Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 112(1): 173-82, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19840218

ABSTRACT

In this study, we investigated whether disruption of Na(+) and Ca(2+) homeostasis via activation of Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) and reversal of Na(+)/Ca(2+) exchange (NCX(rev)) affects protein aggregation and degradation following oxygen-glucose deprivation (OGD). Cultured cortical neurons were subjected to 2 h OGD and 1-24 h reoxygenation (REOX). Redistribution of ubiquitin and formation of ubiquitin-conjugated protein aggregates occurred in neurons as early as 2 h REOX. The protein aggregation progressed further by 8 h REOX. There was no significant recovery at 24 h REOX. Moreover, the proteasome activity in neurons was inhibited by 80-90% during 2-8 h REOX and recovered partially at 24 h REOX. Interestingly, pharmacological inhibition or genetic ablation of NKCC1 activity significantly decreased accumulation of ubiquitin-conjugated protein aggregates and improved proteasome activity. A similar protective effect was obtained by blocking NCX(rev) activity. Inhibition of NKCC1 activity also preserved intracellular ATP and Na(+) homeostasis during 0-24 h REOX. In a positive control study, disruption of endoplasmic reticulum Ca(2+) with thapsigargin triggered redistribution of free ubiquitin and protein aggregation. We conclude that overstimulation of NKCC1 and NCX(rev) following OGD/REOX partially contributes to protein aggregation and proteasome dysfunction as a result of ionic dysregulation.


Subject(s)
Calcium/physiology , Membrane Transport Proteins/metabolism , Neurons/metabolism , Sodium/physiology , Animals , Cations, Divalent/antagonists & inhibitors , Cations, Divalent/metabolism , Cations, Monovalent/antagonists & inhibitors , Cations, Monovalent/metabolism , Cell Hypoxia/physiology , Cells, Cultured , Female , Glucose/deficiency , Homeostasis/genetics , Homeostasis/physiology , Hypoxia/metabolism , Membrane Transport Proteins/physiology , Mice , Neurons/physiology , Pregnancy , Proteasome Endopeptidase Complex/physiology , Proteasome Inhibitors , Protein Folding , Protein Multimerization , Sodium-Potassium-Chloride Symporters/deficiency , Sodium-Potassium-Chloride Symporters/genetics , Sodium-Potassium-Chloride Symporters/metabolism , Solute Carrier Family 12, Member 2
2.
Biochemistry ; 43(18): 5539-50, 2004 May 11.
Article in English | MEDLINE | ID: mdl-15122920

ABSTRACT

Parkinson's disease (PD) involves loss of dopaminergic neurons in the substantia nigra and is characterized by intracellular inclusions, Lewy bodies, consisting primarily of aggregated alpha-synuclein. Two substitution mutations (A53T and A30P) in alpha-synuclein gene have been identified in familial early-onset PD. To understand the biological changes that incur upon alpha-synuclein-induced cytotoxicity in the presence of dopamine, the current studies were undertaken. Human SH-SY5Y neuroblastoma cells coexpressing the human dopamine transporter [hDAT], and either wild type (wt) or mutant alpha-synucleins, were treated with 50 microM dopamine (DA). In cells expressing wt or A30P alpha-synuclein, DA accelerated production of reactive oxygen species and cell death as compared to cells expressing A53T or hDAT alone. The increased sensitivity of such cells to DA was investigated by measuring changes in cellular ionic gradient, by atomic absorption spectrometry, and cell metabolism, by high-resolution nuclear magnetic resonance spectroscopy. Both wt and A30P alpha-synuclein caused rapid decrease in levels of intracellular potassium, followed by mitochondrial damage and cytochrome c leakage, with decreased cellular metabolism as compared to cells expressing A53T or hDAT alone. Collapse of ionic gradient was significantly faster in A30P (t(1/2) = 3.5 h) than in wt (t(1/2) = 6.5 h) cells, and these changes in ionic gradient preceded cytochrome c leakage and depletion of metabolic energy. Neither wt nor mutant alpha-synuclein resulted in significant changes in ionic gradient or cellular metabolism in the absence of intracellular DA. These findings suggest a specific sequence of events triggered by dopamine and differentially exacerbated by alpha-synuclein and the A30P mutant.


Subject(s)
Amino Acid Substitution/genetics , Dopamine/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/toxicity , Neuroblastoma/metabolism , Neuroblastoma/pathology , Animals , Carbon Isotopes/metabolism , Cations, Monovalent/antagonists & inhibitors , Cations, Monovalent/metabolism , Cell Death/drug effects , Cell Death/genetics , Cell Line , Cell Line, Tumor , Humans , Intracellular Fluid/drug effects , Intracellular Fluid/metabolism , Membrane Potentials/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neuroblastoma/genetics , Potassium/antagonists & inhibitors , Potassium/metabolism , Pyruvic Acid/metabolism , Rats , Synucleins , Transfection , alpha-Synuclein
3.
Br J Pharmacol ; 134(3): 453-62, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11588099

