Adenosine Triphosphatases/genetics , Mutation , Genotype , Magnetic Resonance Imaging , Chelating Agents/therapeutic use , Cation Transport Proteins/genetics , Copper
9.
Article in English | MEDLINE | ID: mdl-38768804

ABSTRACT

The Pacific oyster Crassostrea gigas is renowned for its high zinc content, but the significant variation among individuals diminishes its value as a reliable source of zinc supplementation. The Zrt/Irt-like protein 1 (ZIP1), a pivotal zinc transporter that facilitates zinc uptake in various organisms, plays crucial roles in regulating zinc content. In the present study, polymorphisms of a ZIP1 gene in C. gigas (CgZIP1-II) were investigated, and their association with zinc content was evaluated through preliminary association analysis in 41 oysters and verification analysis in another 200 oysters. A total of 17 single nucleotide polymorphisms (SNPs) were identified in the exonic region of CgZIP1-II gene, with c.503A>G significantly associated with zinc content. Protein sequence and structure prediction showed that c.503A>G caused a p.Met110Val nonsynonymous mutation located in the metal-binding region of CgZIP1-II, which could influence its affinity for zinc ions, thereby modulating its zinc transport functionality. These results indicate the potential influence of CgZIP1-II polymorphisms on zinc content and provide candidate markers for selecting C. gigas with high zinc content.


Subject(s)
Cation Transport Proteins , Crassostrea , Polymorphism, Single Nucleotide , Zinc , Animals , Zinc/metabolism , Crassostrea/genetics , Crassostrea/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry
10.
Int Immunopharmacol ; 134: 112219, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733823

ABSTRACT

BACKGROUNDS & AIMS: Given its ability to inhibit HBV replication, Interferon alpha (IFN-α) treatment has been confirmed to be effective in managing Chronic Hepatitis B (CHB). However, its underlying mechanisms are incompletely understood. METHODS: Herein, we investigated the antiviral properties of IFN-α by introducing IFN-α expression plasmids into a well-established HBV Hydrodynamic Injection (HDI) mouse model and examined the impact of IFN-α or hepcidin treatment on macrophages derived from THP-1 cells. The cytokine profiles were analyzed using the cytometry microsphere microarray technology, and flow cytometry was used to analyze the polarization of macrophages. Additionally, the IL-6/JAK2/STAT3 signaling pathway and the hepcidin-ferroportin axis were analyzed to better understand the macrophage polarization mechanism. RESULTS: As evidenced by the suppression of HBV replication, injection of an IFN-α expression plasmid and supernatants of IFN-α-treated macrophages exerted anti-HBV effects. The IFN-α treatment up-regulated IL-6 in mice with HBV replication, as well as in IFN-α-treated HepG2 cells and macrophages. Furthermore, JAK2/STAT3 signaling and hepcidin expression was promoted, inducing iron accumulation via the hepcidin-ferroportin axis, which caused the polarization of M1 macrophages. Furthermore, under the effect of IFN-α, IL-6 silencing or blockade downregulated the JAK2/STAT3 signaling pathway and hepcidin, implying that increased hepcidin expression under IFN-α treatment was dependent on the IL-6/JAK2/STAT3 pathway. CONCLUSION: The IL-6/JAK2/STAT3 signaling pathway is activated by IFN-α which induces hepcidin expression. The resulting iron accumulation then induces the polarization of M1 macrophages via the hepcidin-ferroportin axis, yielding an immune response which exerts antiviral effects against HBV replication.


Subject(s)
Antiviral Agents , Hepatitis B virus , Hepcidins , Interferon-alpha , Janus Kinase 2 , Macrophages , STAT3 Transcription Factor , Hepcidins/metabolism , Hepcidins/genetics , Animals , Humans , Interferon-alpha/pharmacology , Macrophages/immunology , Macrophages/drug effects , Hepatitis B virus/physiology , Hepatitis B virus/drug effects , Hepatitis B virus/immunology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Hep G2 Cells , Signal Transduction/drug effects , Interleukin-6/metabolism , THP-1 Cells , Mice, Inbred C57BL , Virus Replication/drug effects , Male , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Disease Models, Animal , Hepatitis B/immunology , Hepatitis B/drug therapy , Hepatitis B/virology , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
11.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714917

ABSTRACT

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Subject(s)
Arabidopsis , Manihot , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Stress , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Manihot/genetics , Manihot/metabolism , Manihot/physiology , Plants, Genetically Modified/genetics , Potassium/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Salt Tolerance/genetics , Sodium/metabolism
12.
Asia Pac J Clin Nutr ; 33(2): 184-193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38794978

