Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
Cell Signal ; 115: 111030, 2024 03.
Article in English | MEDLINE | ID: mdl-38163577

ABSTRACT

Sine oculis homeobox homolog 1 (Six1) is a developmentally important transcription factor that regulates cellular proliferation, apoptosis, and dissemination during embryogenesis. Six1 overexpression as reported in multiple cancers modulates expression of a repertoire of its target genes causing an increase in proliferation, metastasis and survival of cancer cells. Six1 exists as a cell cycle regulated nuclear phosphoprotein and its cellular turnover is regulated by APC/C (Anaphase promoting complex / Cyclosome) complex mediated proteolysis. However, the kinases that regulate Six1 proteolysis have not been identified and the mechanistic details that cause its overproduction in various cancers are lacking. Here, we report that Six1 is a physiological GSK3ß substrate. GSK3ß interacts with Six1 and phosphorylates it at Ser221 within the conserved consensus sequence in its carboxy terminus. Using pharmacological inhibition, siRNA mediated knockdown and protein overexpression of GSK3ß; we show that GSK3ß regulates Six1 protein stability. Pulse chase analysis of Six1 revealed that GSK3ß regulates its ubiquitin proteolysis such that Six1 phosphomimicking mutant (Six1S221E) for Ser221 site had dramatically increased half-life than its phosphodeficient (Six1S221A) and wild type variants. Furthermore, we demonstrate that GSK3ß rescues Six1 from APC dependent proteolysis by regulating its binding with APC/C co-activator protein Cdh1. Importantly, strong positive correlation exists between GSK3ß and Six1 protein levels throughout the cell cycle and in multiple cancers indicating that GSK3ß activation may in part contribute to Six1 overproduction in a subset of human cancers.


Subject(s)
Cell Cycle Proteins , Transcription Factors , Humans , Glycogen Synthase Kinase 3 beta , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle , Cell Cycle Proteins/metabolism , Cdh1 Proteins/metabolism
2.
Sci Adv ; 9(39): eadi7238, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37774018

ABSTRACT

H3K4 trimethylation (H3K4me3) is a conserved histone modification catalyzed by histone methyltransferase Set1, and its dysregulation is associated with pathologies. Here, we show that Set1 is intrinsically unstable and elucidate how its protein levels are controlled within cell cycle and during gene transcription. Specifically, Set1 contains a destruction box (D-box) that is recognized by E3 ligase APC/CCdh1 and degraded by the ubiquitin-proteasome pathway. Cla4 phosphorylates serine 228 (S228) within Set1 D-box, which inhibits APC/CCdh1-mediated Set1 proteolysis. During gene transcription, PAF complex facilitates Cla4 to phosphorylate Set1-S228 and protect chromatin-bound Set1 from degradation. By modulating Set1 stability and its binding to chromatin, Cla4 and APC/CCdh1 control H3K4me3 levels, which then regulate gene transcription, cell cycle progression, and chronological aging. In addition, there are 141 proteins containing the D-box that can be potentially phosphorylated by Cla4 to prevent their degradation by APC/CCdh1. We addressed the long-standing question about how Set1 stability is controlled and uncovered a new mechanism to regulate protein stability.


Subject(s)
Cell Cycle Proteins , Saccharomyces cerevisiae Proteins , Cell Cycle , Cell Cycle Proteins/metabolism , Chromatin , Histone Methyltransferases , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Cdh1 Proteins
3.
Cancer Res ; 83(18): 3059-3076, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37326469

ABSTRACT

The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0-G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0-G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1-GEMIN5 axis as a potential target to enhance gemcitabine response. SIGNIFICANCE: Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cdh1 Proteins , Cell Line, Tumor , Gemcitabine/pharmacology , Gemcitabine/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA, Messenger/genetics , Pancreatic Neoplasms
4.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188883, 2023 05.
Article in English | MEDLINE | ID: mdl-36972769

ABSTRACT

The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.


