Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
PLoS One ; 19(7): e0304194, 2024.
Article in English | MEDLINE | ID: mdl-38968186

ABSTRACT

Deficiencies in the ING4 tumor suppressor are associated with advanced stage tumors and poor patient survival in cancer. ING4 was shown to inhibit NF-kB in several cancers. As NF-kB is a key mediator of immune response, the ING4/NF-kB axis is likely to manifest in tumor-immune modulation but has not been investigated. To characterize the tumor immune microenvironment associated with ING4-deficient tumors, three approaches were employed in this study: First, tissue microarrays composed of 246 primary breast tumors including 97 ING4-deficient tumors were evaluated for the presence of selective immune markers, CD68, CD4, CD8, and PD-1, using immunohistochemical staining. Second, an immune-competent mouse model of ING4-deficient breast cancer was devised utilizing CRISPR-mediated deletion of Ing4 in a Tp53 deletion-derived mammary tumor cell line; mammary tumors were evaluated for immune markers using flow cytometry. Lastly, the METABRIC gene expression dataset was evaluated for patient survival related to the immune markers associated with Ing4-deleted tumors. The results showed that CD68, CD4, CD8, or PD-1, was not significantly associated with ING4-deficient breast tumors, indicating no enrichment of macrophages, T cells, or exhausted T cell types. In mice, Ing4-deleted mammary tumors had a growth rate comparable to Ing4-intact tumors but showed increased tumor penetrance and metastasis. Immune marker analyses of Ing4-deleted tumors revealed a significant increase in tumor-associated macrophages (Gr-1loCD11b+F4/80+) and a decrease in granzyme B-positive (GzmB+) CD4+ T cells, indicating a suppressive and/or less tumoricidal immune microenvironment. The METABRIC data analyses showed that low expression of GZMB was significantly associated with poor patient survival, as was ING4-low expression, in the basal subtype of breast cancer. Patients with GZMB-low/ING4-low tumors had the worst survival outcomes (HR = 2.80, 95% CI 1.36-5.75, p = 0.0004), supportive of the idea that the GZMB-low immune environment contributes to ING4-deficient tumor progression. Collectively, the study results demonstrate that ING4-deficient tumors harbor a microenvironment that contributes to immune evasion and metastasis.


Subject(s)
Breast Neoplasms , Cell Cycle Proteins , Homeodomain Proteins , Tumor Microenvironment , Tumor Suppressor Proteins , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/deficiency , Cell Line, Tumor , Disease Progression , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Neoplasm Metastasis , Tumor Microenvironment/immunology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/metabolism
2.
Dis Model Mech ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38756069

ABSTRACT

Alström syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. The latter are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and poorly understood. We assessed cardiac function of Alms1 knockout (KO) mice by echocardiography. Cardiac function was unaltered in Alms1 global KO mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female - but not male - KO mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global KO mice. Female mice with Pdgfra-Cre-driven Alms1 deletion in cardiac fibroblasts and in a small proportion of cardiomyocytes did not recapitulate the phenotype of global KO at 23 weeks. In conclusion, only female Alms1-deficient adult mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear but might involve metabolic or endocrine differences between sexes.


Subject(s)
Alstrom Syndrome , Cardiomyopathies , Echocardiography , Animals , Female , Male , Mice , Alstrom Syndrome/complications , Alstrom Syndrome/genetics , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Mice, Knockout , Myocardium/pathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Sex Characteristics
3.
Nature ; 627(8002): 196-203, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355805

ABSTRACT

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Subject(s)
Cell Movement , Cell Nucleus Shape , Neutrophils , Cell Cycle Checkpoints , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , Chromosomes/chemistry , Chromosomes/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Nucleic Acid Conformation , Cell Differentiation/genetics , Inflammation/genetics , Enhancer Elements, Genetic , Cell Lineage/genetics
4.
Nat Commun ; 13(1): 154, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013161

ABSTRACT

De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10-5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10-4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.


