Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.806
Filter
1.
Cell Death Dis ; 15(7): 517, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030166

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease, and death rates have remained at approximately 50% for decades. New tumor-targeting strategies are desperately needed, and a previous report indicated the triggered differentiation of HPV-negative HNSCC cells to confer therapeutic benefits. Using patient-derived tumor cells, we created a similar HNSCC differentiation model of HPV+ tumor cells from two patients. We observed a loss of malignant characteristics in differentiating cell culture conditions, including irregularly enlarged cell morphology, cell cycle arrest with downregulation of Ki67, and reduced cell viability. RNA-Seq showed myocyte-like differentiation with upregulation of markers of myofibril assembly. Immunofluorescence staining of differentiated and undifferentiated primary HPV+ HNSCC cells confirmed an upregulation of these markers and the formation of parallel actin fibers reminiscent of myoblast-lineage cells. Moreover, immunofluorescence of HPV+ tumor tissue revealed areas of cells co-expressing the identified markers of myofibril assembly, HPV surrogate marker p16, and stress-associated basal keratinocyte marker KRT17, indicating that the observed myocyte-like in vitro differentiation occurs in human tissue. We are the first to report that carcinoma cells can undergo a triggered myocyte-like differentiation, and our study suggests that the targeted differentiation of HPV+ HNSCCs might be therapeutically valuable.


Subject(s)
Cell Differentiation , Cell Survival , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/metabolism , Cell Lineage , Muscle Cells/virology , Muscle Cells/metabolism , Muscle Cells/pathology , Papillomaviridae/physiology , Cell Line, Tumor , Human Papillomavirus Viruses
2.
Nat Commun ; 15(1): 5994, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39013863

ABSTRACT

Chromatin remodeler ARID1A regulates gene transcription by modulating nucleosome positioning and chromatin accessibility. While ARID1A-mediated stage and lineage-restricted gene regulation during cell fate canalization remains unresolved. Using osteoclastogenesis as a model, we show that ARID1A transcriptionally safeguards the osteoclast (OC) fate canalization during proliferation-differentiation switching at single-cell resolution. Notably, ARID1A is indispensable for the transcriptional apparatus condensates formation with coactivator BRD4/lineage-specifying transcription factor (TF) PU.1 at Nfatc1 super-enhancer during safeguarding the OC fate canalization. Besides, the antagonist function between ARID1A-cBAF and BRD9-ncBAF complex during osteoclastogenesis has been validated with in vitro assay and compound mutant mouse model. Furthermore, the antagonistic function of ARID1A-"accelerator" and BRD9-"brake" both depend on coactivator BRD4-"clutch" during osteoclastogenesis. Overall, these results uncover sophisticated cooperation between chromatin remodeler ARID1A, coactivator, and lineage-specifying TF at super-enhancer of lineage master TF in a condensate manner, and antagonist between distinct BAF complexes in the proper and balanced cell fate canalization.


Subject(s)
Cell Differentiation , Cell Lineage , DNA-Binding Proteins , Osteoclasts , Osteogenesis , Transcription Factors , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Osteoclasts/metabolism , Osteoclasts/cytology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Osteogenesis/genetics , Osteogenesis/physiology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation , Mice, Inbred C57BL , Cell Proliferation , Single-Cell Analysis , Bromodomain Containing Proteins , Nuclear Proteins
3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39041189

ABSTRACT

Studies have identified genes and molecular pathways regulating cancer metastasis. However, it remains largely unknown whether metastatic potentials of cancer cells from different lineage types are driven by the same or different gene networks. Here, we aim to address this question through integrative analyses of 493 human cancer cells' transcriptomic profiles and their metastatic potentials in vivo. Using an unsupervised approach and considering both gene coexpression and protein-protein interaction networks, we identify different gene networks associated with various biological pathways (i.e. inflammation, cell cycle, and RNA translation), the expression of which are correlated with metastatic potentials across subsets of lineage types. By developing a regularized random forest regression model, we show that the combination of the gene module features expressed in the native cancer cells can predict their metastatic potentials with an overall Pearson correlation coefficient of 0.90. By analyzing transcriptomic profile data from cancer patients, we show that these networks are conserved in vivo and contribute to cancer aggressiveness. The intrinsic expression levels of these networks are correlated with drug sensitivity. Altogether, our study provides novel comparative insights into cancer cells' intrinsic gene networks mediating metastatic potentials across different lineage types, and our results can potentially be useful for designing personalized treatments for metastatic cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Neoplasm Metastasis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Interaction Maps/genetics , Transcriptome , Gene Expression Profiling , Cell Lineage/genetics
4.
J Exp Med ; 221(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38980291

ABSTRACT

During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.


