Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.050
Filter
1.
J Transl Med ; 22(1): 551, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851695

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly heterogeneous, recurrent and aggressively invasive primary malignant brain tumor. The heterogeneity of GBM results in poor targeted therapy. Therefore, the aim of this study is to depict the cellular landscape of GBM and its peritumor from a single-cell perspective. Discovering new cell subtypes and biomarkers, and providing a theoretical basis for precision therapy. METHODS: We collected 8 tissue samples from 4 GBM patients to perform 10 × single-cell transcriptome sequencing. Quality control and filtering of data by Seurat package for clustering. Inferring copy number variations to identify malignant cells via the infercnv package. Functional enrichment analysis was performed by GSVA and clusterProfiler packages. STRING database and Cytoscape software were used to construct protein interaction networks. Inferring transcription factors by pySCENIC. Building cell differentiation trajectories via the monocle package. To infer intercellular communication networks by CellPhoneDB software. RESULTS: We observed that the tumor microenvironment (TME) varies among different locations and different GBM patients. We identified a proliferative cluster of oligodendrocytes with high expression of mitochondrial genes. We also identified two clusters of myeloid cells, one primarily located in the peritumor exhibiting an M1 phenotype with elevated TNFAIP8L3 expression, and another in the tumor and peritumor showing a proliferative tendency towards an M2 phenotype with increased DTL expression. We identified XIST, KCNH7, SYT1 and DIAPH3 as potential factors associated with the proliferation of malignant cells in GBM. CONCLUSIONS: These biomarkers and cell clusters we discovered may serve as targets for treatment. Targeted drugs developed against these biomarkers and cell clusters may enhance treatment efficacy, optimize immune therapy strategies, and improve the response rates of GBM patients to immunotherapy. Our findings provide a theoretical basis for the development of individualized treatment and precision medicine for GBM, which may be used to improve the survival of GBM patients.


Subject(s)
Biomarkers, Tumor , Glioblastoma , Single-Cell Analysis , Tumor Microenvironment , Humans , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cluster Analysis , Protein Interaction Maps , DNA Copy Number Variations/genetics , Cell Aggregation , Gene Expression Profiling
2.
J R Soc Interface ; 21(214): 20240105, 2024 May.
Article in English | MEDLINE | ID: mdl-38774959

ABSTRACT

During mesenchymal migration, F-actin protrusion at the leading edge and actomyosin contraction determine the retrograde flow of F-actin within the lamella. The coupling of this flow to integrin-based adhesions determines the force transmitted to the extracellular matrix and the net motion of the cell. In tissues, motion may also arise from convection, driven by gradients in tissue-scale surface tensions and pressures. However, how migration coordinates with convection to determine the net motion of cellular ensembles is unclear. To explore this, we study the spreading of cell aggregates on adhesive micropatterns on compliant substrates. During spreading, a cell monolayer expands from the aggregate towards the adhesive boundary. However, cells are unable to stabilize the protrusion beyond the adhesive boundary, resulting in retraction of the protrusion and detachment of cells from the matrix. Subsequently, the cells move upwards and rearwards, yielding a bulk convective flow towards the centre of the aggregate. The process is cyclic, yielding a steady-state balance between outward (protrusive) migration along the surface, and 'retrograde' (contractile) flows above the surface. Modelling the cell aggregates as confined active droplets, we demonstrate that the interplay between surface tension-driven flows within the aggregate, radially outward monolayer flow and conservation of mass leads to an internal circulation.


Subject(s)
Cell Adhesion , Cell Movement , Models, Biological , Cell Movement/physiology , Cell Adhesion/physiology , Cell Aggregation/physiology , Animals , Humans , Actins/metabolism
3.
Sci Rep ; 14(1): 10345, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710795

ABSTRACT

Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.


Subject(s)
Cell Differentiation , Coculture Techniques , Osteoblasts , Humans , Osteoblasts/metabolism , Osteoblasts/cytology , Cellular Microenvironment , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Osteogenesis , Cell Aggregation , Cells, Cultured
4.
PLoS Comput Biol ; 20(5): e1012089, 2024 May.
Article in English | MEDLINE | ID: mdl-38743660

