Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.018
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829121

ABSTRACT

In the realm of regenerative medicine and therapeutic applications, stem cell research is rapidly gaining traction. Dental pulp stem cells (DPSCs), which are present in both deciduous and permanent teeth, have emerged as a vital stem cell source due to their accessibility, adaptability, and innate differentiation capabilities. DPSCs offer a readily available and abundant reservoir of mesenchymal stem cells, showcasing impressive versatility and potential, particularly for regenerative purposes. Despite their promise, the main hurdle lies in effectively isolating and characterizing DPSCs, given their representation as a minute fraction within dental pulp cells. Equally crucial is the proper preservation of this invaluable cellular resource. The two predominant methods for DPSC isolation are enzymatic digestion (ED) and outgrowth from tissue explants (OG), often referred to as spontaneous growth. This protocol concentrates primarily on the enzymatic digestion approach for DPSC isolation, intricately detailing the steps encompassing extraction, in-lab processing, and cell preservation. Beyond extraction and preservation, the protocol delves into the differentiation prowess of DPSCs. Specifically, it outlines the procedures employed to induce these stem cells to differentiate into adipocytes, osteoblasts, and chondrocytes, showcasing their multipotent attributes. Subsequent utilization of colorimetric staining techniques facilitates accurate visualization and confirmation of successful differentiation, thereby validating the caliber and functionality of the isolated DPSCs. This comprehensive protocol functions as a blueprint encompassing the entire spectrum of dental pulp stem cell extraction, cultivation, preservation, and characterization. It underscores the substantial potential harbored by DPSCs, propelling forward stem cell exploration and holding promise for future regenerative and therapeutic breakthroughs.


Subject(s)
Dental Pulp , Stem Cells , Tooth, Deciduous , Dental Pulp/cytology , Humans , Stem Cells/cytology , Tooth, Deciduous/cytology , Dentition, Permanent , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Separation/methods
2.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829450

ABSTRACT

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Subject(s)
Antineoplastic Agents , Cell Culture Techniques , Spheroids, Cellular , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Spheroids, Cellular/drug effects , Cell Culture Techniques/methods , Doxorubicin/pharmacology , Paclitaxel/pharmacology , Cisplatin/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Cell Culture Techniques, Three Dimensional/methods , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effects , Cell Survival/drug effects
3.
Sci Rep ; 14(1): 12654, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825595

ABSTRACT

Mesenchymal stromal cells (MSC) from adult bone marrow are the most commonly used cells in clinical trials. MSCs from single donors are the preferred starting material but suffer from a major setback of being heterogeneous that results in unpredictable and inconsistent clinical outcomes. To overcome this, we developed a method of pooling MSCs from different donors and created cell banks to cater clinical needs. Initially, the master cell banks (MCBs) were created at passage 1 (P1) from the bone marrow MSCs isolated from of nine different donors. At this stage, MCBs from three different donors were mixed in equal proportion and expanded till P3 to create working cell banks. Further, the pooled cells and individual donor MSCs were expanded till P5 and cryopreserved and extensively characterised. There was a large heterogeneity among the individual donor MSCs in terms of growth kinetics (90% Coefficient of variation (CV) for cell yield and 44% CV for population doubling time at P5), immunosuppressive ability (30% CV at 1:1 and 300% CV at 1:10 ratio), and the angiogenic factor secretion potential (20% CV for VEGF and71% CV for SDF-1). Comparatively, the pooled cells have more stable profiles (60% CV for cell yield and 7% CV for population doubling time at P5) and exhibit better immunosuppressive ability (15% CV at 1:1 and 32% CV at 1:10 ratio ) and consistent secretion of angiogenic factors (16% CV for VEGF and 51% CV for SDF-1). Further pooling does not compromise the trilineage differentiation capacity or phenotypic marker expression of the MSCs. The senescence and in vitro tumourigenicity characteristics of the pooled cells are also similar to those of individual donor MSCs. We conclude that pooling of MSCs from three different donors reduces heterogeneity among individual donors and produces MSCs with a consistent secretion and higher immunosuppressive profile.