ABSTRACT

BACKGROUND AND OBJECTIVES: This study aimed to assess the associations of maternal iron status and placental iron transport proteins expression with the risk of pre-eclampsia (PE) in Chinese pregnant women. METHODS AND STUDY DESIGN: A total of 94 subjects with PE and 112 healthy pregnant women were enrolled. Fasting blood samples were collected to detect maternal iron status. The placenta samples were collected at delivery to detect the mRNA and protein expression of divalent metal transporter 1 (DMT1) and ferroportin-1 (FPN1). Logistic analysis was used to explore the associations of maternal iron status with PE risk. The associations of placental iron transport proteins with maternal iron status were explored. RESULTS: After adjusting for covariates, dietary total iron, non-heme iron intake and serum hepcidin were negatively associated with PE, with adjusted ORs (95%CIs) were 0.40 (0.17, 0.91), 0.42 (0.18, 0.94) and 0.02 (0.002, 0.13) for the highest versus lowest tertile, respectively. For the highest tertile versus lowest tertile, serum iron (4.08 (1.58, 10.57)) and ferritin (5.61 (2.36, 13.31)) were positively associated with PE. The mRNA expressions and protein levels of DMT1 and FPN1 in placenta were up-regulated in the PE group (p < 0.05). The mRNA expressions of DMT1 and FPN1 in placenta showed a negative correlation with the serum hepcidin (r = -0.71, p < 0.001; r = -0.49, p < 0.05). CONCLUSIONS: In conclusion, the maternal iron status were closely associated with PE risk, placental DMT1 and FPN1 were upregulated in PE which may be a promising target for the prevention of PE.


Subject(s)
Cation Transport Proteins , Iron , Placenta , Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/epidemiology , Pre-Eclampsia/blood , Case-Control Studies , Adult , Iron/blood , Iron/metabolism , Placenta/metabolism , Cation Transport Proteins/genetics , Hepcidins/blood , Risk Factors , China/epidemiology , Nutritional Status
13.
Cardiovasc Diabetol ; 23(1): 186, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812011

ABSTRACT

BACKGROUND: Vascular calcification (VC) is an independent risk factor for cardiovascular diseases. Recently, ferroptosis has been recognised as a novel therapeutic target for cardiovascular diseases. Although an association between ferroptosis and vascular calcification has been reported, the role and mechanism of iron overload in vascular calcification are still poorly understood. Specifically, further in-depth research is required on whether metalloproteins SLC39a14 and SLC39a8 are involved in ferroptosis induced by iron overload. METHODS: R language was employed for the differential analysis of the dataset, revealing the correlation between ferroptosis and calcification. The experimental approaches encompassed both in vitro and in vivo studies, incorporating the use of iron chelators and models of iron overload. Additionally, gain- and loss-of-function experiments were conducted to investigate iron's effects on vascular calcification comprehensively. Electron microscopy, immunofluorescence, western blotting, and real-time polymerase chain reaction were used to elucidate how Slc39a14 and Slc39a8 mediate iron overload and promote calcification. RESULTS: Ferroptosis was observed in conjunction with vascular calcification (VC); the association was consistently confirmed by in vitro and in vivo studies. Our results showed a positive correlation between iron overload in VSMCs and calcification. Iron chelators are effective in reversing VC and iron overload exacerbates this process. The expression levels of the metal transport proteins Slc39a14 and Slc39a8 were significantly upregulated during calcification; the inhibition of their expression alleviated VC. Conversely, Slc39a14 overexpression exacerbates calcification and promotes intracellular iron accumulation in VSMCs. CONCLUSIONS: Our research demonstrates that iron overload occurs during VC, and that inhibition of Slc39a14 and Slc39a8 significantly relieves VC by intercepting iron overload-induced ferroptosis in VSMCs, providing new insights into the VC treatment.


Subject(s)
Cation Transport Proteins , Disease Models, Animal , Ferroptosis , Iron Chelating Agents , Mice, Inbred C57BL , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Calcification , Ferroptosis/drug effects , Vascular Calcification/metabolism , Vascular Calcification/pathology , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Signal Transduction , Male , Humans , Iron/metabolism , Iron Overload/metabolism , Iron Overload/pathology
14.
Mol Biol Rep ; 51(1): 652, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734792

