Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.057
Filter
1.
Food Res Int ; 186: 114312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729688

ABSTRACT

Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.


Subject(s)
Food Microbiology , Gastrointestinal Tract , Listeria monocytogenes , Meat Products , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Meat Products/microbiology , Virulence , Gastrointestinal Tract/microbiology , Bile Acids and Salts/metabolism , Digestion , Food Contamination , Microbial Viability , Cell Membrane Permeability
2.
Methods Mol Biol ; 2799: 177-200, 2024.
Article in English | MEDLINE | ID: mdl-38727908

ABSTRACT

In the mammalian central nervous system (CNS), fast excitatory transmission relies primarily on the ionic fluxes generated by ionotropic glutamate receptors (iGluRs). Among iGluRs, NMDA receptors (NMDARs) are unique in their ability to pass large, Ca2+-rich currents. Importantly, their high Ca2+ permeability is essential for normal CNS function and is under physiological control. For this reason, the accurate measurement of NMDA receptor Ca2+ permeability represents a valuable experimental step in evaluating the mechanism by which these receptors contribute to a variety of physiological and pathological conditions. In this chapter, we provide a theoretical and practical overview of the common methods used to estimate the Ca2+ permeability of ion channels as they apply to NMDA receptors. Specifically, we describe the principles and methodology used to calculate relative permeability (PCa/PNa) and fractional permeability (Pf), along with the relationship between these two metrics. With increasing knowledge about the structural dynamics of ion channels and of the ongoing environmental fluctuations in which channels operate in vivo, the ability to quantify the Ca2+ entering cells through specific ion channels remains a tool essential to delineating the molecular mechanisms that support health and cause disease.


Subject(s)
Calcium , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Patch-Clamp Techniques/methods , Animals , Humans , Permeability , Cell Membrane Permeability
3.
Yakugaku Zasshi ; 144(5): 529-537, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692929

ABSTRACT

In contrast to small molecules, middle molecules present a promising therapeutic modality owing to their elevated specificity, minimal adverse effects, capacity to target protein-protein interactions, and, unlike antibody-based drugs, their suitability for oral administration and intracellular target engagement. Post-oral administration, the paramount considerations encompass solubility and membrane permeability during the initial phase until the drug attains systemic circulation. Furthermore, penetration of the cell membrane is essential to accessing intracellular targets. We evaluated the solubility and membrane permeability of 965 compounds sourced from middle molecule libraries affiliated with Hokkaido University, Kitasato University, and the University of Tokyo. To gauge membrane permeability, we employed both the parallel artificial membrane permeability assay (PAMPA) and Caco-2 cell monolayers. Notably, while membrane permeability in Caco-2 cells exhibited an approximate threefold increase in comparison to PAMPA measurements, certain compounds demonstrated permeability levels less than one-third of those observed in Caco-2 cells. Recognizing the potential involvement of efflux transporters expressed in Caco-2 cells in these variations, we conducted additional assessments involving directional transport in the presence of a transporter inhibitor. Our findings suggest that nearly 80% of these compounds serve as substrates for efflux transporters. Considering the relevance of intracellular targets, we shifted our focus from membrane permeation to intracellular uptake, conducting simulations tailored to assess cellular uptake.


Subject(s)
Cell Membrane Permeability , Membranes, Artificial , Solubility , Humans , Caco-2 Cells , Administration, Oral , Cell Membrane/metabolism
4.
Yakugaku Zasshi ; 144(5): 545-551, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692931

