Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173.330
Filter
1.
Sci Adv ; 10(21): eadl4895, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787956

ABSTRACT

Phenotypic selection occurs when genetically identical cells are subject to different reproductive abilities due to cellular noise. Such noise arises from fluctuations in reactions synthesizing proteins and plays a crucial role in how cells make decisions and respond to stress or drugs. We propose a general stochastic agent-based model for growing populations capturing the feedback between gene expression and cell division dynamics. We devise a finite state projection approach to analyze gene expression and division distributions and infer selection from single-cell data in mother machines and lineage trees. We use the theory to quantify selection in multi-stable gene expression networks and elucidate that the trade-off between phenotypic switching and selection enables robust decision-making essential for synthetic circuits and developmental lineage decisions. Using live-cell data, we demonstrate that combining theory and inference provides quantitative insights into bet-hedging-like response to DNA damage and adaptation during antibiotic exposure in Escherichia coli.


Subject(s)
Escherichia coli , Gene Regulatory Networks , Escherichia coli/genetics , Stochastic Processes , Cell Division/genetics
2.
PLoS Biol ; 22(5): e3002628, 2024 May.
Article in English | MEDLINE | ID: mdl-38814940

ABSTRACT

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Subject(s)
Adenosine Triphosphate , Cell Division , Escherichia coli Proteins , Escherichia coli , Peptidoglycan , Peptidoglycan/metabolism , Hydrolysis , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Cell Wall/metabolism , Protein Conformation , Models, Molecular , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , Bacterial Outer Membrane Proteins , ATP-Binding Cassette Transporters , Cystic Fibrosis Transmembrane Conductance Regulator , Lipoproteins , Cell Cycle Proteins
3.
PLoS Genet ; 20(5): e1011287, 2024 May.
Article in English | MEDLINE | ID: mdl-38768229

ABSTRACT

In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint residues in QueE that contribute distinctly to each of its functions-Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueE's secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of "one gene, one enzyme, one function", which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.


Subject(s)
Cell Division , Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Division/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nucleoside Q/metabolism , Nucleoside Q/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella pneumoniae/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Gene Expression Regulation, Bacterial , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
4.
NPJ Syst Biol Appl ; 10(1): 61, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811603

ABSTRACT

Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as the adder. This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, E. coli cells exhibit a different size regulation. They are smaller and follow a sizer-like division strategy where the added size is inversely proportional to the size at birth. We explore three potential causes for this deviation: degradation of the precursor protein and two models where the propensity for accumulation depends on the cell size: a nonlinear accumulation rate, and accumulation starting at a threshold size termed the commitment size. These models fit the mean trends but predict different distributions given the birth size. To quantify the precision of the models to explain the data, we used the Akaike information criterion and compared them to open datasets of slow-growing E. coli cells in different media. We found that none of the models alone can consistently explain the data. However, the degradation model better explains the division strategy when cells are larger, whereas size-related models (power-law and commitment size) account for smaller cells. Our methodology proposes a data-based method in which different mechanisms can be tested systematically.


Subject(s)
Escherichia coli , Models, Biological , Escherichia coli/growth & development , Cell Division/physiology , Cell Size , Escherichia coli Proteins/metabolism
5.
Life Sci ; 349: 122740, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38777302

ABSTRACT

Defensins are a class of small antimicrobial peptides that play a crucial role against pathogens. However, recent research has highlighted defensins exhibit the ability to influence cell cycle checkpoints, promoting or inhibiting specific phases such as G1 arrest or S/M transition. By regulating the cell cycle, defensins impact the proliferation of normal and cancerous cells, with implications for cancer development and progression. Dysregulation of defensin expression can disrupt the delicate balance of cell cycle regulation, leading to uncontrolled cell growth and an increased risk of tumor formation. Defensins contribute to the resolution of inflammation, stimulate angiogenesis, and enhance the migration and proliferation of cells involved in tissue repair. Furthermore, The ability of defensins to respond to microenvironmental changes further demonstrates the significance of these peptides in host defense mechanisms and immune function. By adjusting their expression, defensins continue to combat pathogens effectively and maintain homeostasis within the body. This review highlights the multifaceted role of defensins in regulating the cell cycle and their broader implications in cancer progression, tissue repair, and microenvironmental response.


