Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.231
Filter
1.
Vet Parasitol Reg Stud Reports ; 51: 101021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772638

ABSTRACT

Cystic echinococcosis (CE) causes significant losses in Andean livestock production and affects Andean food security. However, more studies are needed to understand the epidemiology of the disease. In addition, the potential contribution of Andean cattle to the transmission of Echinococcus granulosus sensu lato needs to be known. This study aimed to determine the CE-prevalence and its association with risk factors, such as age and sex of the animals, the parasite load (number of cysts/organ) of condemned organs, and the viability and fertility of Echinococcus cysts from cattle in the Andes. The prevalence was examined in 348 cattle from an authorized slaughterhouse of Huancayo at 3300 m altitude. Cyst burden was determined by extracting all cysts from the total of the CE-infected organs. Cyst fertility and protoscolices viability were analysed from 90 randomly selected CE-infected organs. The CE prevalence was 35.6% (124/348; 95% CI: 30.6%-40.6%). There was no significant effect of age and sex on CE prevalence. CE was significantly more prevalent (p < 0.05) in lungs than livers, 34.8% (121/348; 95% CI: 29.8%-39.8%) vs 8.9% (31/348; 95% CI: 5.9%-11.9%). Most (75%) infected organs had one to five cysts. The mean cyst burden was significantly (p = 0.018) higher in the lungs than livers, 6.4 ± 4.9 vs 3.7 ± 2.9. Cyst fertility was 1.6% (10/608; 95% CI: 0.6%-2.6%). Despite the high CE prevalence, infected organs from Andean cattle play a minor role in CE transmission to dogs in the central Peruvian Andes.


Subject(s)
Cattle Diseases , Echinococcosis , Echinococcus granulosus , Animals , Cattle , Peru/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/transmission , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/transmission , Male , Prevalence , Female , Echinococcus granulosus/isolation & purification , Risk Factors , Endemic Diseases/veterinary , Liver/parasitology , Lung/parasitology
2.
Vet Parasitol Reg Stud Reports ; 51: 101028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772650

ABSTRACT

In Australian pastoral dairy systems, a variety of 'routine' anthelmintic programs are used in lactating cows varying from nil anthelmintic use to bi-annual application. Anthelmintic resistance has been repeatedly diagnosed on dairy farms and studies have indicated variable milk production benefits from anthelmintics internationally. We aimed to identify the predominant gastrointestinal parasites in recently calved dairy cows in south-west Victoria and examined the relationship between individual faecal egg counts (FEC) and other cow and management factors such as body condition score, age, and historical anthelmintic use. This study included 18 pasture-based dairy farms in south-west Victoria. FECs were measured in recently calved primiparous and multiparous cows. Individual FEC tests with a minimum detectable FEC of 2.5 eggs per gram of faeces (epg) and group larval cultures were completed. Farm management data and cow information was recorded for data analysis with the Jamovi statistical package. Overall, 35% of all cows had FEC ≥ 2.5 epg (26% of multiparous and 45% of primiparous). Ostertagi ostertagi was the predominant gastrointestinal nematode in all cohorts. Cooperia pectinata or C. punctata were also present in mixed infestations alongside C. oncophora. Multiparous cows in low body condition score post calving (<4) were more likely to have a FEC of >5 epg. Faecal egg counts at a minimum detectable FEC of 2.5 epg are effective indicators of parasitism in recently calved primiparous and poorly conditioned multiparous dairy cows. Increasing the test sensitivity (minimum detectable count) of FECs from 10 epg to 2.5 epg resulted in increasing the overall positive FEC rate from 15% to 35%. Further investigation of sensitive FECs and their relevance to production along with the timing and value of anthelmintic use in dairy cattle is warranted.


Subject(s)
Anthelmintics , Cattle Diseases , Dairying , Feces , Parasite Egg Count , Animals , Cattle , Feces/parasitology , Female , Parasite Egg Count/veterinary , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Cattle Diseases/drug therapy , Victoria/epidemiology , Anthelmintics/therapeutic use , Anthelmintics/pharmacology , Australia
3.
Trop Anim Health Prod ; 56(5): 174, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787525