ABSTRACT

The membrane permeability, and its evaluation, is crucial factor in the process of uptake of compounds from outside to inside the cell and in the inhibition of the activity of disease-causing target proteins. Although molecular dynamics (MD) simulations have been shown to be able to reproduce the conformational changes of compounds occurring during membrane permeation, it is still challenging to extract the membrane permeability at an affordable computational workload solely by conventional MD. Indeed, the time scale accessible by MD is far below the one characterizing the actual permeation process. Phenomena occurring in living organisms escaping the reach of standard MD are generally referred to as biological rare events, and the membrane permeation process is one of them. To overcome this time-scale problem, several enhanced sampling methods have been proposed over the years to improve conformational sampling. In this review, a hybrid sampling method that combines the parallel cascade selection MD (PaCS-MD) and the outlier flooding method (OFLOOD), introduced and developed by our group, is proposed as a tool to study the membrane permeation from structural sampling (rare-event sampling). The obtained trajectories are used to estimate the free energy profiles for the membrane permeation and to compute the membrane permeation coefficients. Moreover, we present an example of application of the free energy reaction network method as a versatile way for incorporating explicitly into reaction coordinates the degrees of freedom related to internal motion.


Subject(s)
Cell Membrane Permeability , Molecular Dynamics Simulation , Thermodynamics , Molecular Conformation
5.
Life Sci Alliance ; 7(7)2024 07.
Article in English | MEDLINE | ID: mdl-38744470

ABSTRACT

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Subject(s)
Benzothiazoles , Drug Synergism , Mycobacterium marinum , Zebrafish , Animals , Benzothiazoles/pharmacology , Mycobacterium marinum/drug effects , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Cell Membrane Permeability/drug effects , Macrophages/drug effects , Macrophages/microbiology , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Cell Membrane/metabolism , Cell Membrane/drug effects , Rifampin/pharmacology
6.
J Agric Food Chem ; 72(19): 10853-10861, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708871

ABSTRACT

The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 µg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.


Subject(s)
Anti-Bacterial Agents , Coumarins , Listeria monocytogenes , Microbial Sensitivity Tests , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumarins/pharmacology , Coumarins/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane Permeability/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism
7.
J Phys Chem B ; 128(20): 4911-4921, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38736363

ABSTRACT

To combat surging multidrug-resistant Gram-negative bacterial infections, better strategies to improve the efficacy of existing drugs are critical. Because the dual membrane cell envelope is the first line of defense for these bacteria, it is crucial to understand the permeation properties of the drugs through it. Our recent study shows that isosmotic conditions prevent drug permeation inside Gram-negative bacteria, Escherichia coli, while hypoosmotic stress enhances the process. Here, we unravel the reason behind such differential drug penetration. Specifically, we dissect the roles of electrostatic screening and low membrane permeability in the penetration failure of drugs under osmotically balanced conditions. We compare the transport of a quaternary ammonium compound malachite green in the presence of an electrolyte (NaCl) and a wide variety of commonly used organic osmolytes, e.g., sucrose, proline, glycerol, sorbitol, and urea. These osmolytes of different membrane permeability (i.e., nonpermeable sucrose and NaCl, freely permeable urea and glycerol, and partially permeable proline and sorbitol) clarify the role of osmotic stress in cell envelope permeability. The results showcase that under balanced osmotic conditions, drug molecules fail to penetrate inside E. coli cells because of low membrane permeabilities and not because of electrostatic screening imposed by the osmolytes. Contribution of the electrostatic interactions, however, cannot be completely overruled as at osmotically imbalanced conditions, drug transport across the bacterial subcellular compartments is found to be dependent on the osmolytes used.


Subject(s)
Cell Membrane Permeability , Escherichia coli , Osmotic Pressure , Static Electricity , Escherichia coli/drug effects , Escherichia coli/metabolism , Biological Transport , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Cell Membrane/metabolism , Cell Membrane/chemistry
8.
J Am Chem Soc ; 146(21): 14633-14644, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752889

ABSTRACT

Macrocyclic peptides (MPs) are a class of compounds that have been shown to be particularly well suited for engaging difficult protein targets. However, their utility is limited by their generally poor cell permeability and bioavailability. Here, we report an efficient solid-phase synthesis of novel MPs by trapping a reversible intramolecular imine linkage with a 2-formyl- or 2-keto-pyridine to create an imidazopyridinium (IP+)-linked ring. This chemistry is useful for the creation of macrocycles of different sizes and geometries, including head-to-side and side-to-side chain configurations. Many of the IP+-linked MPs exhibit far better passive membrane permeability than expected for "beyond Rule of 5" molecules, in some cases exceeding that of much lower molecular weight, traditional drug molecules. We demonstrate that this chemistry is suitable for the creation of libraries of IP+-linked MPs and show that these libraries can be mined for protein ligands.