Subject(s)
Cell Lineage , T-Lymphocytes, Regulatory , Thymus Gland , Animals , Thymus Gland/immunology , Thymus Gland/cytology , Humans , T-Lymphocytes, Regulatory/immunology , Cell Lineage/immunology , Cell Differentiation/immunology , CD8-Positive T-Lymphocytes/immunology , Thymocytes/immunology , Thymocytes/cytology , Thymocytes/metabolism , CD4-Positive T-Lymphocytes/immunology
5.
Cell Mol Biol Lett ; 29(1): 98, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977956

ABSTRACT

Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Phospholipid Hydroperoxide Glutathione Peroxidase , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Ferroptosis/genetics , Cell Lineage/genetics , Animals , Myeloid Cells/metabolism , Myeloid Cells/pathology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics
6.
Nature ; 631(8021): 645-653, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987596

ABSTRACT

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.


Subject(s)
COVID-19 , Dendritic Cells , Homeostasis , Megakaryocytes , Thrombopoiesis , Dendritic Cells/immunology , Dendritic Cells/cytology , Animals , Megakaryocytes/cytology , Megakaryocytes/immunology , Mice , COVID-19/immunology , COVID-19/virology , Male , Female , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Interferon-alpha/metabolism , Immunity, Innate , Blood Platelets/immunology , Blood Platelets/cytology , Humans , Apoptosis , Mice, Inbred C57BL , Bone Marrow/immunology , Cell Lineage , Cell Proliferation , Feedback, Physiological
7.
Methods Mol Biol ; 2811: 165-175, 2024.
Article in English | MEDLINE | ID: mdl-39037657

ABSTRACT

Barcode-based lineage tracing approaches enable molecular characterization of clonal cell families. Barcodes that are expressed as mRNA can be used to deconvolve lineage identity from single-cell RNA sequencing transcriptional data. Here we describe the Watermelon system, which facilitates the simultaneous tracing of lineage, transcriptional, and proliferative state at a single cell level.


Subject(s)
Cell Lineage , Single-Cell Analysis , Single-Cell Analysis/methods , Cell Lineage/genetics , Humans , Cell Proliferation/genetics , Sequence Analysis, RNA/methods , RNA, Messenger/genetics
8.
Nat Cell Biol ; 26(7): 1187-1199, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977847

ABSTRACT

Currently, the dynamic accessible elements that determine regulatory programs responsible for the unique identity and function of each cell type during zebrafish embryogenesis lack detailed study. Here we present SPATAC-seq: a split-pool ligation-based assay for transposase-accessible chromatin using sequencing. Using SPATAC-seq, we profiled chromatin accessibility in more than 800,000 individual nuclei across 20 developmental stages spanning the sphere stage to the early larval protruding mouth stage. Using this chromatin accessibility map, we identified 604 cell states and inferred their developmental relationships. We also identified 959,040 candidate cis-regulatory elements (cCREs) and delineated development-specific cCREs, as well as transcription factors defining diverse cell identities. Importantly, enhancer reporter assays confirmed that the majority of tested cCREs exhibited robust enhanced green fluorescent protein expression in restricted cell types or tissues. Finally, we explored gene regulatory programs that drive pigment and notochord cell differentiation. Our work provides a valuable open resource for exploring driver regulators of cell fate decisions in zebrafish embryogenesis.