Subject(s)
Azoospermia/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Loss of Function Mutation , Mutation, Missense , Oligospermia/genetics , RNA-Binding Proteins/genetics , Tumor Suppressor Proteins/genetics , Adult , Azoospermia/pathology , Case-Control Studies , Cell Cycle Proteins/deficiency , DNA-Binding Proteins/deficiency , Exome , Gene Expression , Gene Expression Profiling , Humans , Male , Oligospermia/pathology , Tumor Suppressor Proteins/deficiency , Exome Sequencing
5.
Mol Cell Biol ; 42(2): e0038221, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34871062

ABSTRACT

The chemokine Cxcl10 has been associated with poor prognosis in breast cancer, but the mechanism is not well understood. Our previous study has shown that CXCL10 was repressed by the ING4 tumor suppressor, suggesting a potential inverse functional relationship. We thus investigated a role for Cxcl10 in the context of ING4 deficiencies in breast cancer. We first analyzed public gene expression data sets and found that patients with CXCL10-high/ING4-low expressing tumors had significantly reduced disease-free survival in breast cancer. In vitro, Cxcl10 induced migration of ING4-deleted breast cancer cells but not of ING4-intact cells. Using inhibitors, we found that Cxcl10-induced migration of ING4-deleted cells required Cxcr3, Egfr, and the Gßγ subunits downstream of Cxcr3 but not Gαi. Immunofluorescent imaging showed that Cxcl10 induced early transient colocalization between Cxcr3 and Egfr in both ING4-intact and ING4-deleted cells, which recurred only in ING4-deleted cells. A peptide agent that binds to the internal juxtamembrane domain of Egfr inhibited Cxcr3/Egfr colocalization and cell migration. Taken together, these results presented a novel mechanism of Cxcl10 that elicits migration of ING4-deleted cells, in part by inducing a physical or proximal association between Cxcr3 and Egfr and signaling downstream via Gßγ. These results further indicated that ING4 plays a critical role in the regulation of Cxcl10 signaling that enables breast cancer progression.


Subject(s)
Cell Cycle Proteins/deficiency , Chemokine CXCL10/metabolism , Receptors, CXCR3/metabolism , Tumor Suppressor Proteins/deficiency , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chemokine CXCL10/genetics , ErbB Receptors/metabolism , Genes, Tumor Suppressor/physiology , Homeodomain Proteins , Humans , Receptors, CXCR3/genetics
6.
Nat Commun ; 12(1): 6198, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707127

ABSTRACT

Optineurin (OPTN) has important functions in diverse biological processes and diseases, but its effect on dendritic cell (DC) differentiation and functionality remains elusive. Here we show that OPTN is upregulated in human and mouse DC maturation, and that deletion of Optn in mice via CD11c-Cre attenuates DC maturation and impairs the priming of CD4+ T cells, thus ameliorating autoimmune symptoms such as experimental autoimmune encephalomyelitis (EAE). Mechanistically, OPTN binds to the JH1 domain of JAK2 and inhibits JAK2 dimerization and phosphorylation, thereby preventing JAK2-STAT3 interaction and inhibiting STAT3 phosphorylation to suppress downstream transcription of IL-10. Without such a negative regulation, Optn-deficient DCs eventually induce an IL-10/JAK2/STAT3/IL-10 positive feedback loop to suppress DC maturation. Finally, the natural product, Saikosaponin D, is identified as an OPTN inhibitor, effectively inhibiting the immune-stimulatory function of DCs and the disease progression of EAE in mice. Our findings thus highlight a pivotal function of OPTN for the regulation of DC functions and autoimmune disorders.


Subject(s)
Autoimmunity/immunology , Cell Cycle Proteins/metabolism , Dendritic Cells/immunology , Janus Kinase 2/metabolism , Membrane Transport Proteins/metabolism , STAT3 Transcription Factor/metabolism , Animals , Autoimmunity/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/deficiency , Cell Differentiation , Dendritic Cells/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Interleukin-10/metabolism , Membrane Transport Proteins/deficiency , Mice , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Phosphorylation , Protein Binding , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction
7.
Development ; 148(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34698766

ABSTRACT

Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.