ABSTRACT

OBJECTIVE: To compare the mRNA expression of placental iron transporters (TfR-1 and FPN), markers of placental vascularization (VEGF and sFLT1) and marker of structural integrity (LMN-A) in term women with and without iron deficiency anemia. MATERIALS AND METHODS: A total of 30 pregnant women were enrolled; 15 cases of iron deficiency anemia (Hb 7-10.9 gm/dL) and 15 gestational age matched healthy controls (Hb ≥ 11 gm/dL). Peripheral venous blood was collected for assessment of hemoglobin levels and serum iron profile. Placental tissue was used for assessing the mRNA expression of TfR-1, FPN, VEGF, sFLT-1 and LMN-A via real time PCR. RESULTS: Placental expression of TfR-1, VEGF and LMN-A was increased in pregnant women with anemia compared to healthy pregnant controls. Placental expression of sFLT-1 was decreased in pregnant women with anemia compared to healthy pregnant controls. There was no change in the placental expression of FPN. CONCLUSION: The increased expression of TfR-1, VEGF and LMN-A in cases of iron deficiency anemia are most likely to be compensatory in nature to help maintain adequate fetal iron delivery. WHAT DOES THIS STUDY ADDS TO THE CLINICAL WORK: Compensatory changes in the placenta aimed at buffering transport of iron to the fetus are seen in pregnant women with anemia compared to healthy pregnant controls.


Subject(s)
Anemia, Iron-Deficiency , Biomarkers , Cation Transport Proteins , Iron , Placenta , Receptors, Transferrin , Vascular Endothelial Growth Factor A , Humans , Female , Pregnancy , Placenta/metabolism , Adult , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Anemia, Iron-Deficiency/genetics , Anemia, Iron-Deficiency/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Iron/metabolism , Biomarkers/metabolism , Biomarkers/blood , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Case-Control Studies , Antigens, CD/metabolism , Antigens, CD/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression/genetics
15.
Aging (Albany NY) ; 16(9): 8361-8377, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38713173

ABSTRACT

BACKGROUND: Globally, Acute Myocardial Infarction (AMI) is a common cause of heart failure (HF), which has been a leading cause of mortality resulting from non-communicable diseases. On the other hand, increasing evidence suggests that the role of energy production within the mitochondria strongly links to the development and progression of heart diseases, while Cuproptosis, a newly identified cell death mechanism, has not yet been comprehensively analyzed from the aspect of cardiovascular medicine. MATERIALS AND METHODS: 8 transcriptome profiles curated from the GEO database were integrated, from which a diagnostic model based on the Stacking algorithm was established. The efficacy of the model was evaluated in a multifaced manner (i.e., by Precision-Recall curve, Receiver Operative Characteristic curve, etc.). We also sequenced our animal models at the bulk RNA level and conducted qPCR and immunohistochemical staining, with which we further validated the expression of the key contributor gene to the model. Finally, we explored the immune implications of the key contributor gene. RESULTS: A merged machine learning model containing 4 Cuproptosis-related genes (i.e., PDHB, CDKN2A, GLS, and SLC31A1) for robust AMI diagnosis was developed, in which SLC31A1 served as the key contributor. Through in vivo modeling, we validated the aberrant overexpression of SLC31A1 in AMI. Besides, further transcriptome analysis revealed that its high expression was correlated with significant potential immunological implications in the infiltration of many immune cell types, especially monocyte. CONCLUSIONS: We constructed an AMI diagnostic model based on Cuproptosis-related genes and validated the key contributor gene in animal modeling. We also analyzed the effects on the immune system for its overexpression in AMI.


Subject(s)
Biomarkers , Computational Biology , Myocardial Infarction , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism , Animals , Biomarkers/metabolism , Humans , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Transcriptome , Disease Models, Animal , Machine Learning , Mice , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Male , Gene Expression Profiling
16.
Toxicol Appl Pharmacol ; 487: 116975, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762191

ABSTRACT

Kidney renal clear cell carcinoma (KIRC) is a highly immune-infiltrated kidney cancer with the highest mortality rate and the greatest potential for invasion and metastasis. Solute carrier family 11 member1 (SLC11A1) is a phagosomal membrane protein located in monocytes and plays a role in innate immunity, autoimmune diseases, and infection, but its expression and biological role in KIRC is still unknown. In this study, we sought to investigate the potential value of SLC11A1 according to tumor growth and immune response in KIRC. TIMER and UALCAN database was used to analyze the expression feature and prognostic significance of SLC11A1 and its correlation with immune-related biomarkers in KIRC. Proliferation, migration, and invasion were measured using colony formation, EdU, and transwell assays. Role of SLC11A1 on KIRC tumor growth was examined by the xenograft tumor model in vivo. Effects of KIRC cells on macrophage polarization and the proliferation and apoptosis of CD8+ T cells were analyzed using flow cytometry assays. Herein, SLC11A1 was highly expressed in KIRC tissues and cell lines. SLC11A1 downregulation repressed KIRC cell proliferation, migration, invasion, macrophage, and lymphocyte immunity in vitro, as well as hindered tumor growth in vivo. SLC11A1 is significantly correlated with immune cell infiltration and immune-related biomarkers. In KIRC patients, SLC11A1 is highly expressed and positively correlated with the immune-related factors CCL2 and PD-L1. SLC11A1 induced CCL2 and PD-L1 expression, thereby activating the JAK/STAT3 pathway. SLC11A1 deficiency constrained KIRC cell malignant phenotypes and immune response via regulating CCL2 and PD-L1-mediated JAK/STAT3 pathway, providing a promising therapeutic target for KIRC treatment.