Subject(s)
Chromatin , Embryonic Development , Gene Expression Regulation, Developmental , Single-Cell Analysis , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Chromatin/metabolism , Chromatin/genetics , Single-Cell Analysis/methods , Embryonic Development/genetics , Cell Differentiation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Embryo, Nonmammalian/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Enhancer Elements, Genetic , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Transposases/metabolism , Transposases/genetics , Cell Lineage/genetics
9.
Nat Cell Biol ; 26(7): 1200-1211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977846

ABSTRACT

Organogenesis is a highly complex and precisely regulated process. Here we profiled the chromatin accessibility in >350,000 cells derived from 13 mouse embryos at four developmental stages from embryonic day (E) 10.5 to E13.5 by SPATAC-seq in a single experiment. The resulting atlas revealed the status of 830,873 candidate cis-regulatory elements in 43 major cell types. By integrating the chromatin accessibility atlas with the previous transcriptomic dataset, we characterized cis-regulatory sequences and transcription factors associated with cell fate commitment, such as Nr5a2 in the development of gastrointestinal tract, which was preliminarily supported by the in vivo experiment in zebrafish. Finally, we integrated this atlas with the previous single-cell chromatin accessibility dataset from 13 adult mouse tissues to delineate the developmental stage-specific gene regulatory programmes within and across different cell types and identify potential molecular switches throughout lineage development. This comprehensive dataset provides a foundation for exploring transcriptional regulation in organogenesis.


Subject(s)
Chromatin , Gene Expression Regulation, Developmental , Organogenesis , Single-Cell Analysis , Zebrafish , Animals , Organogenesis/genetics , Chromatin/metabolism , Chromatin/genetics , Zebrafish/genetics , Zebrafish/embryology , Zebrafish/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Lineage/genetics , Transcriptome/genetics , Embryo, Mammalian/metabolism , Female , Mice, Inbred C57BL
10.
Sci Data ; 11(1): 725, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956385

ABSTRACT

Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.


Subject(s)
Chromatin , Pluripotent Stem Cells , Single-Cell Analysis , Teratoma , Humans , Teratoma/genetics , Teratoma/pathology , Pluripotent Stem Cells/metabolism , Cell Lineage , Transcription Factors/genetics
11.
Sci Adv ; 10(27): eadk8958, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959315

ABSTRACT

The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.


Subject(s)
Epithelial Cells , Receptors, Notch , Signal Transduction , Animals , Epithelial Cells/metabolism , Female , Receptors, Notch/metabolism , Humans , Mice , Cell Lineage , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
12.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961086

ABSTRACT

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Subject(s)
Neuroglia , Neurons , Humans , Animals , Neuroglia/metabolism , Neuroglia/cytology , Neurons/metabolism , Neurons/cytology , Mice , Adult , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Hippocampus/cytology , Hippocampus/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Cells, Cultured
13.
Nat Commun ; 15(1): 5610, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969652

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are a subset of innate lymphocytes that produce type 2 cytokines, including IL-4, IL-5, and IL-13. GATA3 is a critical transcription factor for ILC2 development at multiple stages. However, when and how GATA3 is induced to the levels required for ILC2 development remains unclear. Herein, we identify ILC2-specific GATA3-related tandem super-enhancers (G3SE) that induce high GATA3 in ILC2-committed precursors. G3SE-deficient mice exhibit ILC2 deficiency in the bone marrow, lung, liver, and small intestine with minimal impact on other ILC lineages or Th2 cells. Single-cell RNA-sequencing and subsequent flow cytometry analysis show that GATA3 induction mechanism, which is required for entering the ILC2 stage, is lost in IL-17RB+PD-1- late ILC2-committed precursor stage in G3SE-deficient mice. Cnot6l, part of the CCR4-NOT deadenylase complex, is a possible GATA3 target during ILC2 development. Our findings implicate a stage-specific regulatory mechanism for GATA3 expression during ILC2 development.


Subject(s)
Cell Lineage , GATA3 Transcription Factor , Immunity, Innate , Lymphocytes , Animals , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Mice , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/cytology , Mice, Inbred C57BL , Mice, Knockout , Enhancer Elements, Genetic/genetics , Th2 Cells/immunology , Cell Differentiation/immunology , Single-Cell Analysis
14.
Cell Rep Methods ; 4(7): 100819, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38986613

ABSTRACT

Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Animals , Gene Regulatory Networks , Computational Biology/methods , Cell Differentiation/genetics , Sequence Analysis, RNA/methods , Transcriptome , Deep Learning , Cell Lineage/genetics , Mice , Cellular Reprogramming/genetics , RNA-Seq/methods
15.
Nat Commun ; 15(1): 5898, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003323

ABSTRACT

Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.