Subject(s)
Cell Cycle Proteins/metabolism , Hedgehog Proteins/metabolism , Prosencephalon/metabolism , Receptor, Notch1/metabolism , Animals , Cell Cycle Proteins/deficiency , Cell Differentiation , Embryo, Mammalian , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium/metabolism , GPI-Linked Proteins/deficiency , GPI-Linked Proteins/metabolism , Humans , Mice , Mutation , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Patched-1 Receptor/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Prosencephalon/cytology , Prosencephalon/embryology , Signal Transduction
8.
Cytogenet Genome Res ; 161(8-9): 449-462, 2021.
Article in English | MEDLINE | ID: mdl-34657040

ABSTRACT

PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) can inhibit tumor growth by inhibiting telomerase activity. However, only few studies investigated the expression and function of PinX1 in nonalcoholic fatty liver disease (NAFLD). Thus, here we aimed to explore the roles of PinX1 in high-fat diet (HFD)-induced NAFLD in mice and in isolated hepatocytes. The mRNA expression of PinX1 and mTERT as well as telomere length were analyzed by RT-PCR. Pathological changes were detected by HE staining and oil red O staining. Triglyceride, cholesterol, alanine aminotransferase, aspartic aminotransferase, and telomerase activity were detected by ELISA. Hepatocyte apoptosis was determined by TUNEL and flow cytometry, and protein expression was analyzed by western blotting. We found that the expression of PinX1 was upregulated in the HFD group compared with the WT group. PinX1 knockout improved HFD-induced liver injury in mice and exhibited less lipid accumulation in hepatocytes. Moreover, telomere length, telomerase activity, and mTERT expression were significantly reduced in liver tissues of HFD-induced mice and palmitic acid-induced hepatocytes, while PinX1 knockout attenuated the effect. Furthermore, HFD-induced PinX1-/- mice exhibited less hepatocyte apoptosis than HFD-induced WT mice. Besides, PinX1 knockout inhibited the increase of cleaved caspase-3 and cleaved PARP expression in vivo and in vitro. Moreover, inhibition of mTERT reversed the effect of PinX1 knockout in hepatocytes. Taken together, our findings indicate that PinX1 promotes hepatocyte apoptosis and lipid accumulation by decreasing telomere length and telomerase activity in the development of NAFLD. PinX1 might be a target for the treatment of NAFLD.


Subject(s)
Apoptosis , Cell Cycle Proteins/deficiency , Liver , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/pathology , Telomerase/metabolism , Tumor Suppressor Proteins/deficiency , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Disease Models, Animal , Hepatocytes/cytology , Hepatocytes/enzymology , Hepatocytes/pathology , Liver/cytology , Liver/enzymology , Liver/pathology , Male , Mice , Non-alcoholic Fatty Liver Disease/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
9.
PLoS One ; 16(8): e0256646, 2021.
Article in English | MEDLINE | ID: mdl-34437633

ABSTRACT

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


Subject(s)
Cell Cycle Proteins/genetics , Endothelial Cells/cytology , Peptide Hormones/genetics , rho Guanine Nucleotide Dissociation Inhibitor beta/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/deficiency , Cell Movement/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Endothelial Cells/metabolism , Gene Expression Regulation/genetics , Human Umbilical Vein Endothelial Cells , Humans , Protein Interaction Maps , Proto-Oncogene Proteins c-akt/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors/genetics
10.
Biomed Res Int ; 2021: 9884297, 2021.
Article in English | MEDLINE | ID: mdl-34307672

ABSTRACT

We performed in vitro and in vivo experiments to explore the role of protein kinase C-binding protein 1 (PICK1), an intracellular transporter involved in oxidative stress-related neuronal diseases, in sepsis-related acute kidney injury (AKI). Firstly, PCR, western blotting, and immunohistochemistry were used to observe the expression of PICK1 after lipopolysaccharide- (LPS-) induced AKI. Secondly, by inhibiting PICK1 in vivo and silencing PICK1 in vitro, we further explored the effect of PICK1 on AKI. Finally, the relationship between PICK1 and oxidative stress and the related mechanisms were explored. We found that the expression of PICK1 was increased in LPS-induced AKI models both in vitro and in vivo. PICK1 silencing significantly aggravated LPS-induced apoptosis, accompanied by ROS production in renal tubular epithelial cells. FSC231, a PICK1-specific inhibitor, aggravated LPS-induced kidney injury. Besides, NAC (N-acetylcysteine), a potent ROS scavenger, significantly inhibited the PICK1-silencing-induced apoptosis. In conclusion, PICK1 might protect renal tubular epithelial cells from LPS-induced apoptosis by reducing excessive ROS, making PICK1 a promising preventive target in LPS-induced AKI.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/deficiency , Nuclear Proteins/metabolism , Sepsis/complications , Acetylcysteine/pharmacology , Acute Kidney Injury/pathology , Animals , Apoptosis , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Kidney Tubules, Proximal/pathology , Lipopolysaccharides , MAP Kinase Kinase Kinase 5/metabolism , Male , Mice, Inbred C57BL , Peroxides/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Cell Cycle ; 20(15): 1500-1517, 2021 08.
Article in English | MEDLINE | ID: mdl-34233584