Subject(s)
Drosophila Proteins , Tumor Suppressor Protein p53 , Animals , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Tumor Suppressor Protein p53/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cdh1 Proteins/genetics , Cdh1 Proteins/metabolism , Cell Cycle Proteins/genetics , Drosophila/genetics , Drosophila/metabolism
5.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835555

ABSTRACT

Cdh1p is one of the two substrate adaptor proteins of the anaphase promoting complex/cyclosome (APC/C), a ubiquitin ligase that regulates proteolysis during cell cycle. In this work, using a proteomic approach, we found 135 mitochondrial proteins whose abundance was significantly altered in the cdh1Δ mutant, with 43 up-regulated proteins and 92 down-regulated proteins. The group of significantly up-regulated proteins included subunits of the mitochondrial respiratory chain, enzymes from the tricarboxylic acid cycle and regulators of mitochondrial organization, suggesting a metabolic remodelling towards an increase in mitochondrial respiration. In accordance, mitochondrial oxygen consumption and Cytochrome c oxidase activity increased in Cdh1p-deficient cells. These effects seem to be mediated by the transcriptional activator Yap1p, a major regulator of the yeast oxidative stress response. YAP1 deletion suppressed the increased Cyc1p levels and mitochondrial respiration in cdh1Δ cells. In agreement, Yap1p is transcriptionally more active in cdh1Δ cells and responsible for the higher oxidative stress tolerance of cdh1Δ mutant cells. Overall, our results unveil a new role for APC/C-Cdh1p in the regulation of the mitochondrial metabolic remodelling through Yap1p activity.


Subject(s)
Cdh1 Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Proteomics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Cdh1 Proteins/metabolism
6.
Protein Sci ; 32(3): e4572, 2023 03.
Article in English | MEDLINE | ID: mdl-36691744

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase and its cofactor, Cdh1, regulate the expression of several cell-cycle proteins and their functions during mitosis. Levels of the protein cell division cycle-associated protein 3 (CDCA3), which is functionally required for mitotic entry, are regulated by APC/CCdh1 . CDCA3 is an intrinsically disordered protein and contains both C-terminal KEN box and D-box recognition motifs, enabling binding to Cdh1. Our previous findings demonstrate that CDCA3 has a phosphorylation-dependent non-canonical ABBA-like motif within the linker region bridging these two recognition motifs and is required for efficient binding to Cdh1. Here, we sought to identify and further characterize additional residues that participate within this ABBA-like motif using detailed in vitro experiments and in silico modeling studies. We identified the role of H-bonds, hydrophobic and ionic interactions across the CDCA3 ABBA-like motif in the linker region between KEN and D-box motifs. This linker region adopts a well-defined structure when bound to Cdh1 in the presence of phosphorylation. Upon alanine mutation, the structure of this region is lost, leading to higher flexibility, and alteration in affinities due to binding to alternate sites on Cdh1. Our findings identify roles for the anchoring residues in the non-canonical ABBA-like motif to promote binding to the APC/CCdh1 and regulation of CDCA3 protein levels.


Subject(s)
Cell Cycle Proteins , Molecular Dynamics Simulation , Cdh1 Proteins/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle
7.
Life Sci Alliance ; 6(2)2023 02.
Article in English | MEDLINE | ID: mdl-36450448

ABSTRACT

Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.


Subject(s)
Aurora Kinase A , Biological Assay , Humans , Aurora Kinase A/genetics , Cell Nucleus , Cdh1 Proteins
8.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36548081

ABSTRACT

Ubiquitin-conjugating enzyme E2C (UBE2C) mediates ubiquitylation chain formation via the K11 linkage. While previous in vitro studies showed that UBE2C plays a growth-promoting role in cancer cell lines, the underlying mechanism remains elusive. Still unknown is whether and how UBE2C plays a promoting role in vivo. Here we report that UBE2C was indeed essential for growth and survival of lung cancer cells harboring Kras mutations, and UBE2C was required for KrasG12D-induced lung tumorigenesis, since Ube2c deletion significantly inhibited tumor formation and extended the lifespan of mice. Mechanistically, KrasG12D induced expression of UBE2C, which coupled with APC/CCDH1 E3 ligase to promote ubiquitylation and degradation of DEPTOR, leading to activation of mTORC signaling. Importantly, DEPTOR levels fluctuated during cell cycle progression in a manner dependent on UBE2C and CDH1, indicating their physiological connection. Finally, Deptor deletion fully rescued the tumor inhibitory effect of Ube2c deletion in the KrasG12D lung tumor model, indicating a causal role of Deptor. Taken together, our study shows that the UBE2C/CDH1/DEPTOR axis forms an oncogene and tumor suppressor cascade that regulates cell cycle progression and autophagy and validates UBE2C an attractive target for lung cancer associated with Kras mutations.