ABSTRACT

Studying cytokine profiling in Theleria annulata infection enhances our understanding of how the immune response unfolds, the intricate interactions between the host and the parasite, the strategies employed by the parasite to evade the immune system, and potential avenues for developing treatments. The generation of pro-inflammatory cytokines plays a pivotal role in the immune response against T. annulata infection. Elevated concentrations of these cytokines potentially contribute to the manifestation of clinical symptoms associated with the disease, such as fever, anemia, exophthalmia, and weight loss. The production of anti-inflammatory cytokines potentially serves as a regulatory mechanism for the immune response, preventing the development of severe disease. Nevertheless, in animals afflicted by T. annulata infection, there is often a notable decrease in the levels of these cytokines, suggesting that they may not be as effective in mitigating the disease as they are in uninfected animals. This knowledge can be harnessed to develop improved diagnostic methods, treatments, and vaccines for tropical theileriosis. The objective of this current mini review is to achieve the same goal by consolidating the available knowledge of cytokine interactions in Bovine Tropical Theileriosis (BTT).


Subject(s)
Cytokines , Theileriasis , Animals , Cattle , Cytokines/metabolism , Theileriasis/immunology , Theileria annulata , Cattle Diseases/immunology , Cattle Diseases/parasitology , Host-Parasite Interactions
4.
BMC Vet Res ; 20(1): 197, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741097

ABSTRACT

The occurrence of trematodes among ruminants and their snail vectors is a major concern across various agro-ecological regions of Ethiopia. Trematodes pose significant threats to animals, causing considerable economic losses and impacting public health. In this study, we have investigated 784 ruminant fecal samples, and 520 abattoir samples, alongside the collection and identification of snail vectors from various agro-ecological regions. Fecal examinations revealed Fasciola, Paramphistomum and Schistosoma species infected 20.5% (95% CI: 17.6, 23.8), 11.7% (95% CI: 9.6, 14.2), and 6.3% (95% CI: 4.1, 9.1) of the animals, respectively. The overall prevalence of trematodes among ruminants was 28.8% (95% CI: 25.7, 32.1%), with 6.0% (95% CI: 4.3, 7.7) showing mixed infections. Fasciola was more prevalent in Asela (26%) compared to Batu (19%) and Hawassa (11.5%), while a higher proportion of animals in Batu were infected with Paramphistomum. Schistosoma eggs were detected only in Batu (12.5%), but not in other areas. Sheep and cattle exhibited higher infection rates with Fasciola, Paramphistoma, and Schistosoma compared to goats. Significant associations were observed between trematode infections and risk factors including agro-ecology, animal species, body condition score, and deworming practices. About 20.8% and 22.7% of the slaughtered animals harbored Fasciola and Paramphistomum flukes, respectively, with a higher prevalence in Asela and Hawassa abattoirs compared to Batu abattoir. Additionally, a total of 278 snails were collected from the study areas and identified as lymnae natalensis, lymnae trancatula, Biomphalaria pffiferi, Biomphlaria sudanica, and Bulinus globosus. In conclusion, the study highlights the widespread occurrence of trematode infections, emphasizing the need for feasible control measures to mitigate their economic and public health impacts.


Subject(s)
Feces , Snails , Trematode Infections , Animals , Ethiopia/epidemiology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Trematode Infections/parasitology , Feces/parasitology , Prevalence , Snails/parasitology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Goats , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle , Trematoda/isolation & purification , Trematoda/classification , Abattoirs , Fasciola/isolation & purification , Paramphistomatidae/isolation & purification , Ruminants/parasitology
5.
Parasit Vectors ; 17(1): 215, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734633

ABSTRACT

BACKGROUND: Animal African trypanosomiasis, which is caused by different species of African trypanosomes, is a deadly disease in livestock. Although African trypanosomes are often described as blood-borne parasites, there have been recent reappraisals of the ability of these parasites to reside in a wide range of tissues. However, the majority of those studies were conducted on non-natural hosts infected with only one species of trypanosome, and it is unclear whether a similar phenomenon occurs during natural animal infections, where multiple species of these parasites may be present. METHODS: The infective trypanosome species in the blood and other tissues (adipose and skin) of a natural host (cows, goats and sheep) were determined using a polymerase chain reaction-based diagnostic. RESULTS: The animals were found to harbour multiple species of trypanosomes. Different patterns of distribution were observed within the host tissues; for instance, in some animals, the blood was positive for the DNA of one species of trypanosome and the skin and adipose were positive for the DNA of another species. Moreover, the rate of detection of trypanosome DNA was highest for skin adipose and lowest for the blood. CONCLUSIONS: The findings reported here emphasise the complexity of trypanosome infections in a natural setting, and may indicate different tissue tropisms between the different parasite species. The results also highlight the need to include adipose and skin tissues in future diagnostic and treatment strategies.