ABSTRACT

Supernumerary centrioles are frequently observed in diverse types of cancer cells. In this study, we investigated the mechanism underlying the generation of supernumerary centrioles during the M phase. We generated the TP53;PCNT;CEP215 triple knockout (KO) cells and determined the configurations of the centriole during the cell cycle. The triple KO cells exhibited a precocious separation of centrioles and unscheduled centriole assembly in the M phase. Supernumerary centrioles in the triple KO cells were present throughout the cell cycle; however, among all the centrioles, only two maintained an intact composition, including CEP135, CEP192, CEP295 and CEP152. Intact centrioles were formed during the S phase and the rest of the centrioles may be generated during the M phase. M-phase-assembled centrioles lacked the ability to organize microtubules in the interphase; however, a fraction of them may acquire pericentriolar material to organize microtubules during the M phase. Taken together, our work reveals the heterogeneity of the supernumerary centrioles in the triple KO cells. .


Subject(s)
Antigens/metabolism , Cell Cycle Proteins/deficiency , Cell Division , Centrioles/metabolism , Mitosis , Nerve Tissue Proteins/deficiency , Tumor Suppressor Protein p53/deficiency , Antigens/genetics , Cell Cycle Proteins/genetics , Centrioles/genetics , Gene Deletion , Gene Knockout Techniques , HeLa Cells , Humans , Nerve Tissue Proteins/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics
12.
Cell Mol Gastroenterol Hepatol ; 12(3): 891-920, 2021.
Article in English | MEDLINE | ID: mdl-34062281

ABSTRACT

BACKGROUND & AIMS: How benign liver steatosis progresses to nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC) remains elusive. NASH progression entails diverse pathogenic mechanisms and relies on complex cross-talk between multiple tissues such as the gut, adipose tissues, liver, and the brain. Using a hyperphagic mouse fed with a Western diet (WD), we aimed to elucidate the cross-talk and kinetics of hepatic and extrahepatic alterations during NASH-HCC progression, as well as regression. METHODS: Hyperphagic mice lacking a functional Alms1 gene (Foz/Foz) and wild-type littermates were fed WD or standard chow for 12 weeks for NASH/fibrosis and for 24 weeks for HCC development. NASH regression was modeled by switching back to normal chow after NASH development. RESULTS: Foz+WD mice were steatotic within 1 to 2 weeks, developed NASH by 4 weeks, and grade 3 fibrosis by 12 weeks, accompanied by chronic kidney injury. Foz+WD mice that continued on WD progressed to cirrhosis and HCC within 24 weeks and had reduced survival as a result of cardiac dysfunction. However, NASH mice that were switched to normal chow showed NASH regression, improved survival, and did not develop HCC. Transcriptomic and histologic analyses of Foz/Foz NASH liver showed strong concordance with human NASH. NASH was preceded by an early disruption of gut barrier, microbial dysbiosis, lipopolysaccharide leakage, and intestinal inflammation. This led to acute-phase liver inflammation in Foz+WD mice, characterized by neutrophil infiltration and increased levels of several chemokines/cytokines. The liver cytokine/chemokine profile evolved as NASH progressed, with subsequent predominance by monocyte recruitment. CONCLUSIONS: The Foz+WD model closely mimics the pathobiology and gene signature of human NASH with fibrosis and subsequent HCC. Foz+WD mice provide a robust and relevant preclinical model of NASH, NASH-associated HCC, chronic kidney injury, and heart failure.