Subject(s)
Lung Neoplasms , Tumor Suppressor Proteins , Ubiquitin-Conjugating Enzymes , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Oncogenes , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Cdh1 Proteins/metabolism
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1279-1282, 2022 Nov 10.
Article in Chinese | MEDLINE | ID: mdl-36317219

ABSTRACT

OBJECTIVE: To assess the association of genomic instability of epithelial cadherin 1 (CDH1) gene and clinicopathological characteristics of gastric cancer. METHODS: In total 120 paraffin-embedded gastric cancer tissue specimen were prepared, and genomic DNA was extracted. The genomic instability of the CDH1 gene was analyzed by immunohistochemistry and silver staining PCR-single-strand conformation polymorphism. RESULTS: The number of information individuals (heterozygotes) was 98 for the D16S752 locus. The detection rates for microsatellite instability (MSI) and loss of heterozygosity (LOH) at the D16S752 locus and the positive rate of CDH1 protein were 19.39%, 16.33% and 51.02%, respectively. The detection rate of MSI in TNM stages I or II was significantly higher than that in stages III or IV (P<0.05) while the detection rate of LOH was significantly lower than that in stages III or IV (P<0.05). The positive rate of CDH1 protein in TNM stages III or IV was significantly lower than that in stages I or II (P<0.05). The detection rate of MSI of cases with lymph node metastasis was significantly lower than that of without lymph node metastasis (P<0.05) while the detection rate of LOH was significantly higher than that without lymph node metastasis (P<0.05). The positive rate of CDH1 protein in patients with lymph node metastasis was significantly lower than that in patients without lymph node metastasis (P<0.05). The positive rate of CDH1 protein in MSI-positive group was significantly higher than that in MSI-negative group (P<0.05), and the positive rate of CDH1 protein in the LOH-positive group was significantly lower than that the LOH-negative group (P<0.05). CONCLUSION: The genomic instability of the CDH1 gene is associated with the progression of gastric cancer. MSI at the D16S752 locus may be used as a molecular marker for early gastric cancer, while LOH at this locus mostly occurs in advanced gastric cancer and can be regarded as an effective indicators for malignancy evaluation and prognosis.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Lymphatic Metastasis , Cdh1 Proteins/genetics , Microsatellite Instability , Loss of Heterozygosity , Genomic Instability , Microsatellite Repeats , Antigens, CD/genetics , Cadherins/genetics
10.
Microbiol Spectr ; 10(5): e0092322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36214694

ABSTRACT

Pyolysin (PLO) is secreted by Trueperella pyogenes as a water-soluble monomer after forming transmembrane ß-barrel channels in the cell membrane by binding cholesterol. Two significantly conserved residues at domain 1 of PLO are mutated, which provides novel evidence of a relationship between conformational change and interaction with the cell membrane and uncovers the pore formation mechanism of the cholesterol-dependent cytolysin (CDC) family. Moreover, PLO is a special member of the CDCs, which the percentage of sequence identities between PLO and other CDC members is from 31% to 45%, while others are usually from 40% to 70%. It is important to understand that at very low sequence identities, models can be different in the pathogenic mechanisms of these CDC members, which are dedicated to a large number of Gram-positive bacterial pathogens. Our studies, for the first time, located and mutated two different highly conserved structural sites in the primary structure critical for PLO structure and function that proved the importance of these sites. Together, novel and repeatable observations into the pore formation mechanism of CDCs are provided by our findings. IMPORTANCE Postpartum disease of dairy cows caused by persistent bacterial infection is a global disease, which has a serious impact on the development of the dairy industry and brings huge economic losses. As one of the most relevant pathogenic bacteria for postpartum diseases in dairy cows, Trueperella pyogenes can secrete pyolysin (PLO), a member of the cholesterol-dependent cytolysin (CDC) family and recognized as the most important toxin of T. pyogenes. However, the current research work on PLO is still insufficient. The pathogenic mechanism of this toxin can be fully explored by changing the local structure and overall function of the toxin by a previously unidentified single point mutation. These studies lay the groundwork for future studies that will explore the contribution of this large family of CDC proteins to microbial survival and human disease.