Subject(s)
Adipose Tissue , Goat Diseases , Goats , Skin , Trypanosoma , Trypanosomiasis, African , Animals , Goats/parasitology , Trypanosomiasis, African/veterinary , Trypanosomiasis, African/parasitology , Adipose Tissue/parasitology , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Skin/parasitology , Sheep/parasitology , Goat Diseases/parasitology , Cattle , Polymerase Chain Reaction , Sheep Diseases/parasitology , DNA, Protozoan/genetics , Cattle Diseases/parasitology
7.
Parasitol Res ; 123(5): 202, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703234

ABSTRACT

Theileria orientalis, the causal agent of oriental theileriosis, is known to cause mild disease in cattle and buffalo across the world. Recently, different genotypes of T. orientalis have emerged as pathogenic, causing high reported morbidity in cattle. This study focuses on investigating three suspected outbreaks of oriental theileriosis that resulted in fatalities among crossbred and indigenous bulls in Karnataka, India. Examination of blood smears revealed the presence of T. orientalis piroplasms within erythrocytes. The genetic characterization of T. orientalis was conducted by targeting specific markers, including the mpsp gene, p23 gene, and ribosomal DNA markers (18S rRNA gene, ITS-1, and ITS-2). Analysis based on the 18S rRNA gene unveiled the presence of both Type A and Type E genotypes of T. orientalis in the outbreaks. The mpsp gene-based analysis identified genotype 7 of T. orientalis in crossbred cows, whereas genotype 1 (Chitose B) was found to be present in indigenous bulls. Haplotype network analysis based on the mpsp gene revealed the presence of 39 distinct haplotypes within the 12 defined genotypes of T. orientalis with a high haplotype diversity of 0.9545 ± 0.017. Hematological and biochemical analysis revealed a decrease in calcium, hemoglobin levels, red blood cell counts, and phosphorus. This study constitutes the initial documentation of a clinical outbreak of oriental theileriosis in indigenous bulls with genotype 1 (Chitose 1B). Substantial epidemiological investigations are imperative to gain a comprehensive understanding of the geographical distribution of distinct genotypes and the diverse clinical manifestations of the disease across various hosts.


Subject(s)
Disease Outbreaks , Genetic Variation , Genotype , RNA, Ribosomal, 18S , Theileria , Theileriasis , Animals , Theileria/genetics , Theileria/classification , Cattle , Theileriasis/epidemiology , Theileriasis/parasitology , India/epidemiology , Disease Outbreaks/veterinary , RNA, Ribosomal, 18S/genetics , Male , DNA, Protozoan/genetics , Phylogeny , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Sequence Analysis, DNA , Protozoan Proteins/genetics , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
8.
Adv Parasitol ; 124: 91-154, 2024.
Article in English | MEDLINE | ID: mdl-38754928

ABSTRACT

Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.


Subject(s)
Coccidiosis , Neospora , Protozoan Vaccines , Animals , Coccidiosis/prevention & control , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/drug therapy , Coccidiosis/immunology , Neospora/immunology , Protozoan Vaccines/immunology , Cattle , Cattle Diseases/prevention & control , Cattle Diseases/parasitology , Vaccine Development
9.
Front Immunol ; 15: 1380660, 2024.
Article in English | MEDLINE | ID: mdl-38720894

ABSTRACT

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Babesia bovis , Babesiosis , Epitopes, B-Lymphocyte , Protozoan Proteins , Animals , Cattle , Babesia bovis/immunology , Epitopes, B-Lymphocyte/immunology , Babesiosis/immunology , Babesiosis/parasitology , Babesiosis/prevention & control , Antibodies, Protozoan/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Amino Acid Motifs , Conserved Sequence , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Amino Acid Sequence , Protozoan Vaccines/immunology
10.
Parasitol Res ; 123(5): 207, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713234

