Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.904
Filter
1.
JCI Insight ; 9(10)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38775158

ABSTRACT

Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and glandular subtypes, which are similarly associated with increased aggressiveness and metastases. Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of tumor progression, and informs pathologic classification and diagnostics.


Subject(s)
Carcinoma, Renal Cell , Cell Dedifferentiation , Kidney Neoplasms , Mutation , Tumor Suppressor Protein p53 , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Cell Dedifferentiation/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , PTEN Phosphohydrolase/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Male
2.
Nat Commun ; 15(1): 3940, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750036

ABSTRACT

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Subject(s)
Cell Dedifferentiation , Cell Differentiation , Epithelial Cells , Hepatocytes , Animals , Hepatocytes/cytology , Hepatocytes/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mice , Organoids/cytology , Organoids/metabolism , Epithelial-Mesenchymal Transition , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Cells, Cultured , Signal Transduction , Vimentin/metabolism , Hippo Signaling Pathway , Liver/cytology , Liver/metabolism , Mice, Inbred C57BL , Male , Cell Culture Techniques/methods
3.
Clin Transl Med ; 14(5): e1694, 2024 May.
Article in English | MEDLINE | ID: mdl-38797942

ABSTRACT

BACKGROUND: BRAFV600E is the most common genetic mutation in differentiated thyroid cancer (DTC) occurring in 60% of patients and drives malignant tumour cell phenotypes including proliferation, metastasis and immune-escape. BRAFV600E-mutated papillary thyroid cancer (PTC) also displays greatly reduced expression of thyroid differentiation markers, thus tendency to radioactive iodine (RAI) refractory and poor prognosis. Therefore, understanding the molecular mechanisms and main oncogenic events underlying BRAFV600E will guide future therapy development. METHODS: Bioinformatics and clinical specimen analyses, genetic manipulation of BRAFV600E-induced PTC model, functional and mechanism exploration guided with transcriptomic screening, as well as systematic rescue experiments were applied to investigate miR-31 function within BRAFV600E-induced thyroid cancer development. Besides, nanoparticles carrying miR-31 antagomirs were testified to alleviate 131I iodide therapy on PTC models. RESULTS: We identify miR-31 as a significantly increased onco-miR in BRAFV600E-associated PTC that promotes tumour progression, metastasis and RAI refractoriness via sustained Wnt/ß-catenin signalling. Mechanistically, highly activated BRAF/MAPK pathway induces miR-31 expression via c-Jun-mediated transcriptional regulation across in vitro and transgenic mouse models. MiR-31 in turn facilitates ß-catenin stabilisation via directly repressing tumour suppressors CEBPA and DACH1, which direct the expression of multiple essential Wnt/ß-catenin pathway inhibitors. Genetic functional assays showed that thyroid-specific knockout of miR-31 inhibited BRAFV600E-induced PTC progression, and strikingly, enhanced expression of sodium-iodide symporter and other thyroid differentiation markers, thus promoted 131I uptake. Nanoparticle-mediated application of anti-miR-31 antagomirs markedly elevated radio-sensitivity of BRAFV600E-induced PTC tumours to 131I therapy, and efficiently suppressed tumour progression in the pre-clinical mouse model. CONCLUSIONS: Our findings elucidate a novel BRAF/MAPK-miR-31-Wnt/ß-catenin regulatory mechanism underlying clinically BRAFV600E-associated DTC tumourigenesis and dedifferentiation, also highlight a potential adjuvant therapeutic strategy for advanced DTC.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins B-raf , Thyroid Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Humans , Mice , Animals , Carcinogenesis/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Cell Dedifferentiation/genetics , Cell Dedifferentiation/drug effects
4.
Cell Rep ; 43(4): 114024, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38581679

ABSTRACT

Mouse embryonic stem cells (mESCs) in the primed pluripotency state, which resembles the post-implantation epiblast, can be de-differentiated in culture to a naive state that resembles the pre-implantation inner cell mass. We report that primed-to-naive mESC transition entails a significant slowdown of DNA replication forks and the compensatory activation of dormant origins. Using isolation of proteins on nascent DNA coupled to mass spectrometry, we identify key changes in replisome composition that are responsible for these effects. Naive mESC forks are enriched in MRE11 nuclease and other DNA repair proteins. MRE11 is recruited to newly synthesized DNA in response to transcription-replication conflicts, and its inhibition or genetic downregulation in naive mESCs is sufficient to restore the fork rate of primed cells. Transcriptomic analyses indicate that MRE11 exonuclease activity is required for the complete primed-to-naive mESC transition, demonstrating a direct link between DNA replication dynamics and the mESC de-differentiation process.