Subject(s)
Carcinoma, Hepatocellular/etiology , Diet, Western/adverse effects , Disease Susceptibility , Hyperphagia/complications , Liver Neoplasms/etiology , Non-alcoholic Fatty Liver Disease/etiology , Animals , Biomarkers , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/deficiency , Disease Models, Animal , Dyslipidemias/complications , Dyslipidemias/etiology , Gene Expression Profiling , Immunohistochemistry , Insulin Resistance , Liver Cirrhosis/complications , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/complications , Obesity/etiology
13.
Int J Mol Sci ; 22(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063207

ABSTRACT

Recent studies have implicated mitochondrial disruption in podocyte dysfunction, which is a characteristic feature of primary and diabetic glomerular diseases. However, the mechanisms by which primary mitochondrial dysfunction in podocytes affects glomerular renal diseases are currently unknown. To investigate the role of mitochondrial oxidative phosphorylation (OxPhos) in podocyte dysfunction, glomerular function was examined in mice carrying a loss of function mutation of the gene encoding CR6-interacting factor-1 (CRIF1), which is essential for intramitochondrial production and the subsequent insertion of OxPhos polypeptides into the inner mitochondrial membrane. Homozygotic deficiency of CRIF1 in podocytes resulted in profound and progressive albuminuria from 3 weeks of age; the CRIF1-deficient mice also developed glomerular and tubulointerstitial lesions by 10 weeks of age. Furthermore, marked glomerular sclerosis and interstitial fibrosis were observed in homozygous CRIF1-deficient mice at 20 weeks of age. In cultured mouse podocytes, loss of CRIF1 resulted in OxPhos dysfunction and marked loss or abnormal aggregation of F-actin. These findings indicate that the OxPhos status determines the integrity of podocytes and their ability to maintain a tight barrier and control albuminuria. Analyses of the glomerular function of the podocyte-specific primary OxPhos dysfunction model mice demonstrate a link between podocyte mitochondrial dysfunction, progressive glomerular sclerosis, and tubulointerstitial diseases.


Subject(s)
Albuminuria/metabolism , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Mitochondria/metabolism , Podocytes/metabolism , Sclerosis/metabolism , Albuminuria/genetics , Albuminuria/pathology , Animals , Cell Cycle Proteins/genetics , Diabetic Nephropathies/metabolism , Disease Models, Animal , Female , Fibrosis , Kidney/pathology , Male , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Oxidative Phosphorylation , Peptides/metabolism , Sclerosis/genetics , Sclerosis/pathology
14.
Nat Commun ; 12(1): 3450, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103504

ABSTRACT

The epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure. Chromatin analysis of Hira-deficient cells show a significant reduction of histone variant H3.3 deposition and H3K27ac modification at regulatory regions of muscle genes. Additionally, we find that genes from alternative lineages are ectopically expressed in Hira-mutant cells via MLL1/MLL2-mediated increase of H3K4me3 mark at silent promoter regions. Therefore, we conclude that HIRA sustains the chromatin landscape governing muscle cell lineage identity via incorporation of H3.3 at muscle gene regulatory regions, while preventing the expression of alternative lineage genes.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Lineage , Histone Chaperones/metabolism , Muscle, Skeletal/pathology , Transcription Factors/metabolism , Acetylation , Animals , Cell Cycle Proteins/deficiency , Cell Line , Cell Lineage/genetics , Genetic Loci , Histone Chaperones/deficiency , Histones/metabolism , Lysine/metabolism , Mice , Muscle Development/genetics , Muscle, Skeletal/injuries , Muscle, Skeletal/physiopathology , Regeneration , Regulatory Sequences, Nucleic Acid/genetics , Satellite Cells, Skeletal Muscle/metabolism , Transcription Factors/deficiency
15.
Cell Prolif ; 54(5): e13034, 2021 May.
Article in English | MEDLINE | ID: mdl-33931895