ABSTRACT

Cell rearrangements are fundamental mechanisms driving large-scale deformations of living tissues. In three-dimensional (3D) space-filling cell aggregates, cells rearrange through local topological transitions of the network of cell-cell interfaces, which is most conveniently described by the vertex model. Since these transitions are not yet mathematically properly formulated, the 3D vertex model is generally difficult to implement. The few existing implementations rely on highly customized and complex software-engineering solutions, which cannot be transparently delineated and are thus mostly non-reproducible. To solve this outstanding problem, we propose a reformulation of the vertex model. Our approach, called Graph Vertex Model (GVM), is based on storing the topology of the cell network into a knowledge graph with a particular data structure that allows performing cell-rearrangement events by simple graph transformations. Importantly, when these same transformations are applied to a two-dimensional (2D) polygonal cell aggregate, they reduce to a well-known T1 transition, thereby generalizing cell-rearrangements in 2D and 3D space-filling packings. This result suggests that the GVM's graph data structure may be the most natural representation of cell aggregates and tissues. We also develop a Python package that implements GVM, relying on a graph-database-management framework Neo4j. We use this package to characterize an order-disorder transition in 3D cell aggregates, driven by active noise and we find aggregates undergoing efficient ordering close to the transition point. In all, our work showcases knowledge graphs as particularly suitable data models for structured storage, analysis, and manipulation of tissue data.


Subject(s)
Cell Aggregation , Models, Biological , Cell Aggregation/physiology , Computational Biology , Algorithms , Humans , Animals , Computer Simulation , Software
6.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38598843

ABSTRACT

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Subject(s)
Cell Adhesion , Cell Proliferation , Mesenchymal Stem Cells , Multiple Myeloma , Humans , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Apoptosis , Coculture Techniques , Cell Line, Tumor , Cell Aggregation , Cell Survival
7.
Nat Commun ; 15(1): 2018, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443393

ABSTRACT

Matrix-encapsulated communities of bacteria, called biofilms, are ubiquitous in the environment and are notoriously difficult to eliminate in clinical and industrial settings. Biofilm formation likely evolved as a mechanism to protect resident cells from environmental challenges, yet how bacteria undergo threat assessment to inform biofilm development remains unclear. Here we find that population-level cell lysis events induce the formation of biofilms by surviving Vibrio cholerae cells. Survivors detect threats by sensing a cellular component released through cell lysis, which we identify as norspermidine. Lysis sensing occurs via the MbaA receptor with genus-level specificity, and responsive biofilm cells are shielded from phage infection and attacks from other bacteria. Thus, our work uncovers a connection between bacterial lysis and biofilm formation that may be broadly conserved among microorganisms.


Subject(s)
Bacteriophages , Vibrio cholerae , Biofilms , Cell Aggregation , Cell Death
8.
J Allergy Clin Immunol ; 153(5): 1306-1318, 2024 May.
Article in English | MEDLINE | ID: mdl-38181841

ABSTRACT

BACKGROUND: Airway obstruction caused by viscous mucus is an important pathophysiologic characteristic of persistent inflammation, which can result in organ damage. OBJECTIVE: We investigated the hypothesis that the biophysical characteristics of accumulating granulocytes affect the clinical properties of mucus. METHODS: Surgically acquired nasal mucus samples from patients with eosinophilic chronic rhinosinusitis and neutrophil-dominant, noneosinophilic chronic rhinosinusitis were evaluated in terms of computed tomography density, viscosity, water content, wettability, and protein composition. Isolated human eosinophils and neutrophils were stimulated to induce the formation of extracellular traps, followed by the formation of aggregates. The biophysical properties of the aggregated cells were also examined. RESULTS: Mucus from patients with eosinophilic chronic rhinosinusitis had significantly higher computed tomography density, viscosity, dry weight, and hydrophobicity compared to mucus from patients with noneosinophilic chronic rhinosinusitis. The levels of eosinophil-specific proteins in mucus correlated with its physical properties. Eosinophil and neutrophil aggregates showed physical and pathologic characteristics resembling those of mucus. Cotreatment with deoxyribonuclease and heparin, which slenderizes the structure of eosinophil extracellular traps, efficiently induced reductions in the viscosity and hydrophobicity of both eosinophil aggregates and eosinophilic mucus. CONCLUSIONS: The present study elucidated the pathogenesis of mucus stasis in infiltrated granulocyte aggregates from a novel perspective. These findings may contribute to the development of treatment strategies for eosinophilic airway diseases.


