Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55.656
Filter
1.
Methods Mol Biol ; 2805: 51-87, 2024.
Article in English | MEDLINE | ID: mdl-39008174

ABSTRACT

We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and ß-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.


Subject(s)
Bioreactors , Cell Culture Techniques , Cell Differentiation , Islets of Langerhans , Organoids , Pluripotent Stem Cells , Humans , Organoids/cytology , Organoids/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cell Culture Techniques/methods , Cryopreservation/methods
2.
Methods Mol Biol ; 2805: 89-100, 2024.
Article in English | MEDLINE | ID: mdl-39008175

ABSTRACT

Engineered heart tissues (EHTs) have been shown to be a valuable platform for disease investigation and therapeutic testing by increasing human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturity and better recreating the native cardiac environment. The protocol detailed in this chapter describes the generation of miniaturized EHTs (mEHTs) incorporating hiPSC-CMs and human stromal cells in a fibrin hydrogel. This platform utilizes an array of silicone posts designed to fit in a standard 96-well tissue culture plate. Stromal cells and hiPSC-CMs are cast in a fibrin matrix suspended between two silicone posts, forming an mEHT that produces synchronous muscle contractions. The platform presented here has the potential to be used for high throughput characterization and screening of disease phenotypes and novel therapeutics through measurements of the myocardial function, including contractile force and calcium handling, and its compatibility with immunostaining.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Tissue Engineering , Humans , Tissue Engineering/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Hydrogels/chemistry , Cell Differentiation , Fibrin/metabolism , Cells, Cultured , Cell Culture Techniques/methods , Stromal Cells/cytology , Tissue Culture Techniques/methods , Tissue Culture Techniques/instrumentation
3.
Methods Mol Biol ; 2805: 3-18, 2024.
Article in English | MEDLINE | ID: mdl-39008171

ABSTRACT

Three-dimensional (3D) organoid cultures retain self-renewing stem cells that differentiate into multiple cell types that display spatial organization and functional key features, providing a highly physiological relevant system. Here we describe a strategy for the generation of 3D murine lung organoids derived from freshly isolated primary tracheal and distal lung epithelial stem cells. Isolated tracheas are subjected to enzymatic digestion to release the epithelial layer that is then dissociated into a single cell suspension for organoid culture. Lung epithelial cells are obtained from dissected lobes, which are applied to mechanical and enzymatic dissociation. After flow sorting, organoids are established from tracheal basal, secretory club, and alveolar type 2 cells in the defined conditioned medium that is required to sustain organoid growth and generate the differentiated cells. Multi-cell-type organoid co-culture replicates niches for distal epithelial stem cells to differentiate into bronchiolar and alveolar cell types. Established organoids can be fixed for wholemount staining and paraffin embedding, or passaged for further culture. Taken together, this protocol provides an efficient and validated approach to generate murine lung organoids, as well as a platform for further analysis.


Subject(s)
Cell Differentiation , Lung , Organoids , Animals , Organoids/cytology , Mice , Lung/cytology , Cell Culture Techniques/methods , Cell Separation/methods , Epithelial Cells/cytology , Stem Cells/cytology , Stem Cells/metabolism , Phenotype , Trachea/cytology , Coculture Techniques/methods
4.
Methods Mol Biol ; 2805: 19-30, 2024.
Article in English | MEDLINE | ID: mdl-39008172

ABSTRACT

Transformed lung organoids have extensive applications in lung cancer modeling and drug screening. Traditional two-dimensional (2D) cultures fail to propagate a large subpopulation of murine primary tumors in vitro. However, three-dimensional (3D) air-liquid interface (ALI) cultures, which are employed to grow normal lung organoids, can be used to efficiently culture cancerous lung tumor cells. Here, we detail a procedure for cultivating genetically modified lung organoids in 3D-ALI cultures. This protocol contains two parts. The first part describes how to transduce lung epithelial cells, which are either freshly sorted from lungs or from actively growing murine organoids, with virus in order to modify gene expression. The target lung cells are incubated with virus for 1-2 h for transduction. Then, the transduced cells are thoroughly washed and mixed with stromal support cells and Matrigel and are loaded into transwell inserts for culture and validated for genetic modifications through downstream assays. The second part describes how to isolate tumor cells growing orthotopically in genetically engineered mouse models to produce organoid cell lines that can be used for ex vivo drug discovery assays. For this protocol, tumors are isolated from lungs of mice, finely chopped and washed. Then, tumor chunks are mixed with Matrigel for 3D-ALI culture. Finally, organoids budding from tumor chunks are trypsinized and passaged to establish an organoid line. Together these two protocols provide a promising platform to study the genesis, progression, and treatment of lung cancer.