Subject(s)
Carcinoma, Renal Cell , Cation Transport Proteins , Cell Proliferation , Kidney Neoplasms , Tumor Microenvironment , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/immunology , Kidney Neoplasms/genetics , Animals , Cell Line, Tumor , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Mice , Cell Movement , Disease Progression , Mice, Nude , CD8-Positive T-Lymphocytes/immunology , Apoptosis , Female , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Male , Signal Transduction , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C
17.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640016

ABSTRACT

Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.


Subject(s)
Homeostasis , Iron , Humans , Iron/metabolism , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/genetics , Protein Binding , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Ferroptosis , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Iron Regulatory Protein 1
18.
J Hazard Mater ; 471: 134308, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38631255

ABSTRACT

Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.


Subject(s)
Arabidopsis , Camellia sinensis , Homeostasis , Plant Proteins , Plant Roots , Plants, Genetically Modified , Zinc , Zinc/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Camellia sinensis/metabolism , Camellia sinensis/genetics , Gene Expression Regulation, Plant , Biodegradation, Environmental , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
19.
BMC Plant Biol ; 24(1): 311, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649805

ABSTRACT

BACKGROUND: Brassica napus, a hybrid resulting from the crossing of Brassica rapa and Brassica oleracea, is one of the most important oil crops. Despite its significance, B. napus productivity faces substantial challenges due to heavy metal stress, especially in response to cadmium (Cd), which poses a significant threat among heavy metals. Natural resistance-associated macrophage proteins (NRAMPs) play pivotal roles in Cd uptake and transport within plants. However, our understanding of the role of BnNRAMPs in B. napus is limited. Thus, this study aimed to conduct genome-wide identification and bioinformatics analysis of three Brassica species: B. napus, B. rapa, and B. oleracea. RESULTS: A total of 37 NRAMPs were identified across the three Brassica species and classified into two distinct subfamilies based on evolutionary relationships. Conservative motif analysis revealed that motif 6 and motif 8 might significantly contribute to the differentiation between subfamily I and subfamily II within Brassica species. Evolutionary analyses and chromosome mapping revealed a reduction in the NRAMP gene family during B. napus evolutionary history, resulting in the loss of an orthologous gene derived from BoNRAMP3.2. Cis-acting element analysis suggested potential regulation of the NRAMP gene family by specific plant hormones, such as abscisic acid (ABA) and methyl jasmonate (MeJA). However, gene expression pattern analyses under hormonal or stress treatments indicated limited responsiveness of the NRAMP gene family to these treatments, warranting further experimental validation. Under Cd stress in B. napus, expression pattern analysis of the NRAMP gene family revealed a decrease in the expression levels of most BnNRAMP genes with increasing Cd concentrations. Notably, BnNRAMP5.1/5.2 exhibited a unique response pattern, being stimulated at low Cd concentrations and inhibited at high Cd concentrations, suggesting potential response mechanisms distinct from those of other NRAMP genes. CONCLUSIONS: In summary, this study indicates complex molecular dynamics within the NRAMP gene family under Cd stress, suggesting potential applications in enhancing plant resilience, particularly against Cd. The findings also offer valuable insights for further understanding the functionality and regulatory mechanisms of the NRAMP gene family.


Subject(s)
Brassica , Plant Proteins , Stress, Physiological , Brassica/genetics , Genome-Wide Association Study , Genome, Plant , Plant Proteins/genetics , Genes, Plant , Cadmium/metabolism , Cadmium/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Evolution, Molecular , Gene Expression Regulation, Plant , Cation Transport Proteins/genetics , Stress, Physiological/genetics , Plant Physiological Phenomena
20.
JCI Insight ; 9(10)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652538

ABSTRACT

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Hypoxia-Inducible Factor 1, alpha Subunit , Liver , Manganese , Polycythemia , Animals , Polycythemia/metabolism , Polycythemia/genetics , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Liver/metabolism , Manganese/metabolism , Manganese/toxicity , Manganese/deficiency , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Humans , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Erythropoietin/metabolism , Erythropoietin/genetics , Mice, Knockout , Male , Hepatocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...