Subject(s)
Imidazoles , Imidazoles/chemistry , Imidazoles/chemical synthesis , Cell Membrane Permeability , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Pyridines/chemistry , Pyridines/chemical synthesis , Molecular Structure
9.
J Ethnopharmacol ; 331: 118323, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38729535

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: India's ancient texts, the Charak Samhita and Sushruta Samhita, make reference to the traditional medicinal usage of Acorus calamus L. In India and China, it has long been used to cure stomach aches, cuts, diarrhea, and skin conditions. This ability of the rhizome is attributed to its antimicrobial properties. Research studies to date have shown its antimicrobial properties. However, scientific evidence on its mode of action is still lacking. AIM OF THE STUDY: Acorus calamus L. rhizome extract and its bioactive fraction exhibits antibacterial effect by modulating membrane permeability and fatty acid composition. MATERIAL AND METHOD: The secondary metabolites in the rhizome of A. calamus L. were extracted in hexane using Soxhlet apparatus. The ability of the extract to inhibit multidrug resistant bacterial isolates, namely Bacillus cereus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were evaluated using checkerboard assay. Further, the extract was purified using thin layer chromatography, gravity column chromatography, and combiflash chromatography. Structure elucidation of the active compound was done using GC-MS, FT-IR, and UV-Vis spectral scan. The mode of action of the bioactive fraction was determined. Bacterial membrane damage was analyzed using SEM, membrane permeability was determined using SYBR green I and PI dye, leakage of cytoplasmic contents were analyzed using Bradford assay and Fehling's reagent. The ability to inhibit efflux pump of A. baumannii was determined using EtBr accumulation assay and ß-lactamase inhibition was analyzed using nitrocefin as substrate. Also, the biofilm inhibition of B. cereus was determined using crystal violet dye. Moreover, the effect of the bioactive fraction on the fatty acid profile of the bacterial membrane was determined by GC-FAME analysis using 37 component FAME mix as standard. RESULTS: Acorus calamus L. rhizome hexane extract (AC-R-H) demonstrated broad-spectrum antibacterial activity against all the isolates tested. AC-R-H extract also significantly reduced the MIC of ampicillin against all tested bacteria, indicating its bacterial resistance modulating properties. The assay guided purification determined Asarone as the major compound present in the bioactive fraction (S-III-BAF). S-III-BAF was found to reduce the MIC of ampicillin against Escherichia coli (100-25 mg/mL), Pseudomonas aeruginosa (15-3.25 mg/mL), Acinetobacter baumannii (12.5-1.56 mg/ml), and Bacillus cereus (10-1.25 mg/mL). Further, it recorded synergistic activity with ampicillin against B. cereus (FICI = 0.365), P. aeruginosa (FICI = 0.456), and A. baumannii (FICI = 0.245). The mode of action of S-III-BAF can be attributed to its ability to disturb the membrane integrity, enhance membrane permeability, reduce biofilm formation, and possibly alter the fatty acid composition of the bacterial cell membranes. CONCLUSION: The bioactive fraction of AC-R-H extract containing Asarone as the active compound showed antibacterial activity and synergistic interactions with ampicillin against the tested bacterial isolates. Such activity can be attributed to the modulation of fatty acids present in bacterial membranes, which enhances membrane permeability and causes membrane damage.