Subject(s)
Lung Neoplasms , Lung , Organoids , Organoids/cytology , Animals , Mice , Lung/cytology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Culture Techniques, Three Dimensional/methods , Humans , Cell Culture Techniques/methods , Epithelial Cells/cytology , Transduction, Genetic/methods
5.
Methods Mol Biol ; 2805: 31-50, 2024.
Article in English | MEDLINE | ID: mdl-39008173

ABSTRACT

Cell patterning for 3D culture has increased our understanding of how cells interact among themselves and with their environment during tissue morphogenesis. Building cell communities from the bottom up with size and compositional control is invaluable for studies of morphological transitions. Here, we detail Photolithographic DNA-programmed Assembly of Cells (pDPAC). pDPAC uses a photoactive polyacrylamide gel substrate to capture single-stranded DNA on a 2D surface in large-scale, highly resolved patterns using the photomask technology. Cells are then functionalized with a complementary DNA strand, enabling cells to be temporarily adhered to distinct locations only where their complementary strand is patterned. These temporary 2D patterns can be transferred to extracellular matrix hydrogels for 3D culture of cells in biomimetic microenvironments. Use of a polyacrylamide substrate has advantages, including a simpler photolithography workflow, lower non-specific cell adhesion, and lower stiction to ECM hydrogels during release of patterned hydrogels. The protocol is equally applicable to large (cm)-scale patterns and repetitive arrays of smaller-scale cell interaction or migration experiments.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Humans , Tissue Engineering/methods , Acrylic Resins/chemistry , Cell Adhesion , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Cell Culture Techniques/methods , Animals , Cell Culture Techniques, Three Dimensional/methods
6.
Methods Mol Biol ; 2805: 101-112, 2024.
Article in English | MEDLINE | ID: mdl-39008176

ABSTRACT

Cell-cell interactions typically occur in a 3D context that is distinct from conventional 2D cell-substrate interactions in a Petri dish. Here, we describe a benchtop method to combine a 2D extracellular matrix surface with a 3D, vertical boundary functionalized with the extracellular domain of E-cadherin. The methodology is suitable for any biology laboratory without requiring advanced microfabrication equipment or training. Overall, this cell-mimetic interface uniquely recapitulates key aspects of cell-cell adhesion and can serve as a versatile, reductionist technique to study general cell-cell interactions in a 3D context.


Subject(s)
Biocompatible Materials , Cadherins , Cell Adhesion , Cell Communication , Intercellular Junctions , Intercellular Junctions/metabolism , Humans , Biocompatible Materials/chemistry , Cadherins/metabolism , Extracellular Matrix/metabolism , Cell Culture Techniques/methods
7.
Methods Mol Biol ; 2829: 3-11, 2024.
Article in English | MEDLINE | ID: mdl-38951323

ABSTRACT

Healthy insect cell cultures are critical for any method described in this book, including making productive baculovirus banks, protein or AAV expression, and determining viral titers. This chapter describes cell maintenance in shake flasks using serum-free conditions and the expansion of virus stocks from a single plaque purified virus. Insect cells can be passaged over multiple generations, but as the cells may undergo changes over multiple passages, limiting the use of your cells to a defined number of passages such as 50 passages is recommendable. Baculovirus stocks once created using serum-free media are not very stable at 4-8 °C. This chapter also includes a simple method to store cells from an early cell passage and your virus stock in liquid nitrogen.