Subject(s)
Bone Marrow Cells , Mesenchymal Stem Cells , Tissue Donors , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation , Cryopreservation/methods , Cell Proliferation , Cells, Cultured , Adult , Cell Culture Techniques/methods
4.
Methods Mol Biol ; 2800: 11-25, 2024.
Article in English | MEDLINE | ID: mdl-38709474

ABSTRACT

Fibroblasts are the major producers of the extracellular matrix and regulate its organization. Aberrant signaling in diseases such as fibrosis and cancer can impact the deposition of the matrix proteins, which can in turn act as an adhesion scaffold and signaling reservoir promoting disease progression. To study the composition and organization of the extracellular matrix as well as its interactions with (tumor) cells, this protocol describes the generation and analysis of 3D fibroblast-derived matrices and the investigation of (tumor) cells seeded onto the 3D scaffolds by immunofluorescent imaging and cell adhesion, colony formation, migration, and invasion/transmigration assays.


Subject(s)
Cell Adhesion , Cell Movement , Extracellular Matrix , Fibroblasts , Signal Transduction , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Cell Line, Tumor , Cell Culture Techniques/methods , Neoplasms/metabolism , Neoplasms/pathology , Cell Communication , Cell Culture Techniques, Three Dimensional/methods , Animals , Tissue Scaffolds/chemistry
5.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793654

ABSTRACT

Based on several clinical observations it was hypothesized that herpesviruses may influence the replication of human bocaviruses, the second known parvoviruses that have been confirmed as human pathogens. While several cell lines support the growth of HSV-1, HBoV-1 was exclusively cultivated on air-liquid interface cultures, the latter being a rather complicated, slow, and low throughput system. One of the cell lines are T84 cells, which are derived from the lung metastasis of a colorectal tumor. In this study, we provide evidence that T84 also supports HBoV replication when cultivated as monolayers, while simultaneously being permissive for HSV-1. The cell culture model thus would enable co-infection studies of both viruses and is worth being optimized for high throughput studies with HBoV-1. Additionally, the study provides evidence for a supporting effect of HSV-1 on the replication and packaging of HBoV-1 progeny DNA into DNase-resistant viral particles.


Subject(s)
Coinfection , Herpesvirus 1, Human , Human bocavirus , Virus Replication , Herpesvirus 1, Human/physiology , Humans , Coinfection/virology , Human bocavirus/physiology , Human bocavirus/genetics , Cell Line , Cell Line, Tumor , Cell Culture Techniques/methods , Herpes Simplex/virology , Parvoviridae Infections/virology , Chlorocebus aethiops , Virus Cultivation/methods
6.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793649

ABSTRACT

Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.


Subject(s)
Influenza Vaccines , Virion , Animals , Dogs , Madin Darby Canine Kidney Cells , Virion/isolation & purification , Chromatography, Ion Exchange/methods , Virus Cultivation/methods , Orthomyxoviridae/isolation & purification , Cell Culture Techniques/methods
7.
Stem Cell Res Ther ; 15(1): 131, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702793

ABSTRACT

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS: Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS: The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION: This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Wharton Jelly/cytology , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Cell Proliferation , Cell Separation/methods , Cell Separation/standards
8.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702837

ABSTRACT

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Subject(s)
Cell Differentiation , Hyaluronic Acid , Mesenchymal Stem Cells , Pluripotent Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Culture Media, Serum-Free/pharmacology , Cell Lineage , Cells, Cultured , Cell Culture Techniques/methods , Coculture Techniques
9.
Function (Oxf) ; 5(3): zqae012, 2024.
Article in English | MEDLINE | ID: mdl-38706963

ABSTRACT

Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.