Subject(s)
Cell Differentiation , Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Fetus , Lung , Humans , Lung/embryology , Lung/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fetus/cytology , Fetus/embryology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cell Plasticity , Cell Lineage , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Single-Cell Analysis , Transcriptome , Female , Gene Expression Regulation, Developmental , Signal Transduction
16.
Cells ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38994968

ABSTRACT

The incorporation of bacterial ribosome has been reported to induce multipotency in somatic and cancer cells which leads to the conversion of cell lineages. Queried on its universality, we observed that bacterial ribosome incorporation into trypsinized mouse adult fibroblast cells (MAF) led to the formation of ribosome-induced cell clusters (RICs) that showed strong positive alkaline phosphatase staining. Under in vitro differentiation conditions, RICs-MAF were differentiated into adipocytes, osteoblasts, and chondrocytes. In addition, RICs-MAF were able to differentiate into neural cells. Furthermore, RICs-MAF expressed early senescence markers without cell death. Strikingly, no noticeable expression of renowned stemness markers like Oct4, Nanog, Sox2, etc. was observed here. Later RNA-sequencing data revealed the expression of rare pluripotency-associated markers, i.e., Dnmt3l, Sox5, Tbx3 and Cdc73 in RICs-MAF and the enrichment of endogenous ribosomal status. These observations suggested that RICs-MAF might have experienced a non-canonical multipotent state during lineage conversion. In sum, we report a unique approach of an exo-ribosome-mediated plastic state of MAF that is amenable to multi-lineage conversion.


Subject(s)
Cell Differentiation , Fibroblasts , Ribosomes , Animals , Mice , Ribosomes/metabolism , Fibroblasts/metabolism , Cell Plasticity , Bacteria/metabolism , Bacteria/genetics , Cell Lineage
17.
Cell Rep Med ; 5(7): 101631, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38986623

ABSTRACT

Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/ß-catenin signaling contribute to acquired DDRi drug resistance.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/genetics , Drug Resistance, Neoplasm/genetics , Genomics/methods , Biological Specimen Banks , Genetic Heterogeneity , DNA Damage/genetics , Interferons/metabolism , Interferons/genetics , Cell Lineage/genetics
18.
Adv Exp Med Biol ; 1459: 143-156, 2024.
Article in English | MEDLINE | ID: mdl-39017843

ABSTRACT

The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.


Subject(s)
B-Lymphocytes , Cell Lineage , Trans-Activators , Animals , Humans , Trans-Activators/genetics , Trans-Activators/metabolism , B-Lymphocytes/metabolism , Cell Lineage/genetics , Hematopoietic Stem Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
19.
Methods Mol Biol ; 2826: 189-199, 2024.
Article in English | MEDLINE | ID: mdl-39017894

ABSTRACT

The use of flow cytometry for immunophenotyping is contingent on the ability to accurately assign biological relevance to the detected signal. This process has historically been challenging when defining IgE expressing B cells or IgE expressing antibody-secreting cells due to widespread expression of receptors for IgE on various leukocyte subsets, including human B cells. Here we describe our implementation of intracellular staining for human IgE following a blocking step to negate the challenge of surface-bound IgE. We also describe our experience with a human B cell culture system that can be used to robustly validate this approach before application to primary human samples. Orthogonal confirmatory techniques remain essential; these are not described in detail, but several possible strategies are suggested.


Subject(s)
Flow Cytometry , Immunoglobulin E , Immunophenotyping , Humans , Flow Cytometry/methods , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Immunophenotyping/methods , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/cytology , Receptors, IgE/metabolism , Cell Lineage/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/cytology
20.
Nature ; 631(8021): 627-634, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987592

ABSTRACT

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Subject(s)
Acute Lung Injury , Cell Lineage , Fibroblasts , Pneumonia , Pulmonary Alveoli , Pulmonary Fibrosis , Animals , Female , Humans , Male , Mice , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Cell Differentiation , Fibroblasts/pathology , Fibroblasts/metabolism , Homeostasis , Pneumonia/pathology , Pneumonia/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Stem Cell Niche , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/pathology , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...