Subject(s)
Baculoviridae , Cell Culture Techniques , Animals , Baculoviridae/genetics , Cell Culture Techniques/methods , Insecta/virology , Insecta/cytology , Cell Line
8.
Methods Mol Biol ; 2829: 49-66, 2024.
Article in English | MEDLINE | ID: mdl-38951326

ABSTRACT

This chapter outlines the workflow using the ExpiSf™ Expression System designed for high-density infection of suspension ExpiSf9™ cells. The system utilizes a chemically defined, serum-free, protein-free, and animal origin free medium, making it suitable for recombinant protein expression experiments. The ExpiSf™ chemically defined medium allows efficient transfection and baculovirus production directly within the same culture medium. The ExpiSf™ Expression System Starter Kit provides all necessary components, including cells, culture medium, and reagents needed to infect one (1) liter of cell culture. The system's versatility and animal origin free nature make it a valuable tool for various protein expression studies and biotechnological applications.


Subject(s)
Baculoviridae , Recombinant Proteins , Workflow , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Baculoviridae/genetics , Transfection/methods , Culture Media/chemistry , Cell Culture Techniques/methods , Cell Line , Gene Expression
9.
Methods Mol Biol ; 2829: 79-90, 2024.
Article in English | MEDLINE | ID: mdl-38951328

ABSTRACT

Adaptive laboratory evolution (ALE) is a powerful tool for enhancing the fitness of cell lines in specific applications, including recombinant protein production. Through adaptation to nonstandard culture conditions, cells can develop specific traits that make them high producers. Despite being widely used for microorganisms and, to lesser extent, for mammalian cells, ALE has been poorly leveraged for insect cells. Here, we describe a method for adapting insect High Five and Sf9 cells to nonstandard culture conditions via an ALE approach. Aiming to demonstrate the potential of ALE to improve productivity of insect cells, two case studies are demonstrated. In the first, we adapted insect High Five cells from their standard pH (6.2) to neutral pH (7.0); this adaptation allowed to improve production of influenza virus-like particles (VLPs) by threefold, using the transient baculovirus expression vector system. In the second, we adapted insect Sf9 cells from their standard culture temperature (27 °C) to hypothermic growth (22 °C); this adaptation allowed to improve production of influenza VLPs by sixfold, using stable cell lines. These examples demonstrate the potential of ALE for enhancing productivity within distinct insect cell hosts and expression systems by manipulating different culture conditions.


Subject(s)
Recombinant Proteins , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cell Line , Sf9 Cells , Baculoviridae/genetics , Cell Culture Techniques/methods , Insecta/genetics , Insecta/cytology , Directed Molecular Evolution/methods , Hydrogen-Ion Concentration , Temperature
10.
Methods Mol Biol ; 2829: 277-286, 2024.
Article in English | MEDLINE | ID: mdl-38951344

ABSTRACT

Quantitative immunoassays, such as the traditional enzyme-linked immunosorbent assay (ELISA), are used to determine concentrations of an antigen in a matrix of unknown antigen concentration. Magnetic immunoassays, such as the Luminex xMAP technology, allow for the simultaneous detection of multiple analytes and offer heightened sensitivity, specificity, low sample volume requirements, and high-throughput capabilities. Here, we describe a quantitative immunoassay using the Luminex MAGPIX® System to determine the antigen concentration from liquid samples with unknown concentrations. In detail, we describe a newly developed assay for determining production yields of Drosophila S2-produced Marburg virus (MARV) glycoprotein in insect-cell-culture-derived supernatant. The potential applications of this assay could extend to the quantification of viral antigens in fluids derived from both in vitro and in vivo models infected with live MARV, thereby providing additional applications for virological research.


Subject(s)
Antigens, Viral , Microspheres , Animals , Immunoassay/methods , Antigens, Viral/immunology , Antigens, Viral/analysis , Marburgvirus/immunology , Marburgvirus/isolation & purification , Drosophila , Cell Culture Techniques/methods , Cell Line , Enzyme-Linked Immunosorbent Assay/methods
11.
Methods Mol Biol ; 2827: 15-34, 2024.
Article in English | MEDLINE | ID: mdl-38985260

ABSTRACT

Statistics and experimental design are important tools for plant cell and tissue culture researchers and should be used when planning and conducting experiments as well as during the analysis and interpretation of experimental results. The chapter provides basic concepts important to the statistical analysis of data obtained from plant tissue culture experiments and illustrates the application of common statistical procedures to analyze binomial, count, and continuous data for experiments with different treatment factors as well as identifying trends of dosage treatment factors.