Subject(s)
Acute Kidney Injury , Extracellular Vesicles , Acute Kidney Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Humans , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Animals , Cell Culture Techniques/methods , MicroRNAs/metabolism , MicroRNAs/genetics
10.
Curr Protoc ; 4(5): e1012, 2024 May.
Article in English | MEDLINE | ID: mdl-38712688

ABSTRACT

Although protocols to generate authentic transgene-free mouse and human induced pluripotent stem cells (iPSCs) are now well established, standard methods for reprogramming porcine somatic cells still suffer from low efficiency and transgene retention. The Basic Protocol describes reprogramming procedures to establish transgene-free porcine iPSCs (PiPSCs) from porcine fibroblasts. This method uses episomal plasmids encoding POU5F1, SOX2, NANOG, KLF4, SV40LT, c-MYC, LIN28A, and microRNA-302/367, combined with an optimized medium, to establish PiPSC lines. Support protocols describe the establishment and characterization of clonal PiPSC lines, as well as the preparation of feeder cells and EBNA1 mRNA. This optimized, step-by-step approach tailored to this species enables the efficient derivation of PiPSCs in ∼4 weeks. The establishment of transgene-free PiPSCs provides a new and valuable model for studies of larger mammalian species' development, disease, and regenerative biology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Reprogramming of porcine fibroblasts with episomal plasmids Support Protocol 1: Preparation of mouse embryonic fibroblasts for feeder layer Support Protocol 2: Preparation of in vitro-transcribed EBNA1 mRNA Support Protocol 3: Establishment of clonal porcine induced pluripotent stem cell (PiPSC) lines Support Protocol 4: PiPSC characterization: Genomic DNA PCR and RT-PCR Support Protocol 5: PiPSC characterization: Immunostaining.


Subject(s)
Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Transgenes , Animals , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Swine , Mice , Fibroblasts/cytology , Fibroblasts/metabolism , Cell Culture Techniques/methods , Cellular Reprogramming/genetics
11.
Methods Mol Biol ; 2804: 77-89, 2024.
Article in English | MEDLINE | ID: mdl-38753141

ABSTRACT

Extracellular vesicles (EVs) are secreted by cells and found in biological fluids such as blood, with concentration correlated with oncogenic signals, making them attractive biomarkers for liquid biopsy. The current gold-standard method for EVs isolation requires an ultracentrifugation (UC) step among others. The cost and complexity of this technique are forbiddingly high for many researchers, as well as for routine use in biological laboratories and hospitals. This chapter reports on a simple microfluidic method for EVs isolation, based on a microfluidic size sorting technique named Deterministic Lateral Displacement (DLD). With the design of micrometric DLD array, we demonstrated the potential of our DLD devices for the isolation of nano-biological objects such as EVs, with main population size distribution consistent with UC technique.


Subject(s)
Extracellular Vesicles , Lab-On-A-Chip Devices , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Culture Techniques/methods , Ultracentrifugation/methods
12.
Methods Mol Biol ; 2804: 209-221, 2024.
Article in English | MEDLINE | ID: mdl-38753150

ABSTRACT

Microfluidic-based cytotoxic assays provide high physiological relevance with the potential to replace conventional animal experiments and two-dimensional (2D) assays. Here, a 3D method utilizing a microfluidic platform for analysis of lymphocyte cytotoxicity is introduced in detail, including platform design, cell culture method, real-time cytotoxic assay setup, and image-based analysis. A 2D experimental method is used for comparison, which effectively demonstrates the advantages of 3D microfluidic platforms in closely recapitulating immune responses within the tumor microenvironment. Moreover, a wide range of experimental possibilities and applications using microfluidic 3D cytotoxic assays is introduced in this chapter, along with their capabilities, limitations, and future outlook.