ABSTRACT

Biomarkers are specific molecular, histological, or physiological characteristics of normal or pathogenic biological processes and are promising in the diagnosis of gastrointestinal nematodes (GINs). Although some biomarkers have been validated for infection by Ostertagia sp. in cattle raised in temperate regions, there is a lack of information for tropical regions. The aim of this project was to assess potential biomarkers and validate the most promising. In the first study, 36 bovines (Nelore breed) naturally infected by GINs were distributed into two groups: infected (not treated with anthelmintic) and treated (treated with fenbendazole on days 0, 7, 14, 21, 28, 42, and 56). The variables of interest were live weight, fecal egg count, hemogram, serum biochemical markers, phosphorus, gastrin, and pepsinogen. In the second step, pepsinogen was assessed in cattle of the Nelore breed distributed among three groups: infected (not treated with anthelmintic), MOX (treated with moxidectin), and IVM + BZD (treated with ivermectin + albendazole). In the first study, no difference between groups was found for weight, albumin, hematocrit (corpuscular volume [CV]), erythrocytes, or hemoglobin. Negative correlations were found between pepsinogen and both CV and albumin, and albumin was negatively correlated with the percentage of Haemonchus sp. in the fecal culture. Among the biomarkers, only pepsinogen differentiated treated and infected (beginning with the 28th day of the study). In the second study, a reduction in pepsinogen was found after anthelmintic treatment. Therefore, pepsinogen is a promising biomarker of worms in cattle naturally infected by the genera Haemonchus and Cooperia in tropical areas.


Subject(s)
Biomarkers , Cattle Diseases , Feces , Nematode Infections , Tropical Climate , Animals , Cattle , Cattle Diseases/parasitology , Cattle Diseases/drug therapy , Biomarkers/blood , Nematode Infections/veterinary , Nematode Infections/parasitology , Nematode Infections/drug therapy , Feces/parasitology , Parasite Egg Count , Anthelmintics/therapeutic use , Nematoda/isolation & purification , Nematoda/classification , Nematoda/drug effects , Gastrointestinal Diseases/parasitology , Gastrointestinal Diseases/veterinary , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Fenbendazole/therapeutic use
11.
Trop Anim Health Prod ; 56(5): 167, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761254

ABSTRACT

Ticks can transmit viruses, bacteria, and parasites to humans, livestock, and pet animals causing tick-borne diseases (TBDs) mechanically or biologically in the world. Lumpy skin disease virus, Anaplasma marginale, and Theileria annulata inflict severe infections in cattle, resulting in significant economic losses worldwide. The study investigated the potential transmissions of LSDV, A. marginale, and T. annulata through male Hyalomma anatolicum ticks in cattle calves. Two 6-month-old Holstein crossbred calves designated as A and B were used. On day 1, 15 uninfected female ticks (IIa) and infected batch of 40 male ticks (I) were attached on calf A for 11 days. Filial transmission of the infections was observed in female ticks (IIb) collected from calf A, where 8 female ticks had been co-fed with infected male ticks. The blood sample of calf B was found positive through PCR for the infections. The larvae and egg pools obtained from the infected ticks were also tested positive in PCR. The study confirmed the presence of these mixed pathogens and potential intra-stadial and transovarial transmissions of A. marginale, T. annulata, and LSDV in male and female ticks of H. anatolicum and experimental calves to establish the feasibility of infections through an in vivo approach.


Subject(s)
Anaplasma marginale , Anaplasmosis , Ixodidae , Lumpy skin disease virus , Theileria annulata , Theileriasis , Animals , Cattle , Male , Anaplasma marginale/isolation & purification , Ixodidae/virology , Ixodidae/microbiology , Theileria annulata/isolation & purification , Lumpy skin disease virus/physiology , Lumpy skin disease virus/isolation & purification , Female , Anaplasmosis/transmission , Theileriasis/transmission , Lumpy Skin Disease/transmission , Lumpy Skin Disease/virology , Cattle Diseases/virology , Cattle Diseases/parasitology , Cattle Diseases/microbiology , Cattle Diseases/transmission , Larva/virology
12.
Parasitol Res ; 123(5): 210, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743097

ABSTRACT

Fasciola gigantica is a widespread parasite that causes neglected disease in livestock worldwide. Its high transmissibility and dispersion are attributed to its ability to infect intermediate snail hosts and adapt to various mammalian definitive hosts. This study investigated the variation and population dynamics of F. gigantica in cattle, sheep, and goats from three states in Sudan. Mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) genes were sequenced successfully to examine intra and interspecific differences. ND1 exhibited higher diversity than COI, with 15 haplotypes and 10 haplotypes, respectively. Both genes had high haplotype diversity but low nucleotide diversity, with 21 and 11 polymorphic sites for ND1 and COI, respectively. Mismatch distribution analysis and neutrality tests revealed that F. gigantica from different host species was in a state of population expansion. Maximum likelihood phylogenetic trees and median networks revealed that F. gigantica in Sudan and other African countries had host-specific and country-specific lineages for both genes. The study also indicated that F. gigantica-infected small ruminants were evolutionarily distant, suggesting deep and historical interspecies adaptation.