Subject(s)
Plant Cells , Tissue Culture Techniques , Tissue Culture Techniques/methods , Cell Culture Techniques/methods , Data Interpretation, Statistical
12.
Methods Mol Biol ; 2827: 145-153, 2024.
Article in English | MEDLINE | ID: mdl-38985267

ABSTRACT

Plant cell suspension cultures (PCSCs) are in vitro-cultured cells that can divide indefinitely in a sterile growth medium. These PCSCs can be derived from various plant tissues, such as the root, stem, leaves, or seeds, and are maintained in a suitable culture medium containing nutrients, vitamins, hormones, and other essential components necessary for their growth. PCSCs have extensive applications in biotechnology, particularly in producing pharmaceutical and chemical compounds. This chapter presents a protocol for generating cell lines from Arabidopsis thaliana root callus under different light conditions, which can be used to investigate the effects of light on plant cell growth and development. The protocol described in this chapter is a valuable tool for researchers interested in utilizing PCSCs in their studies.


Subject(s)
Arabidopsis , Cell Culture Techniques , Light , Arabidopsis/cytology , Arabidopsis/growth & development , Cell Culture Techniques/methods , Plant Roots/cytology , Plant Roots/growth & development , Culture Media/chemistry , Cells, Cultured
13.
Methods Mol Biol ; 2827: 303-322, 2024.
Article in English | MEDLINE | ID: mdl-38985279

ABSTRACT

For centuries plants have been intensively utilized as reliable sources of food, flavoring, and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to the climate change and agriculture. Plant biotechnology offers a sustainable approach for the bioproduction of specialized plant metabolites. The unique structural features of plant-derived specialized metabolites, such as their safety profile and multi-target spectrum, have led to the establishment of many plant-derived drugs. However, there are still many challenges to overcome regarding the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant specialized metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this book chapter, we attempted to focus on the advantages of plant in vitro systems and in particular plant cell suspensions for their cultivation as a source of plant-derived specialized metabolites. A state-of-the-art technological platform for plant cell suspension cultivation from callus induction to lab-scale cultivation, extraction, and purification is presented. Possibilities for bioreactor cultivation of plant cell suspensions in benchtop and large-scale volumes are highlighted, including several examples and patents for industrial production of specialized metabolites.


Subject(s)
Bioreactors , Cell Culture Techniques , Plant Cells , Cell Culture Techniques/methods , Plant Cells/metabolism , Plants/metabolism , Biotechnology/methods
14.
Nat Commun ; 15(1): 5929, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009604

ABSTRACT

Human iPSC-derived cardiomyocytes (hiPSC-CMs) have proven invaluable for cardiac disease modeling and regeneration. Challenges with quality, inter-batch consistency, cryopreservation and scale remain, reducing experimental reproducibility and clinical translation. Here, we report a robust stirred suspension cardiac differentiation protocol, and we perform extensive morphological and functional characterization of the resulting bioreactor-differentiated iPSC-CMs (bCMs). Across multiple different iPSC lines, the protocol produces 1.2E6/mL bCMs with ~94% purity. bCMs have high viability after cryo-recovery (>90%) and predominantly ventricular identity. Compared to standard monolayer-differentiated CMs, bCMs are more reproducible across batches and have more mature functional properties. The protocol also works with magnetically stirred spinner flasks, which are more economical and scalable than bioreactors. Minor protocol modifications generate cardiac organoids fully in suspension culture. These reproducible, scalable, and resource-efficient approaches to generate iPSC-CMs and organoids will expand their applications, and our benchmark data will enable comparison to cells produced by other cardiac differentiation protocols.