Subject(s)
DNA Replication , MRE11 Homologue Protein , Animals , Mice , MRE11 Homologue Protein/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Cell Dedifferentiation , DNA-Binding Proteins/metabolism
5.
J Cell Physiol ; 239(5): e31251, 2024 May.
Article in English | MEDLINE | ID: mdl-38634445

ABSTRACT

Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.


Subject(s)
Cell Dedifferentiation , Cell Proliferation , Muscle Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Promoter Regions, Genetic , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Promoter Regions, Genetic/genetics , Cell Proliferation/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Signal Transduction , Phenotype , Carotid Artery Injuries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Neointima/metabolism , Neointima/pathology , Neointima/genetics , Cells, Cultured , Repressor Proteins/genetics , Repressor Proteins/metabolism
6.
Nutrients ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38613031

ABSTRACT

In diabetes, pancreatic ß-cells gradually lose their ability to secrete insulin with disease progression. ß-cell dysfunction is a contributing factor to diabetes severity. Recently, islet cell heterogeneity, exemplified by ß-cell dedifferentiation and identified in diabetic animals, has attracted attention as an underlying molecular mechanism of ß-cell dysfunction. Previously, we reported ß-cell dedifferentiation suppression by calorie restriction, not by reducing hyperglycemia using hypoglycemic agents (including sodium-glucose cotransporter inhibitors), in an obese diabetic mice model (db/db). Here, to explore further mechanisms of the effects of food intake on ß-cell function, db/db mice were fed either a high-carbohydrate/low-fat diet (db-HC) or a low-carbohydrate/high-fat diet (db-HF) using similar calorie restriction regimens. After one month of intervention, body weight reduced, and glucose intolerance improved to a similar extent in the db-HC and db-HF groups. However, ß-cell dedifferentiation did not improve in the db-HC group, and ß-cell mass compensatory increase occurred in this group. More prominent fat accumulation occurred in the db-HC group livers. The expression levels of genes related to lipid metabolism, mainly regulated by peroxisome proliferator-activated receptor α and γ, differed significantly between groups. In conclusion, the fat/carbohydrate ratio in food during calorie restriction in obese mice affected both liver lipid metabolism and ß-cell dedifferentiation.


Subject(s)
Caloric Restriction , Diabetes Mellitus, Experimental , Animals , Mice , Mice, Obese , Diet, High-Fat/adverse effects , Cell Dedifferentiation , Diet, Carbohydrate-Restricted , Liver , Carbohydrates , Obesity
7.
Biotechnol Lett ; 46(3): 483-495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523201

ABSTRACT

OBJECTIVES: We genetically modified dedifferentiated chondrocytes (DCs) using lentiviral vectors and adenoviral vectors encoding TGF-ß3 (referred to as transgenic groups below) and encapsulated these DCs in the microcavitary hydrogel and investigated the combinational effect on redifferentiation of the genetically manipulated DCs. RESULTS: The Cell Counting Kit-8 data indicated that both transgenic groups exhibited significantly higher cell viability in the first week but inferior cell viability in the subsequent timepoints compared with those of the control group. Real-time polymerase chain reaction and western blot analysis results demonstrated that both transgenic groups had a better effect on redifferentiation to some extent, as evidenced by higher expression levels of chondrogenic genes, suggesting the validity of combination with transgenic DCs and the microcavitary hydrogel on redifferentiation. Although transgenic DCs with adenoviral vectors presented a superior extent of redifferentiation, they also expressed greater levels of the hypertrophic gene type X collagen. It is still worth further exploring how to deliver TGF-ß3 more efficiently and optimizing the appropriate parameters, including concentration and duration. CONCLUSIONS: The results demonstrated the better redifferentiation effect of DCs with the combinational use of transgenic TGF-ß3 and a microcavitary alginate hydrogel and implied that DCs would be alternative seed cells for cartilage tissue engineering due to their easily achieved sufficient cell amounts through multiple passages and great potential to redifferentiate to produce cartilaginous extracellular matrix.