Subject(s)
Electron Transport Complex IV , Fasciola , Fascioliasis , Genetic Variation , Goats , Haplotypes , NADH Dehydrogenase , Phylogeny , Population Dynamics , Animals , Sudan/epidemiology , Fasciola/genetics , Fasciola/classification , Fasciola/isolation & purification , Fascioliasis/veterinary , Fascioliasis/parasitology , Fascioliasis/epidemiology , Sheep/parasitology , Goats/parasitology , Cattle , NADH Dehydrogenase/genetics , Electron Transport Complex IV/genetics , Goat Diseases/parasitology , Goat Diseases/epidemiology , Ruminants/parasitology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Sequence Analysis, DNA
13.
Mol Biol Rep ; 51(1): 585, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683464

ABSTRACT

BACKGROUND: Bovine besnoitiosis (elephant skin disease) caused by Besnoitia besnoiti is a costly endemic disease in the Middle East, Asia, and tropical and subtropical Africa and is also emerging as a significant problem in Europe. This study is aimed at determining the prevalence of B. besnoiti in blood and skin biopsies of cattle as well as evaluating the risk factors associated with the infection among cattle in Mosul, Iraq. METHODS AND RESULTS: To achieve this aim, four hundred and sixty apparently healthy cattle of different breeds, ages, and sexes were sampled from seven different locations in Mosul, Iraq. Blood and skin biopsies were carefully collected from each cattle, and these samples were subjected to molecular analysis. The detection of B. besnoiti was molecularly confirmed by the presence of 231 bp of ITS-1 in the rDNA gene of the protozoan. Besnoitia besnoiti DNA was present in 74 (16.09%; 95% CI = 13.01-19.72) and 49 (10.65%; 95% CI = 8.15-13.80) of the blood and skin biopsies, respectively, that were analyzed. Age, breed, and sex were significantly (p < 0.05) associated with the occurrence of B. besnoiti among cattle in the study area. CONCLUSIONS: Findings from this study will serve as baseline data in the epidemiology, prevention, and control of the protozoan among cattle in Iraq.


Subject(s)
Cattle Diseases , Coccidiosis , Sarcocystidae , Animals , Cattle , Iraq/epidemiology , Coccidiosis/epidemiology , Coccidiosis/veterinary , Sarcocystidae/genetics , Sarcocystidae/isolation & purification , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Male , Female , Prevalence , Risk Factors , DNA, Protozoan/genetics , Skin/parasitology , Skin/pathology
14.
Vet Parasitol Reg Stud Reports ; 50: 101017, 2024 05.
Article in English | MEDLINE | ID: mdl-38644040

ABSTRACT

Rhipicephalus (Boophilus) microplus causes considerable livestock production losses. Knowledge of the traits that influence tick resistance contributes to the development of breeding strategies designed to improve herd productivity. Within this context, this study evaluated the resistance of Caracu, a tropically adapted cattle breed, to R. microplus. Tick count, hair length, coat thickness, and coat color were evaluated in 202 naturally tick-infested females (cows and heifers) over a period of 18 months. Blood samples were collected from all animals during the winter season for hematological analysis. Data were analyzed using Pearson correlations, generalized linear models, and principal component analysis. Correlation coefficients of tick count with coat color, coat thickness, and hair length were estimated within each season. Hematological parameters were only included in the winter season analysis and were analyzed by the restricted maximum likelihood method using log-transformed data. No differences in blood parameters were observed between animals with and without ticks. However, tick count was negatively correlated with erythrocytes (-0.29) and hematocrit (-0.24) and positively correlated with mean corpuscular hemoglobin (0.21) and mean corpuscular hemoglobin concentration (0.25). These findings suggest that higher tick counts lead to a decrease in erythrocytes but also to an increase in the amount of hemoglobin per erythrocyte, which could reduce the damage caused by low erythrocyte levels due to tick hematophagy, delaying or preventing anemia. Although tick infestation on pasture was demonstrated by the infestation of all staff members during herd management, none of the animals exhibited high tick counts, providing evidence of resistance of Caracu animals to R. microplus. Tick infestation was influenced by age class (cows > heifers), season (spring and summer > fall and winter), coat thickness (>1.5 mm > <1.5 mm), and hair length (>6 mm > <6 mm). Three components were extracted by principal component analysis, which accounted for 69.46% of data variance. The findings of this study will contribute to the development of efficient strategies aimed at reducing economic losses due to tick infestation and could be applied in animal breeding to select for tick resistance traits, reducing chemical control strategies and consequently improving sustainable livestock production.