Subject(s)
Bioreactors , Cell Culture Techniques , Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Organoids/cytology , Cell Culture Techniques/methods , Reproducibility of Results , Cells, Cultured , Cryopreservation/methods
15.
Reprod Domest Anim ; 59(7): e14661, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979950

ABSTRACT

Spermatogonial stem cells (SSCs) comprise the foundation of spermatogenesis and hence have great potential for fertility preservation of rare or endangered species and the development of transgenic animals and birds. Yet, developing optimal conditions for the isolation, culture, and maintenance of SSCs in vitro remains challenging, especially for chicken. The objectives of this study were to (1) find the optimal age for SSC isolation in Huaixiang chicken, (2) develop efficient protocols for the isolation, (3) enrichment, and (4) culture of isolated SSCs. In the present study, we first compared the efficiency of SSC isolation using 11 different age groups (8-79 days of age) of Huaixiang chicken. We found that the testes of 21-day-old chicken yielded the highest cell viability. Next, we compared two different enzymatic combinations for isolating SSCs and found that 0.125% trypsin and 0.02 g/L EDTA supported the highest number and viability of SSCs. This was followed by investigating optimal conditions for the enrichment of SSCs, where we observed that differential plating had the highest enrichment efficiency compared to the Percoll gradient and magnetic-activated cell sorting methods. Lastly, to find the optimal culture conditions of SSCs, we compared adding different concentrations of foetal bovine serum (FBS; 2%, 5%, 7%, and 10%) and different concentrations of GDNF, bFGF, or LIF (5, 10, 20, or 30 ng/mL). We found that a combination of 2% FBS and individual growth factors, including GDNF (20 ng/mL), bFGF (30 ng/mL), or LIF (5 ng/mL), best supported the proliferation and colony formation of SSCs. In conclusion, SSCs can be optimally isolated through enzymatic digestion from testes of 21-day-old chicken, followed by enrichment using differential plating. Furthermore, adding 2% FBS and optimized concentrations of GFNF, bFGF, or LIF in the culture promotes the proliferation of chicken SSCs.


Subject(s)
Adult Germline Stem Cells , Cell Culture Techniques , Cell Separation , Chickens , Animals , Male , Cell Culture Techniques/veterinary , Cell Separation/methods , Cell Separation/veterinary , Testis/cytology , Spermatogonia/cytology , Cell Survival , Cells, Cultured
16.
Sci Rep ; 14(1): 15592, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971841

ABSTRACT

The production of cultured red blood cells (cRBC) for transfusion purposes requires large scale cultures and downstream processes to purify enucleated cRBC. The membrane composition, and cholesterol content in particular, are important during proliferation of (pro)erythroblasts and for cRBC quality. Therefore, we tested the requirement for cholesterol in the culture medium during expansion and differentiation of erythroid cultures with respect to proliferation, enucleation and purification by filtration. The low cholesterol level (22 µg/dl) in serum free medium was sufficient to expand (pro)erythroblast cultures. Addition of 2.0 or 5.0 mg/dL of free cholesterol at the start of differentiation induction inhibited enucleation compared to the default condition containing 3.3 mg/dl total cholesterol derived from the addition of Omniplasma to serum free medium. Addition of 5.0 mg/dl cholesterol at day 5 of differentiation did not affect the enucleation process but significantly increased recovery of enucleated cRBC following filtration over leukodepletion filters. The addition of cholesterol at day 5 increased the osmotic resistance of cRBC. In conclusion, cholesterol supplementation after the onset of enucleation improved the robustness of cRBC and increased the yield of enucleated cRBC in the purification process.


Subject(s)
Cholesterol , Culture Media , Erythrocytes , Cholesterol/metabolism , Humans , Erythrocytes/metabolism , Culture Media/chemistry , Cells, Cultured , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Culture Techniques/methods , Erythroblasts/metabolism , Erythroblasts/cytology , Culture Media, Serum-Free
17.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007625

ABSTRACT

The most common peripheral neuronal feature of pain is a lowered stimulation threshold or hypersensitivity of terminal nerves from the dorsal root ganglia (DRG). One proposed cause of this hypersensitivity is associated with the interaction between immune cells in the peripheral tissue and neurons. In vitro models have provided foundational knowledge in understanding how these mechanisms result in nociceptor hypersensitivity. However, in vitro models face the challenge of translating efficacy to humans. To address this challenge, a physiologically and anatomically relevant in vitro model has been developed for the culture of intact dorsal root ganglia (DRGs) in three isolated compartments in a 48-well plate. Primary DRGs are harvested from adult Sprague Dawley rats after humane euthanasia. Excess nerve roots are trimmed, and the DRG is cut into appropriate sizes for culture. DRGs are then grown in natural hydrogels, enabling robust growth in all compartments. This multi-compartment system offers anatomically relevant isolation of the DRG cell bodies from neurites, physiologically relevant cell types, and mechanical properties to study the interactions between neural and immune cells. Thus, this culture platform provides a valuable tool for investigating treatment isolation strategies, ultimately leading to an improved screening approach for predicting pain.