Subject(s)
Acorus , Anti-Bacterial Agents , Cell Membrane Permeability , Fatty Acids , Microbial Sensitivity Tests , Plant Extracts , Rhizome , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Rhizome/chemistry , Acorus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Membrane Permeability/drug effects , Fatty Acids/pharmacology , Fatty Acids/chemistry , Allylbenzene Derivatives , Anisoles/pharmacology , Anisoles/isolation & purification , Anisoles/chemistry
10.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739789

ABSTRACT

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Subject(s)
Nicotiana , Nicotiana/virology , Nicotiana/metabolism , Potyviridae/genetics , Potyviridae/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cell Membrane Permeability , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Viroporin Proteins/metabolism , Viroporin Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Viruses/genetics , Plant Viruses/physiology , Plant Diseases/virology , Potassium/metabolism
11.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792126

ABSTRACT

The utilization of natural products in food preservation represents a promising strategy for the dual benefits of controlling foodborne pathogens and enhancing the nutritional properties of foods. Among the phytonutrients, flavonoids have been shown to exert antibacterial effects by disrupting bacterial cell membrane functionality; however, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of quercetin on the cell membrane permeability of Staphylococcus aureus ATCC 27217. A combined metabolomic and transcriptomic approach was adopted to examine the regulatory mechanism of quercetin with respect to the fatty acid composition and associated genes. Kinetic analysis and molecular docking simulations were conducted to assess quercetin's inhibition of ß-ketoacyl-acyl carrier protein reductase (FabG), a potential target in the bacterial fatty acid biosynthesis pathway. Metabolomic and transcriptomic results showed that quercetin increased the ratio of unsaturated to saturated fatty acids and the levels of membrane phospholipids. The bacteria reacted to quercetin-induced stress by attempting to enhance fatty acid biosynthesis; however, quercetin directly inhibited FabG activity, thereby disrupting bacterial fatty acid biosynthesis. These findings provide new insights into the mechanism of quercetin's effects on bacterial cell membranes and suggest potential applications for quercetin in bacterial inhibition.


Subject(s)
Anti-Bacterial Agents , Fatty Acids , Quercetin , Staphylococcus aureus , Quercetin/pharmacology , Quercetin/chemistry , Staphylococcus aureus/drug effects , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Metabolomics/methods , Transcriptome/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Gene Expression Profiling , Cell Membrane/drug effects , Cell Membrane/metabolism , Gene Expression Regulation, Bacterial/drug effects , Metabolome/drug effects , Cell Membrane Permeability/drug effects
12.
Bioorg Med Chem Lett ; 108: 129798, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38754562

ABSTRACT

Using an electrochemical C(sp3)-H fluorination reaction, a series of α-fluorinated tropane compounds were synthesized and their druglikeness parameters were assessed to compare with the parent compounds. Improvements were observed in membrane permeability, P-gp liability, and inhibitory effects on hERG and Nav1.5 channels, accompanied with a trend of decreased aqueous solubility and microsomal stability. It was also revealed that α-fluorination reduced the basicity of tropane nitrogen atom for about 1000-fold.


Subject(s)
Halogenation , Solubility , Tropanes , Humans , Tropanes/chemistry , Tropanes/chemical synthesis , Tropanes/pharmacology , Structure-Activity Relationship , Ether-A-Go-Go Potassium Channels/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Cell Membrane Permeability/drug effects , Animals , Molecular Structure , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
13.
Neuroreport ; 35(10): 673-678, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813906