Subject(s)
Cattle Diseases , Rhipicephalus , Tick Infestations , Animals , Cattle , Tick Infestations/veterinary , Tick Infestations/parasitology , Female , Cattle Diseases/parasitology , Rhipicephalus/physiology , Seasons , Hair/parasitology , Age Factors , Disease Resistance , Animal Fur , Tropical Climate
15.
Vet Parasitol Reg Stud Reports ; 50: 101011, 2024 05.
Article in English | MEDLINE | ID: mdl-38644043

ABSTRACT

Anaplasmosis and babesiosis are globally distributed arthropod-borne diseases known for causing substantial economic losses due to their high morbidity and mortality rates. This study aims to assess the frequency and epidemiological features associated with the infection of Anaplasma marginale, Babesia bigemina, and Babesia bovis in three Creole cattle breeds (Chino Santandereano (Chino), Casanareño (CAS), and Sanmartinero (SM)) in northeastern Colombia. Between June 2019 and March 2020, a total of 252 Creole cattle were sampled, with Chino, CAS, and SM accounting for 42.8%, 29.5%, and 29.5% of the samples, respectively. Blood samples were subjected to molecular analysis to detect the DNA of A. marginale, B. bigemina, and B. bovis, using species-specific primers. Additionally, Packed Cell Volume (PCV), total serum proteins, and body condition were evaluated. Molecular analyses revealed the presence of B. bigemina, A. marginale, and B. bovis in 83.7% (211/252; 95% CI = 79.1%-88.3%), 59.9% (151/252; 95% CI = 53.8%-66.1%), and 40.9% (103/252; 95% CI = 34.7%-46.9%) of the samples, respectively, with 69% (174/252; 95% CI = 57.8%-80.3%) exhibiting coinfections. Notably, in infected animals, no significant alterations in PCV, total serum proteins, or body condition were observed. Multivariate analyses indicated a statistically significant association between the frequency of A. marginale infection and the breed and season, with a higher frequency in SM during the rainy season (P < 0.05). To our knowledge, this is the first molecular survey that evaluates multiple arthropod-borne pathogens in Colombian Creole breeds. The results revel a high frequency of B. bigemina and A. marginale infections, coupled with a notable frequency of coinfections, all without significant alteration in the PCV, total serum proteins and body conditions. Our findings enhance the understanding of the epidemiological aspects of arthropod-borne pathogens in Colombian Creole breed and contribute to the improvement of sanitary programs for these animals.


Subject(s)
Anaplasma marginale , Anaplasmosis , Babesia bovis , Babesia , Babesiosis , Cattle Diseases , Animals , Cattle , Colombia/epidemiology , Babesiosis/epidemiology , Babesiosis/parasitology , Anaplasma marginale/genetics , Anaplasma marginale/isolation & purification , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/microbiology , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Babesia bovis/genetics , Babesia bovis/isolation & purification , Female , Male , Prevalence
16.
Vet Parasitol Reg Stud Reports ; 50: 101012, 2024 05.
Article in English | MEDLINE | ID: mdl-38644044

ABSTRACT

A substantial parallel increase in prevalence and geographical spread of the rumen fluke, Calicophoron daubneyi, in livestock in western and central Europe has been recognized in the recent past. In the course of the examination of rectum feces of 471 red deer (Cervus elaphus) and one sika deer (Cervus nippon) from the Fascioloides magna endemic Sumava National Park in the years 2021 and 2022, rumen fluke eggs were detected in four red deer (0.8%) and the sika deer and identified as eggs of C. daubneyi by molecular analysis. Subsequent examination of rectal fecal samples of 247 beef cattle from 22 herds of 14 farms located in or nearby the national park revealed rumen fluke eggs in 53 samples (21.5%) originating from 16 herds of 11 farms, molecularly identified as C. daubneyi eggs as well. One C. daubneyi egg positive red deer and three C. daubneyi egg positive cattle samples also contained fasciolid eggs, respectively, which were detected in 9.5% or 3.6% of the total samples from red deer or cattle, respectively. Results of this investigation reveal the first finding of C. daubneyi in sika deer worldwide and in red deer in mainland Europe and add to the growing number of reports on C. daubneyi in livestock in Europe. Considering that the ratio of cattle excreting rumen fluke eggs exceeded that of deer substantially, it can reasonably be assumed that the C. daubneyi infections in deer are a consequence of the prevalent infection in cattle, illustrating a pathogen spillover event from livestock into wildlife.