Subject(s)
Microfluidic Analytical Techniques , Humans , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Cytotoxicity Tests, Immunologic/methods , Microfluidics/methods , Microfluidics/instrumentation , Animals , Lymphocytes/immunology , Lymphocytes/cytology , Tumor Microenvironment/immunology
14.
Sci Rep ; 14(1): 11081, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38744867

ABSTRACT

Despite progress in generating cardiomyocytes from pluripotent stem cells, these populations often include non-contractile cells, necessitating cardiomyocyte selection for experimental purpose. This study explores a novel cardiomyocyte enrichment mechanism: low-adhesion culture selection. The cardiac cells derived from human induced pluripotent stem cells were subjected to a coating-free low-adhesion culture using bovine serum albumin and high molecular weight dextran sulfate. This approach effectively increased the population of cardiac troponin T-positive cardiomyocytes. Similar results were obtained with commercially available low-adhesion culture dishes. Subsequently, we accessed the practicality of selection of cardiomyocytes using this phenomenon by comparing it with established methods such as glucose-free culture and selection based on puromycin resistance genes. The cardiomyocytes enriched through low-adhesion culture selection maintained autonomous pulsation and responsiveness to beta-stimuli. Moreover, no significant differences were observed in the expression of genes related to subtype commitment and maturation when compared to other selection methods. In conclusion, cardiomyocytes derived from pluripotent stem cells were more low-adhesion culture resistant than their accompanying non-contractile cells, and low-adhesion culture is an alternative method for selection of pluripotent stem cell-derived cardiomyocytes.


Subject(s)
Cell Adhesion , Cell Culture Techniques , Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Troponin T/metabolism , Troponin T/genetics
15.
Nat Commun ; 15(1): 3940, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750036

ABSTRACT

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Subject(s)
Cell Dedifferentiation , Cell Differentiation , Epithelial Cells , Hepatocytes , Animals , Hepatocytes/cytology , Hepatocytes/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mice , Organoids/cytology , Organoids/metabolism , Epithelial-Mesenchymal Transition , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Cells, Cultured , Signal Transduction , Vimentin/metabolism , Hippo Signaling Pathway , Liver/cytology , Liver/metabolism , Mice, Inbred C57BL , Male , Cell Culture Techniques/methods
16.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1309-1322, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783799

ABSTRACT

In recent years, organoids have become a crucial model for studying the physiopathological processes in tissues and organs. The emergence of organoids has promoted the research on the mechanisms of the occurrence and clinical translation of diseases. Among these organoid models, colorectal organoid models are increasingly mature. Colorectal cancer is a common gastrointestinal malignant tumor worldwide, posing a serious threat to human health. Colorectal organoids provide a new model for studying the pathophysiology, drug sensitivity, and precision medicine of colorectal cancer. The conventional culture systems of colorectal organoids focus more on the role of biochemical factors, neglecting the fact that the gut is also influenced by biophysical signals in vivo. Therefore, in this review, we discuss the theories related to colorectal organoids and biomechanics and expound the effects of biomechanics on colorectal organoid culture.


Subject(s)
Colorectal Neoplasms , Organoids , Organoids/cytology , Humans , Biomechanical Phenomena , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colon/cytology , Cell Culture Techniques/methods , Rectum/cytology , Tissue Culture Techniques/methods
17.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767371

ABSTRACT

The mammary gland is a fundamental structure of the breast and plays an essential role in reproduction. Human mammary epithelial cells (HMECs), which are the origin cells of breast cancer and other breast-related inflammatory diseases, have garnered considerable attention. However, isolating and culturing primary HMECs in vitro for research purposes has been challenging due to their highly differentiated, keratinized nature and their short lifespan. Therefore, developing a simple and efficient method to isolate and culture HMECs is of great scientific value for the study of breast biology and breast-related diseases. In this study, we successfully isolated primary HMECs from small amounts of mammary tissue by digestion with a mixture of enzymes combined with an initial culture in 5% fetal bovine serum-DMEM containing the Rho-associated kinase (ROCK) inhibitor Y-27632, followed by culture expansion in serum-free keratinocyte medium. This approach selectively promotes the growth of epithelial cells, resulting in an optimized cell yield. The simplicity and convenience of this method make it suitable for both laboratory and clinical research, which should provide valuable insights into these important areas of study.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Mammary Glands, Human , Humans , Epithelial Cells/cytology , Female , Mammary Glands, Human/cytology , Cell Culture Techniques/methods , Amides/pharmacology , Pyridines/pharmacology , Cytological Techniques/methods , rho-Associated Kinases/antagonists & inhibitors
18.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767381