Subject(s)
Cell Cycle , Cell Proliferation , Defensins , Neoplasms , Humans , Defensins/metabolism , Animals , Neoplasms/pathology , Neoplasms/metabolism , Cell Division
6.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38806218

ABSTRACT

Cell size regulation has been extensively studied in symmetrically dividing cells, but the mechanisms underlying the control of size asymmetry in asymmetrically dividing bacteria remain elusive. Here, we examine the control of asymmetric division in Caulobacter crescentus, a bacterium that produces daughter cells with distinct fates and morphologies upon division. Through comprehensive analysis of multi-generational growth and shape data, we uncover a tightly regulated cell size partitioning mechanism. We find that errors in division site positioning are promptly corrected early in the division cycle through differential growth. Our analysis reveals a negative feedback between the size of daughter cell compartments and their growth rates, wherein the larger compartment grows slower to achieve a homeostatic size partitioning ratio at division. To explain these observations, we propose a mechanistic model of differential growth, in which equal amounts of growth regulators are partitioned into daughter cell compartments of unequal sizes and maintained over time via size-independent synthesis.


Subject(s)
Caulobacter crescentus , Cell Division , Caulobacter crescentus/metabolism , Caulobacter crescentus/cytology , Caulobacter crescentus/growth & development , Caulobacter crescentus/physiology , Asymmetric Cell Division , Bacterial Proteins/metabolism , Models, Biological
7.
Proc Natl Acad Sci U S A ; 121(23): e2315850121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814871

ABSTRACT

Rosettes are self-organizing, circular multicellular communities that initiate developmental processes, like organogenesis and embryogenesis, in complex organisms. Their formation results from the active repositioning of adhered sister cells and is thought to distinguish multicellular organisms from unicellular ones. Though common in eukaryotes, this multicellular behavior has not been reported in bacteria. In this study, we found that Escherichia coli forms rosettes by active sister-cell repositioning. After division, sister cells "fold" to actively align at the 2- and 4-cell stages of clonal division, thereby producing rosettes with characteristic quatrefoil configuration. Analysis revealed that folding follows an angular random walk, composed of ~1 µm strokes and directional randomization. We further showed that this motion was produced by the flagellum, the extracellular tail whose rotation generates swimming motility. Rosette formation was found to require de novo flagella synthesis suggesting it must balance the opposing forces of Ag43 adhesion and flagellar propulsion. We went on to show that proper rosette formation was required for subsequent morphogenesis of multicellular chains, rpoS gene expression, and formation of hydrostatic clonal-chain biofilms. Moreover, we found self-folding rosette-like communities in the standard motility assay, indicating that this behavior may be a general response to hydrostatic environments in E. coli. These findings establish self-organization of clonal rosettes by a prokaryote and have implications for evolutionary biology, synthetic biology, and medical microbiology.


Subject(s)
Escherichia coli , Flagella , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Flagella/metabolism , Cell Division , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
8.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38744282

ABSTRACT

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Subject(s)
Blastomeres , Cell Lineage , Embryo, Mammalian , Female , Humans , Blastomeres/cytology , Blastomeres/metabolism , Cell Division , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development , Germ Layers/cytology , Germ Layers/metabolism , Male , Animals , Mice
9.
Dev Cell ; 59(9): 1091-1093, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714155

ABSTRACT

Polar localization of proteins is important for plant growth and development. Identifying the interactors of polarized proteins provides spatial information and cell-type functions. In this issue of Developmental Cell, Wallner et al. (2024) utilize opposing polarity domain proteins to identify interactors and their functions during cell division in Arabidopsis stomata.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Cell Polarity , Plant Development , Cell Polarity/physiology , Cell Division/physiology , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/cytology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Development/physiology
10.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816532

ABSTRACT

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Telomerase , Telomere , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Cell Division/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/genetics , Gene Expression Regulation, Plant , Mutation , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation/genetics , Meristem/genetics , Meristem/metabolism
11.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38625077

ABSTRACT

The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.


Subject(s)
Chromosome Segregation , RNA, Satellite , Animals , Humans , Mice , Cell Division , Mouse Embryonic Stem Cells , RNA, Satellite/chemistry , RNA, Satellite/metabolism , Centromere/metabolism
12.
Appl Microbiol Biotechnol ; 108(1): 285, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573360

ABSTRACT

CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.