Subject(s)
Cell Differentiation , Chondrocytes , Transforming Growth Factor beta3 , Chondrocytes/cytology , Chondrocytes/metabolism , Transforming Growth Factor beta3/genetics , Transforming Growth Factor beta3/pharmacology , Genetic Vectors/genetics , Hydrogels/chemistry , Animals , Cell Survival , Cells, Cultured , Adenoviridae/genetics , Lentivirus/genetics , Cell Dedifferentiation/genetics , Tissue Engineering/methods
8.
Am J Surg Pathol ; 48(6): 761-772, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38497360

ABSTRACT

Perivascular epithelioid cell tumor (PEComa) is a mesenchymal tumor thought to originate from perivascular epithelioid cells (PECs). The normal counterpart to PEC, however, has not been identified in any human organ, and the debate as to whether PEComa is related to smooth muscle tumors has persisted for many years. The current series characterizes 4 cases of uterine leiomyosarcoma (LMS) coexisting with PEComas. All cases exhibited an abrupt transition from the LMS to PEComa components. The LMS component displayed typical spindled morphology and fascicular growth pattern and was diffusely positive for desmin and smooth muscle myosin heavy chain, completely negative for HMB-45 and Melan A, and either negative or had focal/weak expression of cathepsin K and GPNMB. In contrast, the PEComa tumor cells in case 1 contained glycogen or lipid-distended cytoplasm with a foamy appearance (low grade), and in cases 2, 3, and 4, they displayed a similar morphology characterized by epithelioid cells with eosinophilic and granular cytoplasm and high-grade nuclear atypia. Different from the LMS component, the epithelioid PEComa cells in all cases were focally positive for HMB-45, and diffusely immunoreactive for cathepsin K and GPNMB. Melan A was focally positive in cases 1 and 3. Loss of fumarate hydratase expression (case 1) and RB1 expression (cases 2, 3, 4) was identified in both LMS and PEComa components, indicating that they are clonally related. In addition, both components showed an identical TP53 p.R196* somatic mutation and complete loss of p53 and ATRX expression in case 2 and complete loss of p53 expression in case 3. We hypothesize that LMSs containing smooth muscle progenitor cells may give rise to divergent, lineage-specific PEComatous lesions through differentiation or dedifferentiation. While we do not dispute the recognition of PEComas as a distinct entity, we advocate the hypothesis that modified smooth muscle cells represent the origin of a subset of PEComas, and our case series provides evidence to suggest this theory.


Subject(s)
Biomarkers, Tumor , Leiomyosarcoma , Perivascular Epithelioid Cell Neoplasms , Uterine Neoplasms , Humans , Female , Leiomyosarcoma/pathology , Leiomyosarcoma/chemistry , Leiomyosarcoma/genetics , Perivascular Epithelioid Cell Neoplasms/pathology , Perivascular Epithelioid Cell Neoplasms/chemistry , Perivascular Epithelioid Cell Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/chemistry , Uterine Neoplasms/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Middle Aged , Immunohistochemistry , Cell Dedifferentiation , Adult , Cell Lineage , Aged , Cell Differentiation
9.
Medicine (Baltimore) ; 103(13): e37595, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552064

ABSTRACT

BACKGROUND: Skin grafting is a common method of treating damaged skin; however, surgical complications may arise in patients with poor health. Currently, no effective conservative treatment is available for extensive skin loss. Mature adipocytes, which constitute a substantial portion of adipose tissue, have recently emerged as a potential source of stemness. When de-lipidated, these cells exhibit fibroblast-like characteristics and the ability to redifferentiate, offering homogeneity and research utility as "dedifferentiated fat cells." METHODS AND RESULTS: We conducted an in vitro study to induce fibroblast-like traits in the adipose tissue by transdifferentiating mature adipocytes for skin regeneration. Human subcutaneous fat tissues were isolated and purified from mature adipocytes that underwent a transformation process over 14 days of cultivation. Microscopic analysis revealed lipid degradation over time, ultimately transforming cells into fibroblast-like forms. Flow cytometry was used to verify their characteristics, highlighting markers such as CD90 and CD105 (mesenchymal stem cell markers) and CD56 and CD106 (for detecting fibroblast characteristics). Administering dedifferentiated fat cells with transforming growth factor-ß at the identified optimal differentiation concentration of 5 ng/mL for a span of 14 days led to heightened expression of alpha smooth muscle actin and fibronectin, as evidenced by RNA and protein analysis. Meanwhile, functional validation through cell sorting demonstrated limited fibroblast marker expression in both treated and untreated cells after transdifferentiation by transforming growth factor-ß. CONCLUSION: Although challenges remain in achieving more effective transformation and definitive fibroblast differentiation, our trial could pave the way for a novel skin regeneration treatment strategy.