Subject(s)
Cattle Diseases , Deer , Feces , Paramphistomatidae , Rumen , Trematode Infections , Animals , Cattle , Deer/parasitology , Czech Republic/epidemiology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Trematode Infections/parasitology , Paramphistomatidae/isolation & purification , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Rumen/parasitology , Prevalence , Feces/parasitology , Parks, Recreational
17.
Emerg Infect Dis ; 30(5): 1036-1039, 2024 May.
Article in English | MEDLINE | ID: mdl-38666687

ABSTRACT

We report the detection of Crimean-Congo hemorrhagic fever virus (CCHFV) in Corsica, France. We identified CCHFV African genotype I in ticks collected from cattle at 2 different sites in southeastern and central-western Corsica, indicating an established CCHFV circulation. Healthcare professionals and at-risk groups should be alerted to CCHFV circulation in Corsica.


Subject(s)
Cattle Diseases , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Phylogeny , Ticks , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever Virus, Crimean-Congo/classification , Cattle , France/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Ticks/virology , Genotype , Humans
18.
Vet Parasitol ; 328: 110180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626652

ABSTRACT

The Echinococcus granulosus sensu lato species complex is responsible for the neglected zoonotic disease known as cystic echinococcosis (CE). Humans and livestock are infected via fecal-oral transmission. CE remains prevalent in Western China, Central Asia, South America, Eastern Africa, and the Mediterranean. Approximately one million individuals worldwide are affected, influencing veterinary and public health, as well as social and economic matters. The infection causes slow-growing cysts, predominantly in the liver and lungs, but can also develop in other organs. The exact progression of these cysts is uncertain. This study aimed to understand the survival mechanisms of liver and lung CE cysts from cattle by determining their metabolite profiles through metabolomics and multivariate statistical analyses. Non-targeted metabolomic approaches were conducted using quadrupole-time-of-flight liquid chromatography/mass spectrometry (LC-QTOF-MS) to distinguish between liver and lung CE cysts. Data processing to extract the peaks on complex chromatograms was performed using XCMS. PCA and OPLS-DA plots obtained through multiple statistical analyses showed interactions of metabolites within and between groups. Metabolites such as glutathione, prostaglandin, folic acid, and cortisol that cause different immunological reactions have been identified both in liver and lung hydatid cysts, but in different ratios. Considering the differences in the metabolomic profiles of the liver and lung cysts determined in the present study will contribute research to enlighten the nature of the cyst and develop specific therapeutic strategies.


Subject(s)
Cattle Diseases , Liver , Lung , Metabolomics , Animals , Cattle , Cattle Diseases/parasitology , Liver/parasitology , Lung/parasitology , Echinococcus granulosus/physiology , Echinococcus granulosus/immunology , Echinococcosis, Pulmonary/veterinary , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis, Hepatic/veterinary , Echinococcosis, Hepatic/parasitology , Chromatography, Liquid , Mass Spectrometry/veterinary
19.
Comp Immunol Microbiol Infect Dis ; 109: 102180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653007