Subject(s)
Oncogene Proteins , YAP-Signaling Proteins , Animals , Cricetinae , CHO Cells , Cricetulus , Transcription Factors/genetics , Cell Division , TOR Serine-Threonine Kinases
13.
Sci Rep ; 14(1): 8544, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609444

ABSTRACT

The continuous balance of growth and degradation inside cells maintains homeostasis. Disturbance of this balance by internal or external factors cause state of disease, while effective disease treatments seek to restore this balance. Here, we present a method based on quantitative phase imaging (QPI) based measurements of cell mass and the velocity of mass transport to quantify the balance of growth and degradation within intracellular control volumes. The result, which we call Lagrangian velocimetry for intracellular net growth (LVING), provides high resolution maps of intracellular biomass production and degradation. We use LVING to quantify the growth in different regions of the cell during phases of the cell cycle. LVING can also be used to quantitatively compare the effect of range of chemotherapy drug doses on subcellular growth processes. Finally, we applied LVING to characterize the effect of autophagy on the growth machinery inside cells. Overall, LVING reveals both the structure and distribution of basal growth within cells, as well as the disruptions to this structure that occur during alterations in cell state.


Subject(s)
Autophagy , Receptor Protein-Tyrosine Kinases , Cell Proliferation , Cell Cycle , Cell Division
14.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38612439

ABSTRACT

Prostate cancer (PCa) is the most prevalent non-cutaneous cancer in men. Early PCa detection has been made possible by the adoption of screening methods based on the serum prostate-specific antigen and Gleason score (GS). The aim of this study was to correlate gene expression with the differentiation level of prostate adenocarcinomas, as indicated by GS. We used data from The Cancer Genome Atlas (TCGA) and included 497 prostate cancer patients, 52 of which also had normal tissue sample sequencing data. Gene ontology analysis revealed that higher GSs were associated with greater responses to DNA damage, telomere lengthening, and cell division. Positive correlation was found with transcription factor activator of the adenovirus gene E2 (E2F) and avian myelocytomatosis viral homolog (MYC) targets, G2M checkpoints, DNA repair, and mitotic spindles. Immune cell deconvolution revealed high M0 macrophage counts and an increase in M2 macrophages dependent on the GS. The molecular pathways most correlated with GSs were cell cycle, RNA transport, and calcium signaling (depleted). A combinatorial approach identified a set of eight genes able to differentiate by k-Nearest Neighbors (kNN) between normal tissues, low-Gleason tissues, and high-Gleason tissues with high accuracy. In conclusion, our study could be a step forward to better understanding the link between gene expression and PCa progression and aggressiveness.


Subject(s)
Gene Regulatory Networks , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Cell Cycle , Cell Division , Adenoviridae
15.
Oncol Rep ; 51(5)2024 05.
Article in English | MEDLINE | ID: mdl-38577924

ABSTRACT

Colorectal cancer (CRC) ranks as the second leading cause of cancer­related death worldwide due to its aggressive nature. After surgical resection, >50% of patients with CRC require adjuvant therapy. As a result, eradicating cancer cells with medications is a promising method to treat patients with CRC. In the present study, a novel compound was synthesized, which was termed compound 225#. The inhibitory activity of compound 225# against CRC was determined by MTT assay, EdU fluorescence labeling and colony formation assay; the effects of compound 225# on the cell cycle progression and apoptosis of CRC cells were detected by flow cytometry and western blotting; and the changes in autophagic flux after the administration of compound 225# were detected using the double fluorescence fusion protein mCherry­GFP­LC3B and western blotting. The results demonstrated that compound 225# exhibited antiproliferative properties, inhibiting the proliferation and expansion of CRC cell lines in a time­ and dose­dependent manner. Furthermore, compound 225# triggered G2/M cell cycle arrest by influencing the expression of cell cycle regulators, such as CDK1, cyclin A1 and cyclin B1, which is also closely related to the activation of DNA damage pathways. The cleavage of PARP and increased protein expression levels of PUMA suggested that apoptosis was triggered after treatment with compound 225#. Moreover, the increase in LC3­II expression and stimulation of autophagic flux indicated the activation of an autophagy pathway. Notably, compound 225# induced autophagy, which was associated with endoplasmic reticulum (ER) stress. In accordance with the in vitro findings, the in vivo results demonstrated that compound 225# effectively inhibited the growth of HCT116 tumors in mice without causing any changes in their body weight. Collectively, the present results demonstrated that compound 225# not only inhibited proliferation and promoted G2/M­phase cell cycle arrest and apoptosis, but also initiated cytoprotective autophagy in CRC cells by activating ER stress pathways. Taken together, these findings provide an experimental basis for the evaluation of compound 225# as a novel potential medication for CRC treatment.