Subject(s)
Cell Dedifferentiation , Cell Transdifferentiation , Humans , Pilot Projects , Cell Dedifferentiation/physiology , Adipose Tissue , Adipocytes/metabolism , Cell Differentiation , Fibroblasts/metabolism , Transforming Growth Factors/metabolism , Cells, Cultured
11.
PLoS One ; 19(2): e0297555, 2024.
Article in English | MEDLINE | ID: mdl-38335173

ABSTRACT

Diabetes mellitus is characterized by insulin resistance and ß-cell failure. The latter involves impaired insulin secretion and ß-cell dedifferentiation. Sulfonylurea (SU) is used to improve insulin secretion in diabetes, but it suffers from secondary failure. The relationship between SU secondary failure and ß-cell dedifferentiation has not been examined. Using a model of SU secondary failure, we have previously shown that functional loss of oxidoreductase Cyb5r3 mediates effects of SU failure through interactions with glucokinase. Here we demonstrate that SU failure is associated with partial ß-cell dedifferentiation. Cyb5r3 knockout mice show more pronounced ß-cell dedifferentiation and glucose intolerance after chronic SU administration, high-fat diet feeding, and during aging. A Cyb5r3 activator improves impaired insulin secretion caused by chronic SU treatment, but not ß-cell dedifferentiation. We conclude that chronic SU administration affects progression of ß-cell dedifferentiation and that Cyb5r3 activation reverses secondary failure to SU without restoring ß-cell dedifferentiation.


Subject(s)
Cytochrome-B(5) Reductase , Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin-Secreting Cells , Animals , Mice , Cell Dedifferentiation , Diabetes Mellitus, Type 2/drug therapy , Insulin/pharmacology , Sulfonylurea Compounds/pharmacology , Cytochrome-B(5) Reductase/genetics , Cytochrome-B(5) Reductase/metabolism
12.
Tissue Eng Part A ; 30(9-10): 415-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38323554

ABSTRACT

Expansion of chondrocytes presents a major obstacle in the cartilage regeneration procedure, such as matrix-induced autologous chondrocyte implantation. Dedifferentiation of chondrocytes during the expansion process leads to the emergence of a fibrotic (chondrofibrotic) phenotype that decreases the chondrogenic potential of the implanted cells. We aim to (1) determine the extent that chromatin architecture of H3K27me3 and H3K9me3 remodels during dedifferentiation and persists after the transfer to a three-dimensional (3D) culture; and (2) to prevent this persistent remodeling to enhance the chondrogenic potential of expanded bovine chondrocytes, used as a model system. Chromatin architecture remodeling of H3K27me3 and H3K9me3 was observed at 0 population doublings, 8 population doublings, and 16 population doublings (PD16) in a two-dimensional (2D) culture and after encapsulation of the expanded chondrocytes in a 3D hydrogel culture. Chondrocytes were treated with inhibitors of epigenetic modifiers (epigenetic priming) for PD16 and then encapsulated in 3D hydrogels. Chromatin architecture of chondrocytes and gene expression were evaluated before and after encapsulation. We observed a change in chromatin architecture of epigenetic modifications H3K27me3 and H3K9me3 during chondrocyte dedifferentiation. Although inhibiting enzymes that modify H3K27me3 and H3K9me3 did not alter the dedifferentiation process in 2D culture, applying these treatments during the 2D expansion did increase the expression of select chondrogenic genes and protein deposition of type II collagen when transferred to a 3D environment. Overall, we found that epigenetic priming of expanded bovine chondrocytes alters the cell fate when chondrocytes are later encapsulated into a 3D environment, providing a potential method to enhance the success of cartilage regeneration procedures.


Subject(s)
Chondrocytes , Chondrogenesis , Epigenesis, Genetic , Animals , Chondrocytes/metabolism , Chondrocytes/cytology , Cattle , Chondrogenesis/drug effects , Histones/metabolism , Cells, Cultured , Cell Dedifferentiation/drug effects , Cell Proliferation/drug effects
13.
JCI Insight ; 9(6)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319712