ABSTRACT

Bovine Trypanosomiasis and other infectious diseases cause relevant loss for the livestock industry impacting productive/reproductive indices. This study intended to better understand the frequency, seasonality, and profile of infections associated with Bovine Trypanosomiasis. A total of 1443 serum samples were screened for T. vivax infection and other infectious diseases: Neosporosis, Leptospirosis, Bovine Leukosis Virus infection/(BLV), Infectious Bovine Rhinotracheitis/(IBR) or Bovine Viral Diarrhea/(BVD). Distinct methods were used for screening and diagnosis: immunofluorescence assay (Trypanosomiasis), ELISA (Neosporosis,BLV,IBR,BVD) and microscopic agglutination test (Leptospirosis). Our findings demonstrated that the seropositivity for Trypanosomiasis=57% was similar to Neosporosis=55%, higher than Leptospirosis=39% and BVL=34%, but lower than IBR=88% and BVD=71%. The seropositivity for Trypanosomiasis was higher in the autumn and lower in the winter. Regardless the season, the IBR seropositivity (min=73%;max=95%) was higher than Trypanosomiasis (min=48%;max=68%). Moreover, Neosporosis (min=71%;max=100%) and BVD (min=65%;max=76%) were more frequent than Trypanosomiasis in the summer, winter and spring. The diagnosis outcome revealed that Trypanosomiasis&IBR=43% and Trypanosomiasis&Neosporosis=35% were the most frequent co-infections with higher seropositivity in the autumn (58%) and summer (80%), respectively. Noteworthy, high seropositivity to Trypanosomiasis&BVD was registered in the autumn (46%). Together, our data re-enforce the relevance of differential diagnosis between Trypanosomiasis with other bovine infectious diseases and that differences in the seasonality profile is a relevant aspect to be considered while selecting the differential diagnosis to be applied.


Subject(s)
Coinfection , Leptospirosis , Seasons , Trypanosoma vivax , Animals , Cattle , Coinfection/veterinary , Coinfection/parasitology , Coinfection/diagnosis , Female , Trypanosoma vivax/immunology , Diagnosis, Differential , Leptospirosis/veterinary , Leptospirosis/diagnosis , Leptospirosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/diagnosis , Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/diagnosis , Trypanosomiasis, Bovine/blood , Antibodies, Protozoan/blood , Infectious Bovine Rhinotracheitis/diagnosis , Infectious Bovine Rhinotracheitis/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Seroepidemiologic Studies , Enzyme-Linked Immunosorbent Assay/veterinary , Neospora/immunology , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Bovine Virus Diarrhea-Mucosal Disease/epidemiology
20.
Parasit Vectors ; 17(1): 195, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671515

ABSTRACT

BACKGROUND: Toxoplasma gondii and Neospora caninum are closely related protozoan parasites that are considered important causes of abortion in livestock, causing huge economic losses. Hunan Province ranks 12th in the production of beef and mutton in China. However, limited data are available on the seroprevalence, risk factors and molecular characterization of T. gondii and N. caninum in beef cattle and goats in Hunan province, China. METHODS: Sera of 985 beef cattle and 1147 goats were examined for the presence of specific antibodies against T. gondii using indirect hemagglutination test (IHAT) and anti-N. caninum IgG using competitive-inhibition enzyme-linked immunoassay assay (cELISA). Statistical analysis of possible risk factors was performed using PASW Statistics. Muscle samples of 160 beef cattle and 160 goats were examined for the presence of T. gondii DNA (B1 gene) and N. caninum DNA (Nc-5 gene) by nested PCR. The B1 gene-positive samples were genotyped at 10 genetic markers using the multilocus nested PCR-RFLP (Mn-PCR-RFLP). RESULTS: Specific IgG against T. gondii were detected in 8.3% (82/985) and 13.3% (153/1147) and against N. caninum in 2.1% (21/985) and 2.0% (23/1147) of the beef cattle and goats, respectively. Based on statistical analysis, the presence of cats, semi-intensive management mode and gender were identified as significant risk factors for T. gondii infection in beef cattle. Age was a significant risk factor for T. gondii infection in goats (P < 0.05), and age > 3 years was a significant risk factor for N. caninum infection in beef cattle (P < 0.05). PCR positivity for T. gondii was observed in three beef samples (1.9%; 3/160) and seven chevon samples (4.4%; 7/160). Genotyping of PCR positive samples identified one to be ToxoDB#10. The N. caninum DNA was observed in one beef sample (0.6%; 1/160) but was negative in all chevon samples. CONCLUSIONS: To our knowledge, this is the first large-scale serological and molecular investigation of T. gondii and N. caninum and assessment of related risk factors in beef cattle and goats in Hunan Province, China. The findings provide baseline data for executing prevention and control of these two important parasites in beef cattle and goats in China.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Goat Diseases , Goats , Neospora , Toxoplasma , Toxoplasmosis, Animal , Animals , Goats/parasitology , Neospora/genetics , Neospora/immunology , Neospora/isolation & purification , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/isolation & purification , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , China/epidemiology , Cattle , Seroepidemiologic Studies , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Antibodies, Protozoan/blood , Female , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Male , Risk Factors , Immunoglobulin G/blood , DNA, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , Genotype , Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...