ABSTRACT

OBJECTIVES: Dysfunction of autophagy results in accumulation of depolarized mitochondria and breakdown of self-renewal and pluripotency in ESCs. However, the regulators that control how mitochondria are degraded by autophagy for pluripotency regulation remains largely unknown. This study aims to dissect the molecular mechanisms that regulate mitochondrial homeostasis for pluripotency regulation in mouse ESCs. MATERIALS AND METHODS: Parkin+/+ and parkin-/- ESCs were established from E3.5 blastocysts of parkin+/- x parkin+/- mating mice. The pink1-/- , optn-/- and ndp52-/- ESCs were generated by CRISPR-Cas9. shRNAs were used for function loss assay of target genes. Mito-Keima, ROS and ATP detection were used to investigate the mitophagy and mitochondrial function. Western blot, Q-PCR, AP staining and teratoma formation assay were performed to evaluate the PSC stemness. RESULTS: PINK1 or OPTN depletion impairs the degradation of dysfunctional mitochondria during reprogramming, and reduces the reprogramming efficiency and quality. In ESCs, PINK1 or OPTN deficiency leads to accumulation of dysfunctional mitochondria and compromised pluripotency. The defective mitochondrial homeostasis and pluripotency in pink1-/- ESCs can be compensated by gain expression of phosphomimetic Ubiquitin (Ub-S65D) together with WT or a constitutively active phosphomimetic OPTN mutant (S187D, S476D, S517D), rather than constitutively inactive OPTN (S187A, S476A, S517A) or a Ub-binding dead OPTN mutant (D477N). CONCLUSIONS: The mitophagy receptor OPTN guards ESC mitochondrial homeostasis and pluripotency by scavenging damaged mitochondria through TBK1-activated OPTN binding of PINK1-phosphorylated Ubiquitin.


Subject(s)
Cell Cycle Proteins/metabolism , Membrane Transport Proteins/metabolism , Mitophagy , Protein Kinases/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cellular Reprogramming , Gene Editing , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mutagenesis, Site-Directed , Phosphorylation , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Ubiquitin/metabolism
16.
Cancer Sci ; 112(7): 2625-2641, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33931921

ABSTRACT

Bladder cancer (BLCA) remains the leading cause of cancer-related mortality among genitourinary malignancies worldwide. BLCA metastasis represents the primary reason for its poor prognosis. In this study, we report that decreased expression of partitioning defective 3 (Par3), a polarity protein (encoded by PARD3), is associated with tumor aggressive phenotypes and poor prognosis in BLCA patients. Consistently, ablation of Par3 promotes the metastasis and invasion of BLCA cells in vitro and in vivo. Further studies reveal that zinc finger protein Snail represses the expression of Par3 by binding to E2-box (CAGGTG) of PARD3 promoter-proximal. Inhibition of GSK-3ß promotes the expression and nuclear localization of Snail and then reduces the expression of Par3, resulting in the metastasis and invasion of BLCA cells. Moreover, we detected the interaction between Par3 (936-1356 aa) and ZO-1 (1372-1748 aa), which is involved in the maintenance of tight junction. Together, our results demonstrate that the GSK-3ß/Snail/Par3/ZO-1 axis regulates BLCA metastasis, and Snail is a major regulator for Par3 protein expression in BLCA.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Lung Neoplasms/secondary , Snail Family Transcription Factors/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Nucleus/metabolism , Cell Polarity/physiology , Gene Knockdown Techniques , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phenotype , Phosphorylation , Prognosis , Random Allocation , Snail Family Transcription Factors/genetics , Tight Junctions/physiology , Zonula Occludens-1 Protein/metabolism
17.
J Immunol ; 206(10): 2338-2352, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33941654

ABSTRACT

Macrophage polarization is a dynamic and integral process in tissue inflammation and remodeling. In this study, we describe that lipoprotein-associated phospholipase A2 (Lp-PLA2) plays an important role in controlling inflammatory macrophage (M1) polarization in rodent experimental autoimmune encephalomyelitis (EAE) and in monocytes from multiple sclerosis (MS) patients. Specific inhibition of Lp-PLA2 led to an ameliorated EAE via markedly decreased inflammatory and demyelinating property of M1. The effects of Lp-PLA2 on M1 function were mediated by lysophosphatidylcholine, a bioactive product of oxidized lipids hydrolyzed by Lp-PLA2 through JAK2-independent activation of STAT5 and upregulation of IRF5. This process was directed by the G2A receptor, which was only found in differentiated M1 or monocytes from MS patients. M1 polarization could be inhibited by a G2A neutralizing Ab, which led to an inhibited disease in rat EAE. In addition, G2A-deficient rats showed an ameliorated EAE and an inhibited autoimmune response. This study has revealed a mechanism by which lipid metabolites control macrophage activation and function, modification of which could lead to a new therapeutic approach for MS and other inflammatory disorders.