Subject(s)
Bacterial Proteins , Point Mutation , Cattle , Animals , Female , Humans , Virulence , Cdh1 Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Cholesterol/chemistry , Cholesterol/metabolism , Bacteria/metabolism , Cytotoxins , Water
11.
Sci Rep ; 12(1): 10489, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729193

ABSTRACT

The APC/C-Cdh1 ubiquitin ligase complex drives proteosomal degradation of cell cycle regulators and other cellular proteins during the G1 phase of the cycle. The complex serves as an important modulator of the G1/S transition and prevents premature entry into S phase, genomic instability, and tumor development. Additionally, mounting evidence supports a role for this complex in cell differentiation, but its relevance in erythropoiesis has not been addressed so far. Here we show, using mouse models of Cdh1 deletion, that APC/C-Cdh1 activity is required for efficient terminal erythroid differentiation during fetal development as well as postnatally. Consistently, Cdh1 ablation leads to mild but persistent anemia from birth to adulthood. Interestingly, loss of Cdh1 seems to affect both, steady-state and stress erythropoiesis. Detailed analysis of Cdh1-deficient erythroid populations revealed accumulation of DNA damage in maturing erythroblasts and signs of delayed G2/M transition. Moreover, through direct assessment of replication dynamics in fetal liver cells, we uncovered slow fork movement and increased origin usage in the absence of Cdh1, strongly suggesting replicative stress to be the underlying cause of DNA lesions and cell cycle delays in erythroblasts devoid of Cdh1. In turn, these alterations would restrain full maturation of erythroblasts into reticulocytes and reduce the output of functional erythrocytes, leading to anemia. Our results further highlight the relevance of APC/C-Cdh1 activity for terminal differentiation and underscore the need for precise control of replication dynamics for efficient supply of red blood cells.


Subject(s)
Cell Cycle Proteins , Erythroblasts , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Cdh1 Proteins/metabolism , Cell Cycle , Cell Cycle Proteins/metabolism , Erythroblasts/cytology , Erythroblasts/metabolism , G1 Phase , Mice
12.
Brain ; 145(5): 1684-1697, 2022 06 03.
Article in English | MEDLINE | ID: mdl-34788397

ABSTRACT

FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.


Subject(s)
Cdh1 Proteins , Epilepsy, Generalized , Epilepsy , Microcephaly , Ataxia , Cdh1 Proteins/genetics , Child , Epilepsy/genetics , Epilepsy, Generalized/genetics , Humans , Loss of Function Mutation , Microcephaly/genetics , Phenotype
13.
Dev Biol ; 482: 55-66, 2022 02.
Article in English | MEDLINE | ID: mdl-34922934

ABSTRACT

The coincidence of cell cycle exit and differentiation has been described in a wide variety of stem cells and organisms for decades, but the causal relationship is still unclear due to the complicated regulation of the cell cycle. Here, we used the planarian Dugesia japonica since they may possess a simple cell cycle regulation in which Cdh1 is one of the factors responsible for exiting the cell cycle. When cdh1 was functionally inhibited, the planarians could not maintain their tissue homeostasis and could not regenerate their missing body parts. While the knockdown of cdh1 caused pronounced accumulation of the stem cells, the progenitor and differentiated cells were decreased. Further analyses indicated that the stem cells with cdh1 knockdown did not undergo differentiation even though they received ERK signaling activation as an induction signal. These results suggested that stem cells could not acquire differentiation competence without cell cycle exit. Thus, we propose that cell cycle regulation determines the differentiation competence and that cell cycle exit to G0 enables stem cells to undergo differentiation.