ABSTRACT

Dedifferentiation or phenotype switching refers to the transition from a proliferative to an invasive cellular state. We previously identified a 122-gene epigenetic gene signature that classifies primary melanomas as low versus high risk (denoted as Epgn1 or Epgn3). We found that the transcriptomes of the Epgn1 low-risk and Epgn3 high-risk cells are similar to the proliferative and invasive cellular states, respectively. These signatures were further validated in melanoma tumor samples. Examination of the chromatin landscape revealed differential H3K27 acetylation in the Epgn1 low-risk versus Epgn3 high-risk cell lines that corroborated with a differential super-enhancer and enhancer landscape. Melanocytic lineage genes (MITF, its targets and regulators) were associated with super-enhancers in the Epgn1 low-risk state, whereas invasiveness genes were linked with Epgn3 high-risk status. We identified the ITGA3 gene as marked by a super-enhancer element in the Epgn3 invasive cells. Silencing of ITGA3 enhanced invasiveness in both in vitro and in vivo systems, suggesting it as a negative regulator of invasion. In conclusion, we define chromatin landscape changes associated with Epgn1/Epgn3 and phenotype switching during early steps of melanoma progression that regulate transcriptional reprogramming. This super-enhancer and enhancer-driven epigenetic regulatory mechanism resulting in major changes in the transcriptome could be important in future therapeutic targeting efforts.


Subject(s)
Histones , Melanoma , Humans , Histones/genetics , Histones/metabolism , Melanoma/pathology , Cell Dedifferentiation/genetics , Acetylation , Cell Line, Tumor , Chromatin/genetics
14.
Hum Pathol ; 147: 139-147, 2024 May.
Article in English | MEDLINE | ID: mdl-38311185

ABSTRACT

Dedifferentiation traditionally is defined by descriptive criteria as a tumor showing an abrupt change in histology from a conventional, classic, low-grade appearing neoplasm to a tumor that is more cellular, pleomorphic and "high grade", with grading typically being performed by subjective criteria. The dedifferentiated areas range from areas with recognizable histologic differentiation which differs from the primary tumor (such as an osteosarcoma arising from a low-grade chondrosarcoma) to areas containing sarcomas without specific histologic differentiation (such as pleomorphic or spindle cell sarcoma). Many, but not all, dedifferentiated tumors are aggressive and associated with significantly shorter survival than their conventional counterparts, even grade 3 conventional tumors. As a result, dedifferentiated tumors are generally considered to be clinically aggressive and as a result, more aggressive surgery or the addition of (neo)adjuvant chemotherapy is often considered. However, long-term (greater than 20 year) survivors are reported in the most common dedifferentiated bone and soft tissue sarcomas. Moreover, use of mitotic criterion for defining dedifferentiation in dedifferentiated liposarcoma as well as grading (by the French system) have been found to be associated with survival. This paper reviews the literature on dedifferentiated chondrosarcoma, dedifferentiated liposarcoma, dedifferentiated chordoma and dedifferentiated parosteal osteosarcoma. As a result of that review, recommendations are advocated to identify evidence-based, objective diagnostic and grading criteria for dedifferentiation that are appropriate for each tumor type. Adding such criteria will improve consistency in diagnosis worldwide, allow easier comparison of clinical research performed on dedifferentiated tumors and help communicate (to patients and clinicians) the tumors with highest risk of clinically aggressive behavior, to allow appropriate and personalized treatment planning.


Subject(s)
Bone Neoplasms , Cell Dedifferentiation , Neoplasm Grading , Sarcoma , Soft Tissue Neoplasms , Humans , Bone Neoplasms/pathology , Sarcoma/pathology , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/mortality , Chondrosarcoma/pathology , Prognosis , Osteosarcoma/pathology , Osteosarcoma/mortality , Osteosarcoma/therapy , Liposarcoma/pathology
15.
J Physiol Biochem ; 80(2): 337-347, 2024 May.
Article in English | MEDLINE | ID: mdl-38336929

ABSTRACT

Inositol-requiring enzyme-1 (IRE1) is the master regulator of the unfolded protein response pathway, associated with the endoplasmic reticulum (ER) in sensing and regulating cell stress. The activity of IRE1 is highly explored and well-characterized in cancer and other cells. However, the IRE1 molecular mechanism in chondrocytes is poorly understood. The present study explored the effect of IRE1 on chondrocytes regarding its chondrogenic gene expression and its correlation with different cellular pathways and cell behavior. Chondrocytes transfected with the cDNA of IRE1 reduced the expression of type II collagen, disrupting chondrocyte differentiation as confirmed by western blotting and immunofluorescence. Upon siRNA treatment, the influence of IRE1 on chondrocyte differentiation is restored by reviving the normal expression of type II collagen. Different molecular pathways were explored to investigate the role of IRE1 in causing chondrocyte dedifferentiation. However, we found no significant correlation, as IRE1 induces dedifferentiation through independent pathways. In response to various endoplasmic reticulum (ER) agonists (2-deoxy-D-glucose), and ER stress antagonists (tauroursodeoxycholic acid and salubrinal), IRE1 overexpression did not affect GRP78/94, as implicated in the pathogenesis of ER stress. Moreover, when IRE1 overexpression was correlated with the inflammation pathway, nuclear factor-kappa B (NFκB), IRE1 substantially increased the expression of p50 while decreasing the expression of nuclear factor kappa light polypeptide alpha (IκBα). These results suggest that IRE1 induces dedifferentiation in chondrocytes by modulating inflammatory pathways that cause dedifferentiation by disrupting type II collagen expression.