Subject(s)
Cell Cycle Proteins/deficiency , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Macrophage Activation/genetics , Macrophages/immunology , Monocytes/metabolism , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Receptors, G-Protein-Coupled/deficiency , Signal Transduction/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Abietanes/administration & dosage , Animals , Antibodies, Neutralizing/administration & dosage , Benzaldehydes/administration & dosage , Case-Control Studies , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Cell Polarity/drug effects , Cell Polarity/genetics , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Knockout Techniques , Humans , Inflammation/immunology , Macrophage Activation/drug effects , Macrophages/drug effects , Male , Oximes/administration & dosage , Phospholipases A2, Secretory/antagonists & inhibitors , Phospholipases A2, Secretory/metabolism , Rats , Rats, Transgenic , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Treatment Outcome
18.
Mol Brain ; 14(1): 82, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001214

ABSTRACT

Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.


Subject(s)
Aging/pathology , Cell Cycle Proteins/deficiency , Mitochondrial Proteins/genetics , Presbycusis/genetics , Sulfur Group Transferases/genetics , Action Potentials , Animals , Apoptosis , Cell Cycle Proteins/metabolism , Female , Fibroblasts/metabolism , Hair Cells, Auditory/metabolism , Metabolome , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/ultrastructure , Phenotype , Reactive Oxygen Species/metabolism , Spiral Ganglion/metabolism , Spiral Ligament of Cochlea/metabolism , Stress, Physiological , Stria Vascularis/metabolism
19.
PLoS Genet ; 17(5): e1008919, 2021 05.
Article in English | MEDLINE | ID: mdl-34003859

ABSTRACT

An essential component of the homologous recombination machinery in eukaryotes, the RAD54 protein is a member of the SWI2/SNF2 family of helicases with dsDNA-dependent ATPase, DNA translocase, DNA supercoiling and chromatin remodelling activities. It is a motor protein that translocates along dsDNA and performs multiple functions in homologous recombination. In particular, RAD54 is an essential cofactor for regulating RAD51 activity. It stabilizes the RAD51 nucleofilament, remodels nucleosomes, and stimulates the homology search and strand invasion activities of RAD51. Accordingly, deletion of RAD54 has dramatic consequences on DNA damage repair in mitotic cells. In contrast, its role in meiotic recombination is less clear. RAD54 is essential for meiotic recombination in Drosophila and C. elegans, but plays minor roles in yeast and mammals. We present here characterization of the roles of RAD54 in meiotic recombination in the model plant Arabidopsis thaliana. Absence of RAD54 has no detectable effect on meiotic recombination in otherwise wild-type plants but RAD54 becomes essential for meiotic DSB repair in absence of DMC1. In Arabidopsis, dmc1 mutants have an achiasmate meiosis, in which RAD51 repairs meiotic DSBs. Lack of RAD54 leads to meiotic chromosomal fragmentation in absence of DMC1. The action of RAD54 in meiotic RAD51 activity is thus mainly downstream of the role of RAD51 in supporting the activity of DMC1. Equivalent analyses show no effect on meiosis of combining dmc1 with the mutants of the RAD51-mediators RAD51B, RAD51D and XRCC2. RAD54 is thus required for repair of meiotic DSBs by RAD51 and the absence of meiotic phenotype in rad54 plants is a consequence of RAD51 playing a RAD54-independent supporting role to DMC1 in meiotic recombination.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , DNA Breaks, Double-Stranded , DNA Helicases/metabolism , Meiosis , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Helicases/deficiency , DNA Helicases/genetics , DNA-Binding Proteins , Genes, Essential , Meiosis/genetics , Mutation , Rad51 Recombinase/genetics , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Repressor Proteins
20.
PLoS Genet ; 17(5): e1009412, 2021 05.
Article in English | MEDLINE | ID: mdl-33961623

ABSTRACT

Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Genes, Essential , Meiosis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Anaphase , Animals , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Chromosome Pairing , Conserved Sequence , DNA Damage , Evolution, Molecular , Fertility/genetics , Histone Deacetylase 1/metabolism , Male , Meiotic Prophase I , Metaphase , Mice , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Pachytene Stage , Phenotype , Spermatids/cytology , Spermatocytes/cytology , Spermatocytes/metabolism , Testis/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL