Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 77(3): 673-9, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20692867

ABSTRACT

In this paper we tested the power of Caulerpa racemosa for removal hydrocarbons from seawater. C. racemosa was implanted in two aquariums filled with natural seawater having a hydrocarbon content lower than 0.05mg/L which is the detection limit of the FTIR spectrophotometric method used for the determination. One aquarium was submitted to sequential additions of hydrocarbons (n-esadecane 10, 20 and 40mg/L, n-docosane 15mg/L) and diesel fuels (20mg/L) while the second one remained uncontaminated and used as control. After any addition, hydrocarbon content in seawater was determined at regular time intervals (one or two days) and when comparable hydrocarbon contents (i.e. lower than 0.05mg/L) were again observed, the real removal power of hydrocarbons was verified by several spectroscopic measurements performed on algae from both aquariums. Total hydrocarbon contents in algae determined by infrared (FTIR) spectroscopy, always resulted higher in the polluted aquarium for all the concentrations of added pollutants. Further FTIR studies performed on algae showed the presence of marked quantitative and structural molecular modifications involving carbohydrates, proteins, lipids, nucleic acids and chlorophyll pigments in C. racemosa from the aquarium test. In addition, visible (VIS) spectroscopic examination of C. racemosa showed a reduction of chlorophyll pigments in the polluted aquarium with respect to the control one. At last, FTIR spectra all the algal samples submitted to hydrocarbon pollution were re-examined by means of two-dimensional correlation analysis, a statistical tool helpful for studying the dynamic evolution of any molecular and biological system submitted to an external perturbation producing compositional and structural changes. This approach showed differences among the molecular modifications caused by any type of hydrocarbon used, modifications related reasonably to the molecular dimensions and concentration of the added pollutants. All these spectroscopic evidences suggested that the removal power of C. racemosa depends on its metabolic activities and not only on a simple adsorption process.


Subject(s)
Biodegradation, Environmental , Caulerpa/metabolism , Hydrocarbons/metabolism , Seawater/chemistry , Spectrophotometry, Infrared , Water Pollutants, Chemical/metabolism , Carbohydrates/analysis , Caulerpa/chemistry , Caulerpa/drug effects , Chlorophyll/analysis , DNA, Plant/analysis , Hydrocarbons/pharmacology , Limit of Detection , Lipids/analysis , Plant Proteins/analysis , RNA, Plant/analysis , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis , Water Pollutants, Chemical/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...