Subject(s)
Cell Dedifferentiation , Chondrocytes , Collagen Type II , Endoplasmic Reticulum Stress , Endoribonucleases , Multienzyme Complexes , NF-kappa B , Protein Serine-Threonine Kinases , Thiourea/analogs & derivatives , Chondrocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Collagen Type II/metabolism , Collagen Type II/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , NF-kappa B/metabolism , Taurochenodeoxycholic Acid/pharmacology , Cinnamates/pharmacology , Thiourea/pharmacology , Cells, Cultured , Signal Transduction , Endoplasmic Reticulum Chaperone BiP
16.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119661, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218386

ABSTRACT

Estrogen receptor 1 (ESR1) has been recently demonstrated as a potential diagnostic biomarker for thoracic aortic aneurysm (TAA). However, its precise role in the progression of TAA remains unclear. In this study, TAA models were established in ApoE-knockout mice and primary mouse vascular smooth muscle cells (VSMCs) through treatment with angiotensin (Ang) II. Our findings revealed a downregulation of ESR1 in Ang II-induced TAA mice and VSMCs. Upregulation of ESR1 mitigated expansion and cell apoptosis in the mouse aorta, reduced pathogenetic transformation of VSMCs, and reduced inflammatory infiltration and oxidative stress both in vitro and in vivo. Furthermore, we identified macrophage migration inhibitory factor (MIF) as a biological target of ESR1. ESR1 bound to the MIF promoter to suppress its transcription. Artificial MIF restoration negated the mitigating effects of ESR1 on TAA. Additionally, we discovered that murine double minute 2 (MDM2) was highly expressed in TAA models and mediated protein degradation of ESR1 through ubiquitination modification. Silencing of MDM2 reduced VSMC dedifferentiation and suppressed oxidative stress. However, these effects were reversed upon further silencing of ESR1. In conclusion, this study demonstrates that MDM2 activates MIF by mediating ESR1 degradation, thus promoting VSMC dedifferentiation and oxidative stress during TAA progression.


Subject(s)
Aortic Aneurysm, Thoracic , Macrophage Migration-Inhibitory Factors , Animals , Mice , Muscle, Smooth, Vascular/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Cell Dedifferentiation/genetics , Estrogen Receptor alpha/metabolism , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Oxidative Stress
17.
Kurume Med J ; 69(3.4): 251-254, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38233185

ABSTRACT

Adenoid cystic carcinoma (ACC) is a major histological type of salivary gland cancer but an uncommon form of vulvar cancer. Salivary gland ACC occasionally dedifferentiates into high-grade carcinoma, resulting in poor prognoses. The dedifferentiated component is usually a poorly differentiated cribriform or solid carcinoma, whereas squamous cell carcinoma (SCC) is exceptional. Herein, we report the case of a 78-year-old woman with vulvar ACC, including an SCC component. She presented with a vulvar nodule that had been present for 30 years and increased in size over the past few years. Magnetic resonance imaging showed a ball-like mass with high intensity on T1-weighted images and high intensity with non-uniformity on T2-weighted images. Considering the systemic and social conditions, the tumor was maximally resected without lymphadenectomy. Histologically, the tumor was composed of a marginal ACC component with a central SCC component. Stage IB vulvar cancer, which was assumed to originate from the Bartholin's gland, was diagnosed. She has survived over 2 years without additional treatments after the surgery. In this case, we assumed that slowly progressive indolent ACC could be dedifferentiated to high- grade SCC. According to our review of available literature, dedifferentiation of vulvar ACC with a high-grade SCC component has not been specifically documented. Although the nature of dedifferentiated vulvar cancer is unclear, it should be noted that high-grade dedifferentiation can occur in long-lasting vulvar masses.