Subject(s)
Ganglia, Spinal , Rats, Sprague-Dawley , Animals , Ganglia, Spinal/cytology , Rats , Neurons/cytology , Cell Culture Techniques/methods , Tissue and Organ Harvesting/methods
18.
Cells ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38994999

ABSTRACT

Natural killer (NK) cells hold promise in cancer treatment due to their ability to spontaneously lyse cancer cells. For clinical use, high quantities of pure, functional NK cells are necessary. Combining adherence-based isolation with specialized media showed the unreliability of the isolation method, but demonstrated the superiority of the NK MACS® medium, particularly in suboptimal conditions. Neither human pooled serum, fetal calf serum (FCS), human platelet lysate, nor chemically defined serum replacement could substitute human AB serum. Interleukin (IL-)2, IL-15, IL-21, and combined CD2/NKp46 stimulation were assessed. IL-21 and CD2/NKp46 stimulation increased cytotoxicity, but reduced NK cell proliferation. IL-15 stimulation alone achieved the highest proliferation, but the more affordable IL-2 performed similarly. The RosetteSep™ human NK cell enrichment kit was effective for isolation, but the presence of peripheral blood mononuclear cells (PBMCs) in the culture enhanced NK cell proliferation, despite similar expression levels of CD16, NKp46, NKG2D, and ICAM-1. In line with this, purified NK cells cultured in NK MACS® medium with human AB serum and IL-2 demonstrated high cytotoxicity against primary glioblastoma stem cells.


Subject(s)
Cell Proliferation , Culture Media , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cell Culture Techniques/methods , Interleukin-2/metabolism , Cytotoxicity, Immunologic , Interleukin-15/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Neoplastic Stem Cells/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Cell Separation/methods
19.
Front Immunol ; 15: 1356397, 2024.
Article in English | MEDLINE | ID: mdl-38975341

ABSTRACT

Introduction: Within adipose tissue (AT), different macrophage subsets have been described, which played pivotal and specific roles in upholding tissue homeostasis under both physiological and pathological conditions. Nonetheless, studying resident macrophages in-vitro poses challenges, as the isolation process and the culture for extended periods can alter their inherent properties. Methods: Stroma-vascular cells isolated from murine subcutaneous AT were seeded on ultra-low adherent plates in the presence of macrophage colony-stimulating factor. After 4 days of culture, the cells spontaneously aggregate to form spheroids. A week later, macrophages begin to spread out of the spheroid and adhere to the culture plate. Results: This innovative three-dimensional (3D) culture method enables the generation of functional mature macrophages that present distinct genic and phenotypic characteristics compared to bone marrow-derived macrophages. They also show specific metabolic activity and polarization in response to stimulation, but similar phagocytic capacity. Additionally, based on single-cell analysis, AT-macrophages generated in 3D culture mirror the phenotypic and functional traits of in-vivo AT resident macrophages. Discussion: Our study describes a 3D in-vitro system for generating and culturing functional AT-resident macrophages, without the need for cell sorting. This system thus stands as a valuable resource for exploring the differentiation and function of AT-macrophages in vitro in diverse physiological and pathological contexts.


Subject(s)
Adipose Tissue , Cell Culture Techniques, Three Dimensional , Cell Differentiation , Macrophages , Animals , Macrophages/immunology , Macrophages/metabolism , Mice , Adipose Tissue/cytology , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Phagocytosis , Mice, Inbred C57BL , Spheroids, Cellular/cytology , Cell Culture Techniques/methods , Phenotype
20.
Methods Mol Biol ; 2827: 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38985259

ABSTRACT

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Subject(s)
Plant Cells , Tissue Culture Techniques , Cell Culture Techniques/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Plant Breeding/methods , Plant Cells/metabolism , Plant Development/genetics , Plants/genetics , Plants/metabolism , Tissue Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...