Subject(s)
Eosinophils , Extracellular Traps , Mucus , Neutrophils , Rhinitis , Sinusitis , Humans , Sinusitis/immunology , Sinusitis/pathology , Rhinitis/immunology , Rhinitis/pathology , Eosinophils/immunology , Chronic Disease , Neutrophils/immunology , Mucus/metabolism , Male , Female , Adult , Extracellular Traps/immunology , Extracellular Traps/metabolism , Middle Aged , Viscosity , Cell Aggregation , Aged , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Rhinosinusitis
9.
Molecules ; 29(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202855

ABSTRACT

The isoquinoline alkaloid berberine, derived from Coptidis rhizoma, exhibits antibacterial, hypoglycemic, and anti-inflammatory properties. Canagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor. We synthesized compounds B9OC and B9OBU by conjugating canagliflozin and n-butane at the C9 position of berberine, aiming to develop antimicrobial agents for combating bacterial infections worldwide. We utilized clinically prevalent pathogenic bacteria, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, to investigate the antibacterial efficacy of B9OC. This was accomplished through the determination of the MIC80 values, analysis of bacterial growth curves, evaluation of biofilm formation using crystal violet staining, assessment of impact on bacterial proteins via SDS-PAGE analysis, and observation of alterations in bacterial morphology utilizing field emission scanning electron microscopy. Meanwhile, the ADMET of compound B9OC was predicted using a computer-aided method. The findings revealed that B9OC exhibited lower minimal inhibitory concentrations against all three bacteria compared to berberine alone or in combination with canagliflozin. The minimal inhibitory concentrations (MICs) of B9OC against the three experimental strains were determined to be 0.035, 0.258, and 0.331 mM. However, B9OBu exhibited a lower level of antimicrobial activity compared to berberine. The compound B9OC exhibits a broad spectrum of antibacterial activity by disrupting the integrity of bacterial cell walls, leading to cellular rupture and the subsequent degradation of intracellular proteins.


Subject(s)
Berberine , Berberine/pharmacology , Canagliflozin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Cell Aggregation , Escherichia coli
10.
Methods Mol Biol ; 2751: 71-79, 2024.
Article in English | MEDLINE | ID: mdl-38265710

ABSTRACT

Acidovorax avenae subsp. avenae (Aaa) is the causal agent of red stripe in sugarcane, a disease characterized by two forms: leaf stripe and top rot. Despite the importance of this disease, little is known about Aaa virulence factors (VFs) and their function in the infection process. Among the different array of VFs exerted by phytopathogenic bacteria, exopolysaccharides (EPSs) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell-cell recognition, surface adhesion, and biofilm formation. EPS composition and properties have been well studied for some plant pathogenic bacteria; nevertheless, there is no knowledge about Aaa-EPS. In this work, we describe a simple and reliable method for EPS production, precipitation, and quantification based on cold precipitation after ethanol addition, which will allow to study EPS characteristics of different Aaa strains and to evaluate the association among EPS (e.g., amount, composition, viscosity) and Aaa pathogenicity.


Subject(s)
Comamonadaceae , Virulence Factors , Cell Aggregation , Cell Communication
11.
J Biol Chem ; 299(12): 105377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866630

ABSTRACT

Lipid rafts are highly ordered membrane domains that are enriched in cholesterol and glycosphingolipids and serve as major platforms for signal transduction. Cell detachment from the extracellular matrix (ECM) triggers lipid raft disruption and anoikis, which is a barrier for cancer cells to metastasize. Compared to single circulating tumor cells (CTCs), our recent studies have demonstrated that CD44-mediatd cell aggregation enhances the stemness, survival and metastatic ability of aggregated cells. Here, we investigated whether and how lipid rafts are involved in CD44-mediated cell aggregation. We found that cell detachment, which mimics the condition when tumor cells detach from the ECM to metastasize, induced lipid raft disruption in single cells, but lipid raft integrity was maintained in aggregated cells. We further found that lipid raft integrity in aggregated cells was required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promoted CD44 cleavage and generated CD44 intracellular domain (CD44 ICD) to enhance stemness of aggregated cells. Consequently, lipid raft disruption inhibited Rac1 activation, CD44 ICD generation, and metastasis. Our findings reveal two new pathways regulated by CD44-mediated cell aggregation via maintaining lipid raft integrity. These findings also suggest that targeting cell aggregation-mediated pathways could be a novel therapeutic strategy to prevent CTC cluster-initiated metastasis.