Subject(s)
Carcinoma, Adenoid Cystic , Carcinoma, Squamous Cell , Vulvar Neoplasms , Humans , Female , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/surgery , Carcinoma, Adenoid Cystic/diagnostic imaging , Vulvar Neoplasms/pathology , Vulvar Neoplasms/surgery , Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Magnetic Resonance Imaging , Treatment Outcome , Cell Dedifferentiation
18.
J Ethnopharmacol ; 321: 117481, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38007164

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Da Chaihu decoction (MDCH) is a traditional Chinese herbal prescription that has been used in the clinic to treat type 2 diabetes (T2D). Previous studies have confirmed that MDCH improves glycemic and lipid metabolism, enhances pancreatic function, and alleviates insulin resistance in patients with T2D and diabetic rats. Evidence has demonstrated that MDCH protects pancreatic ß cells via regulating the gene expression of sirtuin 1 (SIRT1) and forkhead box protein O1 (FOXO1). However, the detailed mechanism remains unclear. AIM OF THE STUDY: Dedifferentiation of pancreatic ß cells mediated by FOXO1 has been recognized as the main pathogenesis of T2D. This study aims to investigate the therapeutic effects of MDCH on T2D in vitro and in vivo to elucidate the potential molecular mechanisms. MATERIALS AND METHODS: To predict the key targets of MDCH in treating T2D, network pharmacology methods were used. A T2D model was induced in diet-induced obese (DIO) C57BL/6 mice with a single intraperitoneal injection of streptozotocin. Glucose metabolism indicators (oral glucose tolerance test, insulin tolerance test), lipid metabolism indicators (total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol), inflammatory factors (C-reactive protein, interleukin 6, tumor necrosis factor alpha), oxidative stress indicators (total antioxidant capacity, superoxide dismutase, malondialdehyde), and hematoxylin and eosin staining were analyzed to evaluate the therapeutic effect of MDCH on T2D. Immunofluorescence staining and quantification of FOXO1, pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), octamer-binding protein 4 (OCT4), neurogenin 3 (Ngn3), insulin, and SIRT1, and Western blot analysis of insulin, SIRT1, and FOXO1 were performed to investigate the mechanism by which MDCH inhibited pancreatic ß-cell dedifferentiation. RESULTS: The chemical ingredients identified in MDCH were predicted to be important for signaling pathways related to lipid metabolism and insulin resistance, including lipids in atherosclerosis, the advanced glycation end product receptor of the advanced glycation end product signaling pathway, and the FOXO signaling pathway. Experimental studies showed that MDCH improved glucose and lipid metabolism in T2D mice, alleviated inflammation and oxidative stress damage, and reduced pancreatic pathological damage. Furthermore, MDCH upregulated the expression levels of SIRT1, FOXO1, PDX1, and NKX6.1, while downregulating the expression levels of OCT4 and Ngn3, which indicated that MDCH inhibited pancreatic dedifferentiation of ß cells. CONCLUSIONS: MDCH has therapeutic effects on T2D, through regulating the SIRT1/FOXO1 signaling pathway to inhibit pancreatic ß-cell dedifferentiation, which has not been reported previously.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin-Secreting Cells , Humans , Rats , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Cell Dedifferentiation , Sirtuin 1/metabolism , Network Pharmacology , Mice, Inbred C57BL , Insulin/metabolism , Cholesterol/metabolism
19.
Braz. j. biol ; 84: e250151, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1350306

ABSTRACT

Abstract Mammals have a limited capacity to regenerate their tissues and organs. One of the mechanisms associated with natural regeneration is dedifferentiation. Several small molecules such as vitamin C and growth factors could improve reprogramming efficiency. In this study, the NTERA2-D1 (NT2) cells were induced towards differentiation (NT2-RA) with 10-5 M retinoic acid (RA) for three days and then subjected to various amounts of vitreous humor (VH). Results show that the growth rate of these cells was reduced, while this rate was partly restored upon treatment with VH (NT2-RA-VH). Cell cycle analysis with PI method also showed that the numbers of cells at the S phase of the cell cycle in these cells were increased. The levels of SSEA3 and TRA-1-81 antigens in NT2-RA were dropped but they increased in NT2- RA-VH to a level similar to the NT2 cells. The level of SSEA1 had an opposite pattern. Expression of OCT4 gene dropped after RA treatment, but it was recovered in NT2-RA-VH cells. In conclusion, we suggest VH as a potent mixture for improving the cellular reprogramming leading to dedifferentiation.