Subject(s)
Apoptosis , Colorectal Neoplasms , Humans , Animals , Mice , Cell Cycle Checkpoints , Cell Division , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cell Proliferation , Cell Line, Tumor , Cell Cycle
16.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38592962

ABSTRACT

How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.


Subject(s)
Candida albicans , Mitochondria , Candida albicans/physiology , S Phase , Mitochondria/metabolism , Cell Cycle , Cell Division
17.
PLoS Pathog ; 20(4): e1012121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593161

ABSTRACT

Efflux pumps of the resistance-nodulation-cell division (RND) superfamily, particularly the AcrAB-TolC, and MexAB-OprM, besides mediating intrinsic and acquired resistance, also intervene in bacterial pathogenicity. Inhibitors of such pumps could restore the activities of antibiotics and curb bacterial virulence. Here, we identify pyrrole-based compounds that boost antibiotic activity in Escherichia coli and Pseudomonas aeruginosa by inhibiting their archetype RND transporters. Molecular docking and biophysical studies revealed that the EPIs bind to AcrB. The identified efflux pump inhibitors (EPIs) inhibit the efflux of fluorescent probes, attenuate persister formation, extend post-antibiotic effect, and diminish resistant mutant development. The bacterial membranes remained intact upon exposure to the EPIs. EPIs also possess an anti-pathogenic potential and attenuate P. aeruginosa virulence in vivo. The intracellular invasion of E. coli and P. aeruginosa inside the macrophages was hampered upon treatment with the lead EPI. The excellent efficacy of the EPI-antibiotic combination was evidenced in animal lung infection and sepsis protection models. These findings indicate that EPIs discovered herein with negligible toxicity are potential antibiotic adjuvants to address life-threatening Gram-negative bacterial infections.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , Virulence , Escherichia coli/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Drug Resistance, Microbial , Bacteria/metabolism , Cell Division , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Escherichia coli Proteins/metabolism
18.
Nat Commun ; 15(1): 3355, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637514

ABSTRACT

Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.


Subject(s)
Bacterial Proteins , Caulobacter crescentus , Bacterial Proteins/metabolism , Caulobacter crescentus/metabolism , Membrane Glycoproteins/metabolism , Cell Division , Cell Membrane/metabolism
19.
Sci Rep ; 14(1): 9008, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38637579

ABSTRACT

This investigation aimed to explore the prognostic factors in elderly patients with unresected gastric cancer (GC) who have received chemotherapy and to develop a nomogram for predicting their cancer-specific survival (CSS). Elderly gastric cancer patients who have received chemotherapy but no surgery in the Surveillance, Epidemiology, and End Results Database between 2004 and 2015 were included in this study. Cox analyses were conducted to identify prognostic factors, leading to the formulation of a nomogram. The nomogram was validated using receiver operating characteristic (ROC) and calibration curves. The findings elucidated six prognostic factors encompassing grade, histology, M stage, radiotherapy, tumor size, and T stage, culminating in the development of a nomogram. The ROC curve indicated that the area under curve of the nomogram used to predict CSS for 3, 4, and 5 years in the training queue as 0.689, 0.708, and 0.731, and in the validation queue, as 0.666, 0.693, and 0.708. The calibration curve indicated a high degree of consistency between actual and predicted CSS for 3, 4, and 5 years. This nomogram created to predict the CSS of elderly patients with unresected GC who have received chemotherapy could significantly enhance treatment accuracy.


Subject(s)
Nomograms , Stomach Neoplasms , Aged , Humans , Stomach Neoplasms/drug therapy , Calibration , Cell Division , Databases, Factual , SEER Program
20.
J Transl Med ; 22(1): 335, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589907

ABSTRACT

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Cell Line, Tumor , Adenocarcinoma of Lung/genetics , Cell Proliferation/genetics , Cell Cycle Checkpoints/genetics , Cell Division , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...