ABSTRACT

Over the last decades, the evidence accumulated about the existence of respiratory supercomplexes (SCs) has changed our understanding of the mitochondrial electron transport chain organization, giving rise to the proposal of the "plasticity model." This model postulates the coexistence of different proportions of SCs and complexes depending on the tissue or the cellular metabolic status. The dynamic nature of the assembly in SCs would allow cells to optimize the use of available fuels and the efficiency of electron transfer, minimizing reactive oxygen species generation and favoring the ability of cells to adapt to environmental changes. More recently, abnormalities in SC assembly have been reported in different diseases such as neurodegenerative disorders (Alzheimer's and Parkinson's disease), Barth Syndrome, Leigh syndrome, or cancer. The role of SC assembly alterations in disease progression still needs to be confirmed. Nevertheless, the availability of enough amounts of samples to determine the SC assembly status is often a challenge. This happens with biopsy or tissue samples that are small or have to be divided for multiple analyses, with cell cultures that have slow growth or come from microfluidic devices, with some primary cultures or rare cells, or when the effect of particular costly treatments has to be analyzed (with nanoparticles, very expensive compounds, etc.). In these cases, an efficient and easy-to-apply method is required. This paper presents a method adapted to obtain enriched mitochondrial fractions from small amounts of cells or tissues to analyze the structure and function of mitochondrial SCs by native electrophoresis followed by in-gel activity assays or western blot.


Subject(s)
Mitochondria , Animals , Mitochondria/metabolism , Mitochondria/chemistry , Humans , Cell Culture Techniques/methods
19.
Sci Rep ; 14(1): 11591, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773220

ABSTRACT

Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.


Subject(s)
Cell Differentiation , Podocytes , Animals , Podocytes/metabolism , Podocytes/cytology , Mice , WT1 Proteins/metabolism , WT1 Proteins/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cell Line , Cell Culture Techniques/methods , Cell Line, Transformed , Cell Proliferation
20.
Sci Rep ; 14(1): 11468, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769339

ABSTRACT

Diffusing alpha-emitters radiation therapy (Alpha-DaRT) is a unique method, in which interstitial sources carrying 224Ra release a chain of short-lived daughter atoms from their surface. Although DNA damage response (DDR) is crucial to inducing cell death after irradiation, how the DDR occurs during Alpha-DaRT treatment has not yet been explored. In this study, we temporo-spatially characterized DDR such as kinetics of DNA double-strand breaks (DSBs) and cell cycle, in two-dimensional (2D) culture conditions qualitatively mimicking Alpha-DaRT treatments, by employing HeLa cells expressing the Fucci cell cycle-visualizing system. The distribution of the alpha-particle pits detected by a plastic nuclear track detector, CR-39, strongly correlated with γH2AX staining, a marker of DSBs, around the 224Ra source, but the area of G2 arrested cells was more widely spread 24 h from the start of the exposure. Thereafter, close time-lapse observation revealed varying cell cycle kinetics, depending on the distance from the source. A medium containing daughter nuclides prepared from 224Ra sources allowed us to estimate the radiation dose after 24 h of exposure, and determine surviving fractions. The present experimental model revealed for the first time temporo-spatial information of DDR occurring around the source in its early stages.


Subject(s)
Alpha Particles , DNA Breaks, Double-Stranded , Humans , HeLa Cells , DNA Breaks, Double-Stranded/radiation effects , DNA Damage/radiation effects , Cell Cycle/radiation effects , Histones/metabolism , Cell Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...