Subject(s)
Hyaluronan Receptors , Membrane Microdomains , Monomeric GTP-Binding Proteins , rac1 GTP-Binding Protein , Cell Aggregation , Extracellular Matrix/metabolism , Membrane Microdomains/metabolism , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , MDA-MB-231 Cells , Humans , Animals , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Anoikis , Enzyme Activation , Neoplasm Metastasis
12.
Soft Matter ; 19(42): 8136-8149, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37847026

ABSTRACT

Reproducing bacteria self-organize to develop patterned biofilms in various conditions. Various factors contribute to the shaping of a multicellular bacterial organization. Here we investigate how motility force and self-secreted extracellular polymeric substances (EPS) influence bacterial cell aggregation, leading to phase-separated colonies using a particle-based/individual-based model. Our findings highlight the critical role of the interplay between motility force and depletion effects in regulating phase separation within a growing colony under far-from-equilibrium conditions. We observe that increased motility force hinders depletion-induced cell aggregation and phase segregation, necessitating a higher depletion effect for highly motile bacteria to undergo phase separation within a growing biofilm. We present a phase diagram illustrating the systematic variation of motility force and repulsive mechanical force, shedding light on the combined contributions of these two factors: self-propulsive motion and aggregation due to the depletion effect, resulting in the presence of small to large bacterial aggregates. Furthermore, our study reveals the dynamic nature of clustering, marked by changes in cluster size over time. Additionally, our findings suggest that differential dispersion among the components can lead to the localization of EPS at the periphery of a growing colony. Our study enhances the understanding of the collective dynamics of motile bacterial cells within a growing colony, particularly in the presence of a self-secreted polymer-driven depletion effect.


Subject(s)
Biofilms , Extracellular Polymeric Substance Matrix , Bacteria , Polymers , Cell Aggregation
13.
Sci Rep ; 13(1): 14656, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670076

ABSTRACT

Mechanical properties of bacterial colonies are crucial considering both addressing their pathogenic effects and exploring their potential applications. Viscoelasticity is a key mechanical property with major impacts on the cell shapes and functions, which reflects the information about the cell envelope constituents. Hereby, we have proposed the application of photoacoustic viscoelasticity (PAVE) for studying the rheological properties of bacterial colonies. In this regard, we employed an intensity-modulated laser beam as the excitation source followed by the phase delay measurement between the generated PA signal and the reference for the characterization of colonies of two different types of Gram-positive and Gram-negative bacteria. The results of our study show that the colony of Staphylococcus aureus as Gram-positive bacteria has a significantly higher viscoelasticity ratio compared to that value for Acinetobacter baumannii as Gram-negative bacteria (77% difference). This may be due to the differing cell envelope structure between the two species, but we cannot rule out effects of biofilm formation in the colonies. Furthermore, a lumped model has been provided for the mechanical properties of bacterial colonies.


Subject(s)
Acinetobacter baumannii , Gram-Positive Bacteria , Anti-Bacterial Agents , Gram-Negative Bacteria , Cell Aggregation
14.
PLoS Comput Biol ; 19(9): e1011424, 2023 09.
Article in English | MEDLINE | ID: mdl-37672526

ABSTRACT

Chronic Pseudomonas aeruginosa (Pa) lung infections are the leading cause of mortality among cystic fibrosis (CF) patients; therefore, the eradication of new-onset Pa lung infections is an important therapeutic goal that can have long-term health benefits. The use of early antibiotic eradication therapy (AET) has been shown to clear the majority of new-onset Pa infections, and it is hoped that identifying the underlying basis for AET failure will further improve treatment outcomes. Here we generated machine learning models to predict AET outcomes based on pathogen genomic data. We used a nested cross validation design, population structure control, and recursive feature selection to improve model performance and showed that incorporating population structure control was crucial for improving model interpretation and generalizability. Our best model, controlling for population structure and using only 30 recursively selected features, had an area under the curve of 0.87 for a holdout test dataset. The top-ranked features were generally associated with motility, adhesion, and biofilm formation.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Child , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Pseudomonas aeruginosa , Cell Aggregation , Pseudomonas Infections/complications , Pseudomonas Infections/drug therapy , Lung , Anti-Bacterial Agents/therapeutic use
15.
Nat Commun ; 14(1): 5643, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704603

ABSTRACT

The bacterial Tight adherence Secretion System (TadSS) assembles surface pili that drive cell adherence, biofilm formation and bacterial predation. The structure and mechanism of the TadSS is mostly unknown. This includes characterisation of the outer membrane secretin through which the pilus is channelled and recruitment of its pilotin. Here we investigate RcpA and TadD lipoprotein from Pseudomonas aeruginosa. Light microscopy reveals RcpA colocalising with TadD in P. aeruginosa and when heterologously expressed in Escherichia coli. We use cryogenic electron microscopy to determine how RcpA and TadD assemble a secretin channel with C13 and C14 symmetries. Despite low sequence homology, we show that TadD shares a similar fold to the type 4 pilus system pilotin PilF. We establish that the C-terminal four residues of RcpA bind TadD - an interaction essential for secretin formation. The binding mechanism between RcpA and TadD appears distinct from known secretin-pilotin pairings in other secretion systems.