ABSTRACT

Hyperactivation of the Ca2+/calmodulin-dependent phosphatase calcineurin (CN) is observed in reactive astrocytes associated with neuroinflammation and progressive degenerative diseases, like Alzheimer's disease. Apart from key transcription factors (e.g. nuclear factor of activated t cells and nuclear factor-κB) very few other CN-dependent pathways have been studied in astrocytes. The hemichannel protein, connexin 43 (Cx43) is found at high levels in astrocytes and contains a CN-sensitive Ser residue near its carboxy terminus. CN-dependent dephosphorylation of Cx43 has been reported in primary astrocytes treated with injurious stimuli, but much remains unknown about CN/Cx43 interactions in the context of neuroinflammation and disease. Western blots were used to assess total Cx43 and dephosphorylated Cx43 subtypes in rat embryonic primary astrocytes treated with a hyperactive CN fragment (ΔCN, via adenovirus), or with a proinflammatory cytokine cocktail. Under similar treatment conditions, an ethidium bromide (EtBr) uptake assay was used to assess membrane permeability. Effects of ΔCN and cytokines were tested in the presence or absence of the CN inhibitor, cyclosporin A. A connexin inhibitor, carbenoxolone was also used in EtBr assays to assess the involvement of connexins in membrane permeability. Treatment with ΔCN or cytokines increased dephosphorylated Cx43 levels in conjunction with increased membrane permeability (elevated EtBr uptake). Effects of ΔCN or cytokine treatment were blocked by cyclosporine A. Treatment-induced changes in EtBr uptake were also inhibited by carbenoxolone. The results suggest that Cx43 hemichannels could be an important mechanism through which astrocytic CN disrupts neurologic function associated with neurodegenerative disease.


Subject(s)
Astrocytes , Calcineurin , Cell Membrane Permeability , Connexin 43 , Astrocytes/metabolism , Astrocytes/drug effects , Connexin 43/metabolism , Animals , Phosphorylation/drug effects , Calcineurin/metabolism , Rats , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/physiology , Cells, Cultured , Rats, Sprague-Dawley
14.
Microbiol Spectr ; 12(6): e0316823, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38722177

ABSTRACT

Vitamin B12 (B12) serves as a critical cofactor within mycobacterial metabolism. While some pathogenic strains can synthesize B12 de novo, others rely on host-acquired B12. In this investigation, we studied the transport of vitamin B12 in Mycobacterium marinum using B12-auxotrophic and B12-sensitive strains by deleting metH or metE, respectively. These two enzymes rely on B12 in different ways to function as methionine synthases. We used these strains to select mutants affecting B12 scavenging and confirmed their phenotypes during growth experiments in vitro. Our analysis of B12 uptake mechanisms revealed that membrane lipids and cell wall integrity play an essential role in cell envelope transport. Furthermore, we identified a potential transcription regulator that responds to B12. Our study demonstrates that M. marinum can take up exogenous B12 and that altering mycobacterial membrane integrity affects B12 uptake. Finally, during zebrafish infection using B12-auxotrophic and B12-sensitive strains, we found that B12 is available for virulent mycobacteria in vivo.IMPORTANCEOur study investigates how mycobacteria acquire essential vitamin B12. These microbes, including those causing tuberculosis, face challenges in nutrient uptake due to their strong outer layer. We focused on Mycobacterium marinum, similar to TB bacteria, to uncover its vitamin B12 absorption. We used modified strains unable to produce their own B12 and discovered that M. marinum can indeed absorb it from the environment, even during infections. Changes in the outer layer composition affect this process, and genes related to membrane integrity play key roles. These findings illuminate the interaction between mycobacteria and their environment, offering insights into combatting diseases like tuberculosis through innovative strategies. Our concise research underscores the pivotal role of vitamin B12 in microbial survival and its potential applications in disease control.