Subject(s)
Cdh1 Proteins/genetics , Cell Cycle/physiology , Planarians/growth & development , Regeneration/genetics , Animals , Cdh1 Proteins/metabolism , Cell Differentiation/physiology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Planarians/cytology , RNA Interference , Regeneration/physiology , Stem Cells/cytology , Stem Cells/metabolism
14.
Leukemia ; 36(3): 834-846, 2022 03.
Article in English | MEDLINE | ID: mdl-34635784

ABSTRACT

FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreased quiescence of HSC. Haploinsufficiency of Fzr1 shows impaired quiescence and self-renewal ability of HSC in two Fzr1 heterozygous knockout mouse models. Mechanistically, FZR1 insufficiency inhibits the ubiquitination of RUNX1 protein at lysine 125, leading to the accumulation of RUNX1 protein, which disturbs the quiescence of HSCs in SAA patients. Moreover, downregulation of Runx1 reversed the loss of quiescence and impaired long-term self-renew ability in Fzr1+/- HSCs in vivo and impaired repopulation capacity in BM from SAA patients in vitro. Our findings, therefore, raise the possibility of a decisive role of the FZR1-RUNX1 pathway in the pathogenesis of SAA via deregulation of HSC quiescence.


Subject(s)
Anemia, Aplastic/metabolism , Cdh1 Proteins/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Adult , Aged , Anemia, Aplastic/genetics , Animals , Cdh1 Proteins/genetics , Cells, Cultured , Cellular Senescence , Core Binding Factor Alpha 2 Subunit/genetics , Down-Regulation , Female , Haploinsufficiency , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Proteolysis , Ubiquitin/metabolism , Ubiquitination , Young Adult
15.
Electron. j. biotechnol ; 53: 54-60, Sep.2021. ilus, tab, graf
Article in English | LILACS | ID: biblio-1451272

ABSTRACT

BACKGROUND Cancer is a life-threatening disease that affects approximately 18 million individuals worldwide. Breast cancer is the most common female neoplasm globally with more than 276,480 new cases of invasive breast cancer expected to be diagnosed in women in the U.S. alone in 2020. Genetic and epigenetic factors play role in the carcinogenesis and progression of this disease. In this study, MCF-7 adenocarcinoma cells were transfected with CRISPR/Cas9 plasmid to either knock out CDK11 or to activate CDH1. Treated cells were allografted into the mammary glands of female rats (150­190 g, 6­8 weeks) to evaluate the capability of these cells to control cancer progression and metastasis. RESULTS qPCR data revealed a significant downregulation of CDK11 and upregulation of CDH1. Cell cycle analysis and apoptosis assays indicated the knockout of CDK11 and simultaneous activation of CDH1 resulted in cell cycle arrest at G2/M phase and accumulation of cells at G2. Meanwhile, the percentage of cells that underwent late apoptosis increased in both genome editing hits. Histopathological sectioning data indicated that untransfected MCF-7 cells were capable of developing tumors in the mammary gland and initiation g angiogenesis. Transfected cells significantly restricted cancer cell infiltration/invasion by minimally localizing tumors and inhibiting angiogenesis. CONCLUSIONS Although further investigation is needed, the present data indicate the potentiality of using CRISPR/Cas9-based therapy as a promising approach to treat breast cancer. Impact: these data indicate targeting cancer-related genes via any genome editing tool might represent a novel approach to combat cancer.


Subject(s)
Animals , Female , Rats , Breast Neoplasms/genetics , Adenocarcinoma/genetics , Cdh1 Proteins/genetics , CRISPR-Associated Protein 9/genetics , Breast Neoplasms/secondary , Rats, Sprague-Dawley
16.
Kaohsiung J Med Sci ; 37(11): 991-999, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34370374

ABSTRACT

The aim of the study was to investigate the role of NSUN2 (NOP2/Sun RNA Methyltransferase Family Member 2) in hepatocellular carcinoma (HCC). The expressions of NSUN2 and FZR1 were measured. Cell viability, proliferation, and apoptosis were assessed. HCC xenograft in nude mouse model was established. Tumor weight and volume were examined. Tumor tissues were collected for immunohistochemistry (IHC). TCGA database analysis and clinical sample testing suggested that the transcript levels of NSUN2 and FZR1 were increased in HCC tissues. NSUN2 knockdown inhibited HCC cell viability and proliferation, and promoted cell apoptosis. Moreover, the effects of NSUN2 could be countered by overexpressing FZR1. In animal experiment, NSUN2 silencing suppressed tumor growth in nude mice by downregulating FZR1. In conclusion, NSUN2 has a regulatory effect on HCC cell proliferation and apoptosis. NSUN2 knockout could inhibit cellular processes in HCC and tumor growth, likely via FZR1 inhibition. This finding has not only revealed the role of NSUN2 in HCC growth, but also suggests a promising target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cdh1 Proteins/genetics , Liver Neoplasms/genetics , Methyltransferases/genetics , Animals , Apoptosis/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cdh1 Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tumor Burden , Xenograft Model Antitumor Assays
17.
Cell Signal ; 86: 110087, 2021 10.
Article in English | MEDLINE | ID: mdl-34271087