Resumo Os mamíferos têm uma capacidade limitada de regenerar seus tecidos e órgãos. Um dos mecanismos associados à regeneração natural é a desdiferenciação. Várias moléculas pequenas, como vitamina C e fatores de crescimento, podem melhorar a eficiência da reprogramação. Neste estudo, as células NTERA2-D1 (NT2) foram induzidas à diferenciação (NT2-RA) com ácido retinóico (RA) 10-5 M por três dias e depois submetidas a várias quantidades de humor vítreo (VH). Os resultados mostram que a taxa de crescimento dessas células foi reduzida, enquanto essa taxa foi parcialmente restaurada após o tratamento com VH (NT2-RA-VH). A análise do ciclo celular com o método PI também mostrou que o número de células na fase S do ciclo celular nessas células estava aumentado. Os níveis de antígenos SSEA3 e TRA-1-81 em NT2-RA diminuíram, mas aumentaram em NT2-RA-VH a um nível semelhante ao das células NT2. O nível de SSEA1 teve um padrão oposto. A expressão do gene OCT4 diminuiu após o tratamento com AR, mas foi recuperado em células NT2-RA-VH. Em conclusão, sugerimos o VH como uma mistura potente para melhorar a reprogramação celular levando à desdiferenciação.


Subject(s)
Humans , Vitreous Body , Cell Proliferation , Cell Dedifferentiation , Tretinoin , Tumor Cells, Cultured , Cell Differentiation , Cell Division , Cell Line
20.
Nutrition ; 119: 112284, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38118383

ABSTRACT

OBJECTIVE: The aim of this study was to explore the effect of the ketogenic diet (KD) on ß-cell dedifferentiation and hepatic lipid accumulation in db/db mice. METHODS: After a 3-wk habituation, male db/db mice ages 8 wk were assigned into one of three groups: normal diet (ND), KD, and 75% calorie restriction (CR) group. Free access to a standard diet, a KD, and 75% of a standard diet, respectively, were given to each group. Additionally, sex-matched 8-wk-old C57BL/6 mice were used to construct a control (C) group. After a 4-wk dietary intervention, mouse body weight, fasting blood glucose (FBG), blood lipids, fasting insulin (FINS), glucose tolerance, and ß-hydroxybutyric acid level were measured. The morphologies of the islet and liver were observed by hematoxylin and eosin staining. Positive expressions of ß-cell-specific transcription factors in mouse islets were determined by double immunofluorescence staining. The size and number of lipid droplets in mouse liver were examined by Oil Red O staining. Real-time quantitative reverse transcription polymerase chain reaction detected relative levels of adipogenesis-associated and lipolysis-associated genes in mouse liver. Additionally, expressions of CD36 protein in the mouse liver were determined by immunohistochemical staining and Western blot. RESULTS: After a 4-wk dietary intervention, FBG, FINS, and glucose area under the curve in the KD group became significantly lower than in the ND group (all P < 0.05). Regular morphology of mouse islets was observed in the KD group, with an increased number of islet cells. The KD significantly reversed the decrease in ß-cell number, disarrangement of ß-cells, decline of ß/α-cell ratio, and downregulation of ß-cell-specific transcription factors in db/db mice. Serum levels of triacylglycerol, total cholesterol, and low-density lipoprotein cholesterol were comparable between the ND and KD groups. In contrast, serum triacylglycerol levels were significantly lower in the CR group than in the ND group (P < 0.05). Vacuolar degeneration and lipid accumulation in the liver were more prominent in the KD group than in the ND and CR groups. The mRNA levels of Pparα and Acox1 in the KD group were lower than those in the ND group, although no significant differences were detected. Relative levels of Cd36 and inflammatory genes in the mouse liver were significantly higher in the KD group than in the ND group (all P < 0.05). CONCLUSION: The KD significantly reduced FBG and FINS and improved glucose tolerance in db/db mice by upregulating ß-cell-specific transcription factors and reversing ß-cell dedifferentiation. However, the KD also induced hepatic lipid accumulation and aggravated inflammatory response in the liver of db/db mice.


Subject(s)
Diet, Ketogenic , Male , Mice , Animals , Cell Dedifferentiation , Mice, Inbred C57BL , Liver/metabolism , Glucose/metabolism , Triglycerides , Lipids , Cholesterol , Transcription Factors/metabolism , Blood Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...