Subject(s)
Bacterial Outer Membrane , Mycobacterium marinum , Vitamin B 12 , Zebrafish , Mycobacterium marinum/genetics , Mycobacterium marinum/metabolism , Vitamin B 12/metabolism , Animals , Zebrafish/microbiology , Bacterial Outer Membrane/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cell Membrane Permeability , Biological Transport , Cell Membrane/metabolism , Mycobacterium Infections, Nontuberculous/microbiology
15.
Acta Biochim Pol ; 71: 11999, 2024.
Article in English | MEDLINE | ID: mdl-38721306

ABSTRACT

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Subject(s)
Antifungal Agents , Bacillus subtilis , Candida glabrata , Cell Membrane Permeability , Lipopeptides , Microbial Sensitivity Tests , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Bacillus subtilis/drug effects , Candida glabrata/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Cell Membrane Permeability/drug effects , Humans , Cell Membrane/drug effects , Cell Membrane/metabolism
16.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690769

ABSTRACT

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
17.
PLoS One ; 19(4): e0300688, 2024.
Article in English | MEDLINE | ID: mdl-38652734

ABSTRACT

Despite their widespread use as therapeutics, clinical development of small molecule drugs remains challenging. Among the many parameters that undergo optimization during the drug development process, increasing passive cell permeability (i.e., log(P)) can have some of the largest impact on potency. Cyclic peptides (CPs) have emerged as a viable alternative to small molecules, as they retain many of the advantages of small molecules (oral availability, target specificity) while being highly effective at traversing the plasma membrane. However, the relationship between the dominant conformations that typify CPs in an aqueous versus a membrane environment and cell permeability remain poorly characterized. In this study, we have used Gaussian accelerated molecular dynamics (GaMD) simulations to characterize the effect of solvent on the free energy landscape of lariat peptides, a subset of CPs that have recently shown potential for drug development (Kelly et al., JACS 2021). Differences in the free energy of lariat peptides as a function of solvent can be used to predict permeability of these molecules, and our results show that permeability is most greatly influenced by N-methylation and exposure to solvent. Our approach lays the groundwork for using GaMD as a way to virtually screen large libraries of CPs and drive forward development of CP-based therapeutics.


Subject(s)
Molecular Dynamics Simulation , Peptides, Cyclic , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Solvents/chemistry , Cell Membrane Permeability , Permeability , Thermodynamics , Normal Distribution
18.
Sci Rep ; 14(1): 8691, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622199

ABSTRACT

This study examinates the challenges of cryopreserving sea urchin (Paracentrotus lividus) eggs, a task hindered by factors like low membrane permeability and high sensitivity to cryoprotective agents (CPAs). While successful cryopreservation has been achieved for some marine invertebrates, eggs remain problematic due to their unique characteristics. The study explores the impact of various CPAs and cryopreservation techniques on sea urchin eggs, employing scanning and transmission electron microscopy to analyze cellular damage. The findings reveal that exposure to low CPA concentrations (0.5 M) did not induce significant damage to eggs. However, high concentrations (3 M) proved highly detrimental. Every cryopreservation approach investigated in this study resulted in irreversible damage to the sea urchin eggs, rendering them nonviable for future use. The research sheds light on the importance of understanding the structural alterations induced by CPAs and cryopreservation methods. This knowledge is essential for refining cryopreservation methods, potentially paving the way for successful preservation of these challenging cells.


Subject(s)
Paracentrotus , Animals , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Cell Membrane Permeability
19.
Eur J Med Chem ; 270: 116392, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38608408

ABSTRACT

The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 µg/mL) and hydroxyethyl IDO 10e (0.25-1 µg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.


Subject(s)
Anti-Bacterial Agents , Norfloxacin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Norfloxacin/pharmacology , Bacteria , Cell Membrane Permeability , DNA/pharmacology , Microbial Sensitivity Tests
20.
Biomed Pharmacother ; 174: 116581, 2024 May.
Article in English | MEDLINE | ID: mdl-38636394

ABSTRACT

Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 µg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.


Subject(s)
Cell Membrane , Flavanones , Oximes , Staphylococcus aureus , Flavanones/pharmacology , Flavanones/chemistry , Oximes/pharmacology , Oximes/chemistry , Staphylococcus aureus/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Enterococcus faecalis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Calorimetry, Differential Scanning , Cell Membrane Permeability/drug effects , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...