Subject(s)
Gastrointestinal Hormones , Secretin , Bacterial Secretion Systems , Cell Aggregation , Escherichia coli/genetics , Pseudomonas aeruginosa
16.
ACS Appl Mater Interfaces ; 15(37): 43591-43606, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37681687

ABSTRACT

In the context of long-term antimicrobial treatment, the emergence of bacterial resistance poses a significant challenge. Therefore, there is a pressing need to develop novel antimicrobial materials and methods that can effectively and safely combat microbial infections. This study focuses on the synthesis of bacterial cellulose-polymethylene blue (BC-PMB) with integrated photodynamic and photoelectric antimicrobial properties. The polymerization of methyl blue (MB) onto bacterial celluloses (BC) was achieved, and through comprehensive computational analyses using density functional theory (DFT) and molecular dynamics simulations, it was confirmed that this polymerization greatly enhanced the binding efficiency between methylene blue and BC. Additionally, polymethylene blue (PMB) exhibited superior photoexcitation efficiency and conductivity compared to its precursor. When BC-PMB was exposed to a 30 mW 660 nm light source for 30 min, the material demonstrated a remarkable antimicrobial efficacy of 93.99% against Escherichia coli and 98.58% against Staphylococcus aureus. Furthermore, the synergistic effect of photodynamic and photoelectric antimicrobial mechanisms exhibited long-term inhibitory capabilities against bacterial biofilms.


Subject(s)
Biofilms , Methylene Blue , Methylene Blue/pharmacology , Polymerization , Cell Aggregation , Cellulose/pharmacology , Escherichia coli
17.
Sci Rep ; 13(1): 15368, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37717062

ABSTRACT

Vibrio species can cause foodborne infections and lead to serious gastrointestinal illnesses. The purpose of this research was to detect the Vibrio cholerae and Vibrio parahaemolyticus in raw milk, dairy products, and water samples. Also, it investigated the virulence factors, antibiotic resistance and biofilm formation in isolated bacteria. Conventional and molecular approaches were used to identify the isolates in this study. Vibrio species were detected in 5% of the samples. Vibrio cholerae and Vibrio parahaemolyticus were isolated from 1.25 and 1.5%, respectively, of the total samples. Penicillin resistance was detected in all strains of Vibrio cholerae and Vibrio parahaemolyticus, with a MAR index ranging from 0.16 to 0.5. Four isolates were moderate biofilm producer and three of them were MDR. When Vibrio cholerae was screened for virulence genes, ctxAB, hlyA, and tcpA were found in 80, 60, and 80% of isolates, respectively. However, tdh + /trh + associated-virulence genes were found in 33.3% of Vibrio parahaemolyticus isolates.


Subject(s)
Vibrio cholerae , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Biofilms , Cell Aggregation , Water
18.
Molecules ; 28(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687010

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen responsible for many nosocomial infections. This bacterium uses Quorum Sensing (QS) to generate antimicrobial resistance (AMR) so its disruption is considered a novel approach. The current study describes the antibiofilm and QS inhibitory potential of extract and chemical components from Piper pertomentellum. The methodo- logy included the phytochemical study on the aerial part of the species, the determination of QS inhibition efficacy on Chromobacterium violaceum and the evaluation of the effect on biofilm formation and virulence factors on P. aeruginosa. The phytochemical study led to the isolation and identification of a new piperamide (ethyltembamide 1), together with four known amides (tembamide acetate 2, cepharadione B 3, benzamide 4 and tembamide 5). The results indicated that the ethanolic extract and some fractions reduced violacein production in C. violaceum, however, only the ethanolic extract caused inhibition of biofilm formation of P. aeruginosa on polystyrene microtiter plates. Finally, the investigation determined that molecules (1-5) inhibited the formation of biofilms (50% approximately), while compounds 2-4 can inhibit pyocyanin and elastase production (30-50% approximately). In this way, the study contributes to the determination of the potential of extract and chemical constituents from P pertomentellum to regulate the QS system in P. aeruginosa.


Subject(s)
Pseudomonas aeruginosa , Quorum Sensing , Biofilms , Cell Aggregation , Plant Extracts/pharmacology
20.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37729203

ABSTRACT

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Subject(s)
Diatoms , Vibrio cholerae , Animals , Humans , Infant , Mice , Bacteria , Cell Aggregation , Gastrointestinal Tract , Intestines , Vibrio cholerae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...