ABSTRACT

1. The recent identification of the epithelial Ca(2+) channel, ECaC1, represents a major step forward in our knowledge of renal Ca(2+) handling. ECaC1 constitutes the rate-limiting apical Ca(2+) entry mechanism of active, transcellular Ca(2+) reabsorption. This unique highly selective Ca(2+) channel shares a low but significant homology with transient receptor potential (TRP) channels and vanilloid receptors (VR). 2. We have studied the pharmacological modulation of currents through ECaC1 heterologously expressed in HEK 293 cells. Monovalent cation currents were measured by use of the whole cell patch clamp technique in cells dialysed with 10 mM BAPTA or 10 mM EGTA to prevent the fast Ca(2+) dependent inactivation of ECaC1. 3. Several modulators were tested, including inorganic cations, putative store-operated Ca(2+) entry (SOC) blockers, the vanilloid receptor (VR-1) blocker capsazepine, protein tyrosine kinase blockers, calmodulin antagonists and ruthenium red. 4. Ruthenium red and econazole appeared to be the most effective inhibitors of currents through ECaC1, with IC(50) values of 111 nM and 1.3 microM, respectively, whereas the selective SOC inhibitor, SKF96365, was nearly ineffective. 5. The divalent cation current block profile for ECaC1 is Pb(2+)=Cu(2+) >Zn(2+) >Co(2+) >Fe(2+) with IC(50) values between 1 and approximately 10 microM. 6. In conclusion, ECaC activity is effectively inhibited by various compounds including ruthenium red, antimycotic drugs and divalent cations, which might be useful tools for pharmacological manipulation and several disorders related to Ca(2+) homeostasis could benefit from such developments.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Antifungal Agents/pharmacology , Cations, Monovalent/antagonists & inhibitors , Cations, Monovalent/metabolism , Cell Line/drug effects , Cell Line/physiology , Coloring Agents/pharmacology , Econazole/pharmacology , Epithelium/drug effects , Epithelium/metabolism , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Ruthenium Red/pharmacology , TRPV Cation Channels
4.
J Physiol ; 530(Pt 2): 183-91, 2001 Jan 15.
Article in English | MEDLINE | ID: mdl-11208967

ABSTRACT

We have used the whole-cell patch-clamp technique to analyse the permeation properties and ionic block of the epithelial Ca2+ channel ECaC heterologously expressed in human embryonic kidney (HEK) 293 cells. Cells dialysed with 10 mM BAPTA and exposed to Ca2+-containing, monovalent cation-free solutions displayed large inwardly rectifying currents. Their reversal potential depended on the extracellular Ca2+ concentration, [Ca2+]o. The slope of the relationship between reversal potential and [Ca2+]o on a logarithmic scale was 21 +/- 4 mV, compared with 29 mV as predicted by the Nernst equation (n = 3-5 cells). Currents in mixtures of Ca2+ and Na+ or Ca2+ and Ba2+ showed anomalous mole fraction behaviour. We have described the current-concentration plot for Ca2+ and Na+ by a kinetic permeation model, i.e. the "step" model. Extracellular Mg2+ blocked both divalent and monovalent currents with an IC50 of 62 +/- 9 microM(n = 4) in Ca2+-free conditions and 328 +/- 50 microM (n = 4-9) in 100 microM Ca2+ solutions. Mono- and divalent currents through ECaCs were blocked by gadolinium, lanthanum and cadmium, with a blocking order of Cd2+ >> Gd3+ > La3+. We conclude that the permeation of monovalent and divalent cations through ECaCs shows similarities with L-type voltage-gated Ca2+ channels, the main differences being a higher Ca2+ affinity and a significantly higher current density in micromolar Ca2+ concentrations in the case of ECaCs.


Subject(s)
Calcium Channels/metabolism , Kidney/embryology , Animals , Calcium Channels/drug effects , Calcium Channels/physiology , Cations/pharmacology , Cations, Divalent/antagonists & inhibitors , Cations, Divalent/metabolism , Cations, Monovalent/antagonists & inhibitors , Cations, Monovalent/metabolism , Cell Line , Electric Conductivity , Embryo, Mammalian/metabolism , Epithelial Cells/metabolism , Humans , Ions , Kidney/cytology , Rabbits , Sodium/pharmacology
5.
J Physiol ; 484 ( Pt 3): 593-604, 1995 May 01.
Article in English | MEDLINE | ID: mdl-7542710

ABSTRACT

1. Native Xenopus oocytes were voltage clamped and exposed to Ringer solutions containing low concentrations of divalent cations. Oocytes, held at -60 mV, developed a reversible non-inactivating smooth inward current (Ic) associated with an increase in membrane conductance. 2. Ic was selectively carried by cations (Na+, K+), indicating that the current was not the result of a non-specific membrane breakdown, but was due instead to removal of a blocking effect of divalent cations on a specific population of endogenous ionic channels located in the oocyte membrane. 3. The blocking effects of Ca2+ and Mg2+ were voltage dependent, implying action at a binding site within the pore of the cationic channel. For example, the half-maximal inhibition (IC50) of Ic by Ca2+ was 61 microM in oocytes held at -60 mV and 212 microM in oocytes held at 0 mV. 4. The Ic channels could be unblocked by depolarization of the membrane even in the presence of physiological concentrations of Ca2+ or Mg2+. The unblocking of the channels was observed as a slowly developing outward current. 5. The novel cationic current was substantially reduced following in vitro maturation of oocytes by treatment with progesterone (10 microM, 4-5 h). 6. The physiological role of Ic channels remains to be elucidated. Nonetheless, their characteristics explain the ionic basis of the sensitivity of oocytes to reductions in extracellular divalent cations and raise the possibility that the channels play a role in calcium homeostasis.


Subject(s)
Cations, Divalent/metabolism , Cations, Monovalent/antagonists & inhibitors , Cations, Monovalent/metabolism , Extracellular Space/metabolism , Ion Channels/metabolism , Oocytes/physiology , Animals , Calcium/metabolism , Calcium/pharmacology , Cell Membrane/physiology , Electric Conductivity , Electrophysiology , Female , Ion Channels/antagonists & inhibitors , Ion Channels/drug effects , Isotonic Solutions/pharmacology , Magnesium/metabolism , Ringer's Solution , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...