ABSTRACT

NADPH is a cofactor used by reactive oxygen species (ROS) scavenging enzymes to block ROS produced in cells. Recently, it was shown that in cancer cells, ROS progressively increases in tune to cell cycle leading to a peak in mitosis. Loss of IDH2 is known to cause severe oxidative stress in cell and mouse models as ROS increases in mitochondria. Therefore, we hypothesized that IDH2, a major NADPH-producing enzyme in mitochondria is ubiquitinated for ROS to increase in mitosis. To test this hypothesis, in cancer cells we examined IDH2 ubiquitination in mitosis and measured the ROS produced. We found that IDH2 is ubiquitinated in mitosis and on inhibiting anaphase-promoting complex/Cyclosome (APC/C) IDH2 was stabilized. Further, we observed that overexpressing APC/C coactivator CDH1 decreased IDH2, whereas depleting CDH1 decreased IDH2 ubiquitination. To understand the link between IDH2 ubiquitination and ROS produced in mitosis, we show that overexpressing mitochondria-targeted-IDH1 decreased ROS by increasing NADPH in IDH2 ubiquitinated cells. We conclude that APC/C CDH1 ubiquitinates IDH2, a major NADPH-producing enzyme in mitochondria contributing to ROS increase in mitosis. Based on our results, we suggest that mitosis can be a therapeutic window in mutant IDH2-linked pathologies.


Subject(s)
Cdh1 Proteins/metabolism , Cell Cycle Proteins , Mitosis , Anaphase-Promoting Complex-Cyclosome , Animals , Cell Cycle , Cell Cycle Proteins/metabolism , Mice , Reactive Oxygen Species
18.
Exp Cell Res ; 404(2): 112632, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33971196

ABSTRACT

Retinoblastoma protein (pRB) regulates cell cycle by utilizing different regions of its pocket domain for interacting with E2F family of transcription factors and with cellular and viral proteins containing an LxCxE motif. An LxCxE-like motif, LxCxD, is present in FZR1, an adaptor protein of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C). The APC/CFZR1 complex regulates the timely degradation of multiple cell cycle proteins for mitotic exit and maintains G1 state. We report that FZR1 interacts with pRB via its LxCxD motif. By using point mutations, we found that the cysteine residue in the FZR1 LxCxD motif is critical for direct interaction with pRb. The direct binding of the LxCxD motif of FZR1 to the pRB LxCxE binding pocket is confirmed by using human papillomavirus protein E7 as a competitor, both in vitro and in vivo. While mutation of the cysteine residue significantly disrupts FZR1 interaction with pRB, this motif does not affect FZR1 and core APC/C association. Expression of the FZR1 point mutant results in accumulation of S-phase kinase-associated protein 2 (SKP2) and Polo-like kinase 1 (PLK1), while p27Kip1 and p21Cip1 proteins are downregulated, indicating a G1 cell cycle defect. Consistently, cells containing point mutant FZR1 enter the S phase prematurely. Together our results suggest that the LxCxD motif of FZR1 is a critical determinant for the interaction between FZR1 and pRB and is important for G1 restriction.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Cdh1 Proteins/metabolism , Cell Cycle/physiology , Retinoblastoma Protein/metabolism , Amino Acid Sequence/physiology , Anaphase-Promoting Complex-Cyclosome/genetics , Cell Cycle Proteins/genetics , Cell Division/physiology , Humans , Retinoblastoma Protein/genetics , Transcription Factors/metabolism
20.
Biochim Biophys Acta Mol Cell Res ; 1868(3): 118929, 2021 03.
Article in English | MEDLINE | ID: mdl-33310066

ABSTRACT

Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/metabolism , Cdc20 Proteins/metabolism , Cdh1 Proteins/metabolism , Lung Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , A549 Cells , Anaphase-Promoting Complex-Cyclosome/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , M Phase Cell Cycle Checkpoints , Mitosis , Phosphorylation , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...